/* * Copyright (c) 2011 Maurizio Lombardi * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * - The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** @addtogroup fs * @{ */ #include #include "mfs.h" static errno_t rw_map_ondisk(uint32_t *b, const struct mfs_node *mnode, int rblock, bool write_mode, uint32_t w_block); static errno_t reset_zone_content(struct mfs_instance *inst, uint32_t zone); static errno_t alloc_zone_and_clear(struct mfs_instance *inst, uint32_t *zone); static errno_t read_ind_zone(struct mfs_instance *inst, uint32_t zone, uint32_t **ind_zone); static errno_t write_ind_zone(struct mfs_instance *inst, uint32_t zone, uint32_t *ind_zone); /**Given the position in the file expressed in *bytes, this function returns the on-disk block *relative to that position. * * @param b Pointer to a 32bit number where the block number will be stored * @param mnode Pointer to a generic MINIX inode in memory. * @param pos Position in file. * * @return EOK on success or an error code. */ errno_t mfs_read_map(uint32_t *b, const struct mfs_node *mnode, uint32_t pos) { errno_t r; const struct mfs_sb_info *sbi = mnode->instance->sbi; const int block_size = sbi->block_size; /* Compute relative block number in file */ int rblock = pos / block_size; if (ROUND_UP(mnode->ino_i->i_size, sbi->block_size) < pos) { /* Trying to read beyond the end of file */ r = EOK; *b = 0; goto out; } r = rw_map_ondisk(b, mnode, rblock, false, 0); out: return r; } errno_t mfs_write_map(struct mfs_node *mnode, const uint32_t pos, uint32_t new_zone, uint32_t *old_zone) { const struct mfs_sb_info *sbi = mnode->instance->sbi; if (pos >= sbi->max_file_size) { /* Can't write beyond the maximum file size */ return EINVAL; } /* Compute the relative block number in file */ int rblock = pos / sbi->block_size; return rw_map_ondisk(old_zone, mnode, rblock, true, new_zone); } static errno_t rw_map_ondisk(uint32_t *b, const struct mfs_node *mnode, int rblock, bool write_mode, uint32_t w_block) { int nr_direct; int ptrs_per_block; uint32_t *ind_zone = NULL, *ind2_zone = NULL; errno_t r = EOK; struct mfs_ino_info *ino_i = mnode->ino_i; struct mfs_instance *inst = mnode->instance; struct mfs_sb_info *sbi = inst->sbi; const mfs_version_t fs_version = sbi->fs_version; const bool deleting = write_mode && (w_block == 0); if (fs_version == MFS_VERSION_V1) { nr_direct = V1_NR_DIRECT_ZONES; ptrs_per_block = MFS_BLOCKSIZE / sizeof(uint16_t); } else { nr_direct = V2_NR_DIRECT_ZONES; ptrs_per_block = sbi->block_size / sizeof(uint32_t); } /* Check if the wanted block is in the direct zones */ if (rblock < nr_direct) { *b = ino_i->i_dzone[rblock]; if (write_mode) { ino_i->i_dzone[rblock] = w_block; ino_i->dirty = true; } goto out; } rblock -= nr_direct; if (rblock < ptrs_per_block) { /* The wanted block is in the single indirect zone chain */ if (ino_i->i_izone[0] == 0) { if (write_mode && !deleting) { uint32_t zone; r = alloc_zone_and_clear(inst, &zone); if (r != EOK) goto out; ino_i->i_izone[0] = zone; ino_i->dirty = true; } else { /* Sparse block */ *b = 0; goto out; } } r = read_ind_zone(inst, ino_i->i_izone[0], &ind_zone); if (r != EOK) goto out; *b = ind_zone[rblock]; if (write_mode) { ind_zone[rblock] = w_block; write_ind_zone(inst, ino_i->i_izone[0], ind_zone); } goto out; } rblock -= ptrs_per_block; /* The wanted block is in the double indirect zone chain */ /* Read the first indirect zone of the chain */ if (ino_i->i_izone[1] == 0) { if (write_mode && !deleting) { uint32_t zone; r = alloc_zone_and_clear(inst, &zone); if (r != EOK) goto out; ino_i->i_izone[1] = zone; ino_i->dirty = true; } else { /* Sparse block */ *b = 0; goto out; } } r = read_ind_zone(inst, ino_i->i_izone[1], &ind_zone); if (r != EOK) goto out; /* * Compute the position of the second indirect * zone pointer in the chain. */ uint32_t ind2_off = rblock / ptrs_per_block; /* read the second indirect zone of the chain */ if (ind_zone[ind2_off] == 0) { if (write_mode && !deleting) { uint32_t zone; r = alloc_zone_and_clear(inst, &zone); if (r != EOK) goto out; ind_zone[ind2_off] = zone; write_ind_zone(inst, ino_i->i_izone[1], ind_zone); } else { /* Sparse block */ *b = 0; goto out; } } r = read_ind_zone(inst, ind_zone[ind2_off], &ind2_zone); if (r != EOK) goto out; *b = ind2_zone[rblock - (ind2_off * ptrs_per_block)]; if (write_mode) { ind2_zone[rblock - (ind2_off * ptrs_per_block)] = w_block; write_ind_zone(inst, ind_zone[ind2_off], ind2_zone); } out: free(ind2_zone); free(ind_zone); return r; } /**Free unused indirect zones from a MINIX inode according to its new size. * * @param mnode Pointer to a generic MINIX inode in memory. * @param new_size The new size of the inode. * * @return EOK on success or an error code. */ errno_t mfs_prune_ind_zones(struct mfs_node *mnode, size_t new_size) { struct mfs_instance *inst = mnode->instance; struct mfs_sb_info *sbi = inst->sbi; struct mfs_ino_info *ino_i = mnode->ino_i; int nr_direct, ptrs_per_block, rblock; errno_t r; int i; mfs_version_t fs_version = sbi->fs_version; assert(new_size <= ino_i->i_size); if (fs_version == MFS_VERSION_V1) { nr_direct = V1_NR_DIRECT_ZONES; ptrs_per_block = MFS_BLOCKSIZE / sizeof(uint16_t); } else { nr_direct = V2_NR_DIRECT_ZONES; ptrs_per_block = sbi->block_size / sizeof(uint32_t); } rblock = new_size / sbi->block_size; if (rblock < nr_direct) { /* Free the single indirect zone */ if (ino_i->i_izone[0]) { r = mfs_free_zone(inst, ino_i->i_izone[0]); if (r != EOK) return r; ino_i->i_izone[0] = 0; ino_i->dirty = true; } } rblock -= nr_direct + ptrs_per_block; int fzone_to_free = (rblock < 0 ? 0 : rblock) / ptrs_per_block; if ((fzone_to_free % ptrs_per_block) != 0) ++fzone_to_free; /* Free the entire double indirect zone */ uint32_t *dbl_zone; if (ino_i->i_izone[1] == 0) { /* Nothing to be done */ return EOK; } r = read_ind_zone(inst, ino_i->i_izone[1], &dbl_zone); if (r != EOK) return r; for (i = fzone_to_free; i < ptrs_per_block; ++i) { if (dbl_zone[i] == 0) continue; r = mfs_free_zone(inst, dbl_zone[i]); if (r != EOK) goto out; } if (fzone_to_free == 0) { r = mfs_free_zone(inst, ino_i->i_izone[1]); ino_i->i_izone[1] = 0; ino_i->dirty = true; } out: free(dbl_zone); return r; } static errno_t reset_zone_content(struct mfs_instance *inst, uint32_t zone) { block_t *b; errno_t r; r = block_get(&b, inst->service_id, zone, BLOCK_FLAGS_NOREAD); if (r != EOK) return r; memset(b->data, 0, b->size); b->dirty = true; return block_put(b); } static errno_t alloc_zone_and_clear(struct mfs_instance *inst, uint32_t *zone) { errno_t r; r = mfs_alloc_zone(inst, zone); if (r != EOK) return r; r = reset_zone_content(inst, *zone); return r; } static errno_t read_ind_zone(struct mfs_instance *inst, uint32_t zone, uint32_t **ind_zone) { struct mfs_sb_info *sbi = inst->sbi; errno_t r; unsigned i; block_t *b; const int max_ind_zone_ptrs = (MFS_MAX_BLOCKSIZE / sizeof(uint16_t)) * sizeof(uint32_t); *ind_zone = malloc(max_ind_zone_ptrs); if (*ind_zone == NULL) return ENOMEM; r = block_get(&b, inst->service_id, zone, BLOCK_FLAGS_NONE); if (r != EOK) { free(*ind_zone); return r; } if (sbi->fs_version == MFS_VERSION_V1) { uint16_t *src_ptr = b->data; for (i = 0; i < sbi->block_size / sizeof(uint16_t); ++i) (*ind_zone)[i] = conv16(sbi->native, src_ptr[i]); } else { uint32_t *src_ptr = b->data; for (i = 0; i < sbi->block_size / sizeof(uint32_t); ++i) (*ind_zone)[i] = conv32(sbi->native, src_ptr[i]); } return block_put(b); } static errno_t write_ind_zone(struct mfs_instance *inst, uint32_t zone, uint32_t *ind_zone) { struct mfs_sb_info *sbi = inst->sbi; errno_t r; unsigned i; block_t *b; r = block_get(&b, inst->service_id, zone, BLOCK_FLAGS_NOREAD); if (r != EOK) return r; if (sbi->fs_version == MFS_VERSION_V1) { uint16_t *dest_ptr = b->data; for (i = 0; i < sbi->block_size / sizeof(uint16_t); ++i) dest_ptr[i] = conv16(sbi->native, ind_zone[i]); } else { uint32_t *dest_ptr = b->data; for (i = 0; i < sbi->block_size / sizeof(uint32_t); ++i) dest_ptr[i] = conv32(sbi->native, ind_zone[i]); } b->dirty = true; return block_put(b); } /** * @} */