/* * Copyright (c) 2008 Jakub Jermar * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * - The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** @addtogroup fs * @{ */ /** * @file fat_ops.c * @brief Implementation of VFS operations for the FAT file system server. */ #include "fat.h" #include "../../vfs/vfs.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define BS_BLOCK 0 #define BS_SIZE 512 /** Futex protecting the list of cached free FAT nodes. */ static futex_t ffn_futex = FUTEX_INITIALIZER; /** List of cached free FAT nodes. */ static LIST_INITIALIZE(ffn_head); #define FAT_NAME_LEN 8 #define FAT_EXT_LEN 3 #define FAT_PAD ' ' #define FAT_DENTRY_UNUSED 0x00 #define FAT_DENTRY_E5_ESC 0x05 #define FAT_DENTRY_DOT 0x2e #define FAT_DENTRY_ERASED 0xe5 #define min(a, b) ((a) < (b) ? (a) : (b)) static void dentry_name_canonify(fat_dentry_t *d, char *buf) { int i; for (i = 0; i < FAT_NAME_LEN; i++) { if (d->name[i] == FAT_PAD) break; if (d->name[i] == FAT_DENTRY_E5_ESC) *buf++ = 0xe5; else *buf++ = d->name[i]; } if (d->ext[0] != FAT_PAD) *buf++ = '.'; for (i = 0; i < FAT_EXT_LEN; i++) { if (d->ext[i] == FAT_PAD) { *buf = '\0'; return; } if (d->ext[i] == FAT_DENTRY_E5_ESC) *buf++ = 0xe5; else *buf++ = d->ext[i]; } *buf = '\0'; } static int dev_phone = -1; /* FIXME */ static void *dev_buffer = NULL; /* FIXME */ /* TODO move somewhere else */ typedef struct { void *data; size_t size; bool dirty; } block_t; static block_t *block_get(dev_handle_t dev_handle, off_t offset, size_t bs) { /* FIXME */ block_t *b; off_t bufpos = 0; size_t buflen = 0; off_t pos = offset * bs; assert(dev_phone != -1); assert(dev_buffer); b = malloc(sizeof(block_t)); if (!b) return NULL; b->data = malloc(bs); if (!b->data) { free(b); return NULL; } b->size = bs; if (!libfs_blockread(dev_phone, dev_buffer, &bufpos, &buflen, &pos, b->data, bs, bs)) { free(b->data); free(b); return NULL; } return b; } static void block_put(block_t *block) { /* FIXME */ free(block->data); free(block); } #define FAT1 0 #define FAT_BS(b) ((fat_bs_t *)((b)->data)) #define FAT_CLST_RES0 0x0000 #define FAT_CLST_RES1 0x0001 #define FAT_CLST_FIRST 0x0002 #define FAT_CLST_BAD 0xfff7 #define FAT_CLST_LAST1 0xfff8 #define FAT_CLST_LAST8 0xffff /* internally used to mark root directory's parent */ #define FAT_CLST_ROOTPAR FAT_CLST_RES0 /* internally used to mark root directory */ #define FAT_CLST_ROOT FAT_CLST_RES1 #define fat_block_get(np, off) \ _fat_block_get((np)->idx->dev_handle, (np)->firstc, (off)) static block_t * _fat_block_get(dev_handle_t dev_handle, fat_cluster_t firstc, off_t offset) { block_t *bb; block_t *b; unsigned bps; unsigned spc; unsigned rscnt; /* block address of the first FAT */ unsigned fatcnt; unsigned rde; unsigned rds; /* root directory size */ unsigned sf; unsigned ssa; /* size of the system area */ unsigned clusters; fat_cluster_t clst = firstc; unsigned i; bb = block_get(dev_handle, BS_BLOCK, BS_SIZE); bps = uint16_t_le2host(FAT_BS(bb)->bps); spc = FAT_BS(bb)->spc; rscnt = uint16_t_le2host(FAT_BS(bb)->rscnt); fatcnt = FAT_BS(bb)->fatcnt; rde = uint16_t_le2host(FAT_BS(bb)->root_ent_max); sf = uint16_t_le2host(FAT_BS(bb)->sec_per_fat); block_put(bb); rds = (sizeof(fat_dentry_t) * rde) / bps; rds += ((sizeof(fat_dentry_t) * rde) % bps != 0); ssa = rscnt + fatcnt * sf + rds; if (firstc == FAT_CLST_ROOT) { /* root directory special case */ assert(offset < rds); b = block_get(dev_handle, rscnt + fatcnt * sf + offset, bps); return b; } clusters = offset / spc; for (i = 0; i < clusters; i++) { unsigned fsec; /* sector offset relative to FAT1 */ unsigned fidx; /* FAT1 entry index */ assert(clst >= FAT_CLST_FIRST && clst < FAT_CLST_BAD); fsec = (clst * sizeof(fat_cluster_t)) / bps; fidx = clst % (bps / sizeof(fat_cluster_t)); /* read FAT1 */ b = block_get(dev_handle, rscnt + fsec, bps); clst = uint16_t_le2host(((fat_cluster_t *)b->data)[fidx]); assert(clst != FAT_CLST_BAD); assert(clst < FAT_CLST_LAST1); block_put(b); } b = block_get(dev_handle, ssa + (clst - FAT_CLST_FIRST) * spc + offset % spc, bps); return b; } /** Return number of blocks allocated to a file. * * @param dev_handle Device handle of the device with the file. * @param firstc First cluster of the file. * * @return Number of blocks allocated to the file. */ static uint16_t _fat_blcks_get(dev_handle_t dev_handle, fat_cluster_t firstc) { block_t *bb; block_t *b; unsigned bps; unsigned spc; unsigned rscnt; /* block address of the first FAT */ unsigned clusters = 0; fat_cluster_t clst = firstc; bb = block_get(dev_handle, BS_BLOCK, BS_SIZE); bps = uint16_t_le2host(FAT_BS(bb)->bps); spc = FAT_BS(bb)->spc; rscnt = uint16_t_le2host(FAT_BS(bb)->rscnt); block_put(bb); if (firstc == FAT_CLST_RES0) { /* No space allocated to the file. */ return 0; } while (clst < FAT_CLST_LAST1) { unsigned fsec; /* sector offset relative to FAT1 */ unsigned fidx; /* FAT1 entry index */ assert(clst >= FAT_CLST_FIRST); fsec = (clst * sizeof(fat_cluster_t)) / bps; fidx = clst % (bps / sizeof(fat_cluster_t)); /* read FAT1 */ b = block_get(dev_handle, rscnt + fsec, bps); clst = uint16_t_le2host(((fat_cluster_t *)b->data)[fidx]); assert(clst != FAT_CLST_BAD); block_put(b); clusters++; } return clusters * spc; } static void fat_node_initialize(fat_node_t *node) { futex_initialize(&node->lock, 1); node->idx = NULL; node->type = 0; link_initialize(&node->ffn_link); node->size = 0; node->lnkcnt = 0; node->refcnt = 0; node->dirty = false; } static uint16_t fat_bps_get(dev_handle_t dev_handle) { block_t *bb; uint16_t bps; bb = block_get(dev_handle, BS_BLOCK, BS_SIZE); assert(bb != NULL); bps = uint16_t_le2host(FAT_BS(bb)->bps); block_put(bb); return bps; } typedef enum { FAT_DENTRY_SKIP, FAT_DENTRY_LAST, FAT_DENTRY_VALID } fat_dentry_clsf_t; static fat_dentry_clsf_t fat_classify_dentry(fat_dentry_t *d) { if (d->attr & FAT_ATTR_VOLLABEL) { /* volume label entry */ return FAT_DENTRY_SKIP; } if (d->name[0] == FAT_DENTRY_ERASED) { /* not-currently-used entry */ return FAT_DENTRY_SKIP; } if (d->name[0] == FAT_DENTRY_UNUSED) { /* never used entry */ return FAT_DENTRY_LAST; } if (d->name[0] == FAT_DENTRY_DOT) { /* * Most likely '.' or '..'. * It cannot occur in a regular file name. */ return FAT_DENTRY_SKIP; } return FAT_DENTRY_VALID; } static void fat_node_sync(fat_node_t *node) { /* TODO */ } /** Internal version of fat_node_get(). * * @param idxp Locked index structure. */ static void *fat_node_get_core(fat_idx_t *idxp) { block_t *b; fat_dentry_t *d; fat_node_t *nodep = NULL; unsigned bps; unsigned dps; if (idxp->nodep) { /* * We are lucky. * The node is already instantiated in memory. */ futex_down(&idxp->nodep->lock); if (!idxp->nodep->refcnt++) list_remove(&idxp->nodep->ffn_link); futex_up(&idxp->nodep->lock); return idxp->nodep; } /* * We must instantiate the node from the file system. */ assert(idxp->pfc); futex_down(&ffn_futex); if (!list_empty(&ffn_head)) { /* Try to use a cached free node structure. */ fat_idx_t *idxp_tmp; nodep = list_get_instance(ffn_head.next, fat_node_t, ffn_link); if (futex_trydown(&nodep->lock) == ESYNCH_WOULD_BLOCK) goto skip_cache; idxp_tmp = nodep->idx; if (futex_trydown(&idxp_tmp->lock) == ESYNCH_WOULD_BLOCK) { futex_up(&nodep->lock); goto skip_cache; } list_remove(&nodep->ffn_link); futex_up(&ffn_futex); if (nodep->dirty) fat_node_sync(nodep); idxp_tmp->nodep = NULL; futex_up(&nodep->lock); futex_up(&idxp_tmp->lock); } else { skip_cache: /* Try to allocate a new node structure. */ futex_up(&ffn_futex); nodep = (fat_node_t *)malloc(sizeof(fat_node_t)); if (!nodep) return NULL; } fat_node_initialize(nodep); bps = fat_bps_get(idxp->dev_handle); dps = bps / sizeof(fat_dentry_t); /* Read the block that contains the dentry of interest. */ b = _fat_block_get(idxp->dev_handle, idxp->pfc, (idxp->pdi * sizeof(fat_dentry_t)) / bps); assert(b); d = ((fat_dentry_t *)b->data) + (idxp->pdi % dps); if (d->attr & FAT_ATTR_SUBDIR) { /* * The only directory which does not have this bit set is the * root directory itself. The root directory node is handled * and initialized elsewhere. */ nodep->type = FAT_DIRECTORY; /* * Unfortunately, the 'size' field of the FAT dentry is not * defined for the directory entry type. We must determine the * size of the directory by walking the FAT. */ nodep->size = bps * _fat_blcks_get(idxp->dev_handle, uint16_t_le2host(d->firstc)); } else { nodep->type = FAT_FILE; nodep->size = uint32_t_le2host(d->size); } nodep->firstc = uint16_t_le2host(d->firstc); nodep->lnkcnt = 1; nodep->refcnt = 1; block_put(b); /* Link the idx structure with the node structure. */ nodep->idx = idxp; idxp->nodep = nodep; return nodep; } /** Instantiate a FAT in-core node. */ static void *fat_node_get(dev_handle_t dev_handle, fs_index_t index) { void *node; fat_idx_t *idxp; idxp = fat_idx_get_by_index(dev_handle, index); if (!idxp) return NULL; /* idxp->lock held */ node = fat_node_get_core(idxp); futex_up(&idxp->lock); return node; } static void fat_node_put(void *node) { fat_node_t *nodep = (fat_node_t *)node; futex_down(&nodep->lock); if (!--nodep->refcnt) { futex_down(&ffn_futex); list_append(&nodep->ffn_link, &ffn_head); futex_up(&ffn_futex); } futex_up(&nodep->lock); } static void *fat_create(int flags) { return NULL; /* not supported at the moment */ } static int fat_destroy(void *node) { return ENOTSUP; /* not supported at the moment */ } static bool fat_link(void *prnt, void *chld, const char *name) { return false; /* not supported at the moment */ } static int fat_unlink(void *prnt, void *chld) { return ENOTSUP; /* not supported at the moment */ } static void *fat_match(void *prnt, const char *component) { fat_node_t *parentp = (fat_node_t *)prnt; char name[FAT_NAME_LEN + 1 + FAT_EXT_LEN + 1]; unsigned i, j; unsigned bps; /* bytes per sector */ unsigned dps; /* dentries per sector */ unsigned blocks; fat_dentry_t *d; block_t *b; futex_down(&parentp->idx->lock); bps = fat_bps_get(parentp->idx->dev_handle); dps = bps / sizeof(fat_dentry_t); blocks = parentp->size / bps + (parentp->size % bps != 0); for (i = 0; i < blocks; i++) { unsigned dentries; b = fat_block_get(parentp, i); dentries = (i == blocks - 1) ? parentp->size % sizeof(fat_dentry_t) : dps; for (j = 0; j < dentries; j++) { d = ((fat_dentry_t *)b->data) + j; switch (fat_classify_dentry(d)) { case FAT_DENTRY_SKIP: continue; case FAT_DENTRY_LAST: block_put(b); futex_up(&parentp->idx->lock); return NULL; default: case FAT_DENTRY_VALID: dentry_name_canonify(d, name); break; } if (stricmp(name, component) == 0) { /* hit */ void *node; /* * Assume tree hierarchy for locking. We * already have the parent and now we are going * to lock the child. Never lock in the oposite * order. */ fat_idx_t *idx = fat_idx_get_by_pos( parentp->idx->dev_handle, parentp->firstc, i * dps + j); futex_up(&parentp->idx->lock); if (!idx) { /* * Can happen if memory is low or if we * run out of 32-bit indices. */ block_put(b); return NULL; } node = fat_node_get_core(idx); futex_up(&idx->lock); block_put(b); return node; } } block_put(b); } futex_up(&parentp->idx->lock); return NULL; } static fs_index_t fat_index_get(void *node) { fat_node_t *fnodep = (fat_node_t *)node; if (!fnodep) return 0; return fnodep->idx->index; } static size_t fat_size_get(void *node) { return ((fat_node_t *)node)->size; } static unsigned fat_lnkcnt_get(void *node) { return ((fat_node_t *)node)->lnkcnt; } static bool fat_has_children(void *node) { fat_node_t *nodep = (fat_node_t *)node; unsigned bps; unsigned dps; unsigned blocks; block_t *b; unsigned i, j; if (nodep->type != FAT_DIRECTORY) return false; futex_down(&nodep->idx->lock); bps = fat_bps_get(nodep->idx->dev_handle); dps = bps / sizeof(fat_dentry_t); blocks = nodep->size / bps + (nodep->size % bps != 0); for (i = 0; i < blocks; i++) { unsigned dentries; fat_dentry_t *d; b = fat_block_get(nodep, i); dentries = (i == blocks - 1) ? nodep->size % sizeof(fat_dentry_t) : dps; for (j = 0; j < dentries; j++) { d = ((fat_dentry_t *)b->data) + j; switch (fat_classify_dentry(d)) { case FAT_DENTRY_SKIP: continue; case FAT_DENTRY_LAST: block_put(b); futex_up(&nodep->idx->lock); return false; default: case FAT_DENTRY_VALID: block_put(b); futex_up(&nodep->idx->lock); return true; } block_put(b); futex_up(&nodep->idx->lock); return true; } block_put(b); } futex_up(&nodep->idx->lock); return false; } static void *fat_root_get(dev_handle_t dev_handle) { return fat_node_get(dev_handle, 0); } static char fat_plb_get_char(unsigned pos) { return fat_reg.plb_ro[pos % PLB_SIZE]; } static bool fat_is_directory(void *node) { return ((fat_node_t *)node)->type == FAT_DIRECTORY; } static bool fat_is_file(void *node) { return ((fat_node_t *)node)->type == FAT_FILE; } /** libfs operations */ libfs_ops_t fat_libfs_ops = { .match = fat_match, .node_get = fat_node_get, .node_put = fat_node_put, .create = fat_create, .destroy = fat_destroy, .link = fat_link, .unlink = fat_unlink, .index_get = fat_index_get, .size_get = fat_size_get, .lnkcnt_get = fat_lnkcnt_get, .has_children = fat_has_children, .root_get = fat_root_get, .plb_get_char = fat_plb_get_char, .is_directory = fat_is_directory, .is_file = fat_is_file }; void fat_mounted(ipc_callid_t rid, ipc_call_t *request) { dev_handle_t dev_handle = (dev_handle_t) IPC_GET_ARG1(*request); block_t *bb; uint16_t bps; uint16_t rde; int rc; /* * For now, we don't bother to remember dev_handle, dev_phone or * dev_buffer in some data structure. We use global variables because we * know there will be at most one mount on this file system. * Of course, this is a huge TODO item. */ dev_buffer = mmap(NULL, BS_SIZE, PROTO_READ | PROTO_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, 0, 0); if (!dev_buffer) { ipc_answer_0(rid, ENOMEM); return; } dev_phone = ipc_connect_me_to(PHONE_NS, SERVICE_DEVMAP, DEVMAP_CONNECT_TO_DEVICE, dev_handle); if (dev_phone < 0) { munmap(dev_buffer, BS_SIZE); ipc_answer_0(rid, dev_phone); return; } rc = ipc_share_out_start(dev_phone, dev_buffer, AS_AREA_READ | AS_AREA_WRITE); if (rc != EOK) { munmap(dev_buffer, BS_SIZE); ipc_answer_0(rid, rc); return; } /* Read the number of root directory entries. */ bb = block_get(dev_handle, BS_BLOCK, BS_SIZE); bps = uint16_t_le2host(FAT_BS(bb)->bps); rde = uint16_t_le2host(FAT_BS(bb)->root_ent_max); block_put(bb); if (bps != BS_SIZE) { munmap(dev_buffer, BS_SIZE); ipc_answer_0(rid, ENOTSUP); return; } rc = fat_idx_init_by_dev_handle(dev_handle); if (rc != EOK) { munmap(dev_buffer, BS_SIZE); ipc_answer_0(rid, rc); return; } /* Initialize the root node. */ fat_node_t *rootp = (fat_node_t *)malloc(sizeof(fat_node_t)); if (!rootp) { munmap(dev_buffer, BS_SIZE); fat_idx_fini_by_dev_handle(dev_handle); ipc_answer_0(rid, ENOMEM); return; } fat_node_initialize(rootp); fat_idx_t *ridxp = fat_idx_get_by_pos(dev_handle, FAT_CLST_ROOTPAR, 0); if (!ridxp) { munmap(dev_buffer, BS_SIZE); free(rootp); fat_idx_fini_by_dev_handle(dev_handle); ipc_answer_0(rid, ENOMEM); return; } assert(ridxp->index == 0); /* ridxp->lock held */ rootp->type = FAT_DIRECTORY; rootp->firstc = FAT_CLST_ROOT; rootp->refcnt = 1; rootp->lnkcnt = 0; /* FS root is not linked */ rootp->size = rde * sizeof(fat_dentry_t); rootp->idx = ridxp; ridxp->nodep = rootp; futex_up(&ridxp->lock); ipc_answer_3(rid, EOK, ridxp->index, rootp->size, rootp->lnkcnt); } void fat_mount(ipc_callid_t rid, ipc_call_t *request) { ipc_answer_0(rid, ENOTSUP); } void fat_lookup(ipc_callid_t rid, ipc_call_t *request) { libfs_lookup(&fat_libfs_ops, fat_reg.fs_handle, rid, request); } void fat_read(ipc_callid_t rid, ipc_call_t *request) { dev_handle_t dev_handle = (dev_handle_t)IPC_GET_ARG1(*request); fs_index_t index = (fs_index_t)IPC_GET_ARG2(*request); off_t pos = (off_t)IPC_GET_ARG3(*request); fat_node_t *nodep = (fat_node_t *)fat_node_get(dev_handle, index); uint16_t bps = fat_bps_get(dev_handle); size_t bytes; block_t *b; if (!nodep) { ipc_answer_0(rid, ENOENT); return; } ipc_callid_t callid; size_t len; if (!ipc_data_read_receive(&callid, &len)) { fat_node_put(nodep); ipc_answer_0(callid, EINVAL); ipc_answer_0(rid, EINVAL); return; } if (nodep->type == FAT_FILE) { /* * Our strategy for regular file reads is to read one block at * most and make use of the possibility to return less data than * requested. This keeps the code very simple. */ bytes = min(len, bps - pos % bps); b = fat_block_get(nodep, pos / bps); (void) ipc_data_read_finalize(callid, b->data + pos % bps, bytes); block_put(b); } else { unsigned bnum; off_t spos = pos; char name[FAT_NAME_LEN + 1 + FAT_EXT_LEN + 1]; fat_dentry_t *d; assert(nodep->type == FAT_DIRECTORY); assert(nodep->size % bps == 0); assert(bps % sizeof(fat_dentry_t) == 0); /* * Our strategy for readdir() is to use the position pointer as * an index into the array of all dentries. On entry, it points * to the first unread dentry. If we skip any dentries, we bump * the position pointer accordingly. */ bnum = (pos * sizeof(fat_dentry_t)) / bps; while (bnum < nodep->size / bps) { off_t o; b = fat_block_get(nodep, bnum); for (o = pos % (bps / sizeof(fat_dentry_t)); o < bps / sizeof(fat_dentry_t); o++, pos++) { d = ((fat_dentry_t *)b->data) + o; switch (fat_classify_dentry(d)) { case FAT_DENTRY_SKIP: continue; case FAT_DENTRY_LAST: block_put(b); goto miss; default: case FAT_DENTRY_VALID: dentry_name_canonify(d, name); block_put(b); goto hit; } } block_put(b); bnum++; } miss: fat_node_put(nodep); ipc_answer_0(callid, ENOENT); ipc_answer_1(rid, ENOENT, 0); return; hit: (void) ipc_data_read_finalize(callid, name, strlen(name) + 1); bytes = (pos - spos) + 1; } fat_node_put(nodep); ipc_answer_1(rid, EOK, (ipcarg_t)bytes); } /** Fill the gap between EOF and a new file position. * * @param nodep FAT node with the gap. * @param mcl First cluster in an independent cluster chain that will * be later appended to the end of the node's own cluster * chain. If pos is still in the last allocated cluster, * this argument is ignored. * @param pos Position in the last node block. */ static void fat_fill_gap(fat_node_t *nodep, fat_cluster_t mcl, off_t pos) { uint16_t bps; unsigned spc; block_t *bb, *b; off_t o, boundary; bb = block_get(nodep->idx->dev_handle, BS_BLOCK, BS_SIZE); bps = uint16_t_le2host(FAT_BS(bb)->bps); spc = FAT_BS(bb)->spc; block_put(bb); boundary = ROUND_UP(nodep->size, bps * spc); /* zero out already allocated space */ for (o = nodep->size - 1; o < pos && o < boundary; o = ALIGN_DOWN(o + bps, bps)) { b = fat_block_get(nodep, o / bps); memset(b->data + o % bps, 0, bps - o % bps); b->dirty = true; /* need to sync node */ block_put(b); } if (o >= pos) return; /* zero out the initial part of the new cluster chain */ for (o = boundary; o < pos; o += bps) { b = _fat_block_get(nodep->idx->dev_handle, mcl, (o - boundary) / bps); memset(b->data, 0, min(bps, pos - o)); b->dirty = true; /* need to sync node */ block_put(b); } } static void fat_mark_cluster(dev_handle_t dev_handle, unsigned fatno, fat_cluster_t clst, fat_cluster_t value) { /* TODO */ } static void fat_alloc_shadow_clusters(dev_handle_t dev_handle, fat_cluster_t *lifo, unsigned nclsts) { /* TODO */ } static int fat_alloc_clusters(dev_handle_t dev_handle, unsigned nclsts, fat_cluster_t *mcl, fat_cluster_t *lcl) { uint16_t bps; uint16_t rscnt; uint16_t sf; block_t *bb, *blk; fat_cluster_t *lifo; /* stack for storing free cluster numbers */ unsigned found = 0; /* top of the free cluster number stack */ unsigned b, c, cl; lifo = (fat_cluster_t *) malloc(nclsts * sizeof(fat_cluster_t)); if (lifo) return ENOMEM; bb = block_get(dev_handle, BS_BLOCK, BS_SIZE); bps = uint16_t_le2host(FAT_BS(bb)->bps); rscnt = uint16_t_le2host(FAT_BS(bb)->rscnt); sf = uint16_t_le2host(FAT_BS(bb)->sec_per_fat); block_put(bb); /* * Search FAT1 for unused clusters. */ for (b = 0, cl = 0; b < sf; blk++) { blk = block_get(dev_handle, rscnt + b, bps); for (c = 0; c < bps / sizeof(fat_cluster_t); c++, cl++) { fat_cluster_t *clst = (fat_cluster_t *)blk->data + c; if (*clst == FAT_CLST_RES0) { /* * The cluster is free. Put it into our stack * of found clusters and mark it as non-free. */ lifo[found] = cl; if (found == 0) *clst = FAT_CLST_LAST1; else *clst = lifo[found - 1]; blk->dirty = true; /* need to sync block */ if (++found == nclsts) { /* we are almost done */ block_put(blk); /* update the shadow copies of FAT */ fat_alloc_shadow_clusters(dev_handle, lifo, nclsts); *mcl = lifo[found - 1]; *lcl = lifo[0]; free(lifo); return EOK; } } } block_put(blk); } /* * We could not find enough clusters. Now we need to free the clusters * we have allocated so far. */ while (found--) fat_mark_cluster(dev_handle, FAT1, lifo[found], FAT_CLST_RES0); free(lifo); return ENOSPC; } static void fat_append_clusters(fat_node_t *nodep, fat_cluster_t mcl) { } void fat_write(ipc_callid_t rid, ipc_call_t *request) { dev_handle_t dev_handle = (dev_handle_t)IPC_GET_ARG1(*request); fs_index_t index = (fs_index_t)IPC_GET_ARG2(*request); off_t pos = (off_t)IPC_GET_ARG3(*request); fat_node_t *nodep = (fat_node_t *)fat_node_get(dev_handle, index); size_t bytes; block_t *b, *bb; uint16_t bps; unsigned spc; off_t boundary; if (!nodep) { ipc_answer_0(rid, ENOENT); return; } /* XXX remove me when you are ready */ { ipc_answer_0(rid, ENOTSUP); fat_node_put(nodep); return; } ipc_callid_t callid; size_t len; if (!ipc_data_write_receive(&callid, &len)) { fat_node_put(nodep); ipc_answer_0(callid, EINVAL); ipc_answer_0(rid, EINVAL); return; } /* * In all scenarios, we will attempt to write out only one block worth * of data at maximum. There might be some more efficient approaches, * but this one greatly simplifies fat_write(). Note that we can afford * to do this because the client must be ready to handle the return * value signalizing a smaller number of bytes written. */ bytes = min(len, bps - pos % bps); bb = block_get(dev_handle, BS_BLOCK, BS_SIZE); bps = uint16_t_le2host(FAT_BS(bb)->bps); spc = FAT_BS(bb)->spc; block_put(bb); boundary = ROUND_UP(nodep->size, bps * spc); if (pos < boundary) { /* * This is the easier case - we are either overwriting already * existing contents or writing behind the EOF, but still within * the limits of the last cluster. The node size may grow to the * next block size boundary. */ fat_fill_gap(nodep, FAT_CLST_RES0, pos); b = fat_block_get(nodep, pos / bps); (void) ipc_data_write_finalize(callid, b->data + pos % bps, bytes); b->dirty = true; /* need to sync block */ block_put(b); if (pos + bytes > nodep->size) { nodep->size = pos + bytes; nodep->dirty = true; /* need to sync node */ } fat_node_put(nodep); ipc_answer_1(rid, EOK, bytes); return; } else { /* * This is the more difficult case. We must allocate new * clusters for the node and zero them out. */ int status; unsigned nclsts; fat_cluster_t mcl, lcl; nclsts = (ROUND_UP(pos + bytes, bps * spc) - boundary) / bps * spc; /* create an independent chain of nclsts clusters in all FATs */ status = fat_alloc_clusters(dev_handle, nclsts, &mcl, &lcl); if (status != EOK) { /* could not allocate a chain of nclsts clusters */ fat_node_put(nodep); ipc_answer_0(callid, status); ipc_answer_0(rid, status); return; } /* zero fill any gaps */ fat_fill_gap(nodep, mcl, pos); b = _fat_block_get(dev_handle, lcl, (pos / bps) % spc); (void) ipc_data_write_finalize(callid, b->data + pos % bps, bytes); b->dirty = true; /* need to sync block */ block_put(b); /* * Append the cluster chain starting in mcl to the end of the * node's cluster chain. */ fat_append_clusters(nodep, mcl); nodep->size = pos + bytes; nodep->dirty = true; /* need to sync node */ fat_node_put(nodep); ipc_answer_1(rid, EOK, bytes); return; } } /** * @} */