/* * Copyright (c) 2008 Jakub Jermar * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * - The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** @addtogroup fs * @{ */ /** * @file fat_ops.c * @brief Implementation of VFS operations for the FAT file system server. */ #include "fat.h" #include "fat_dentry.h" #include "fat_fat.h" #include "../../vfs/vfs.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /** Futex protecting the list of cached free FAT nodes. */ static futex_t ffn_futex = FUTEX_INITIALIZER; /** List of cached free FAT nodes. */ static LIST_INITIALIZE(ffn_head); static void fat_node_initialize(fat_node_t *node) { futex_initialize(&node->lock, 1); node->idx = NULL; node->type = 0; link_initialize(&node->ffn_link); node->size = 0; node->lnkcnt = 0; node->refcnt = 0; node->dirty = false; } static void fat_node_sync(fat_node_t *node) { block_t *b; fat_bs_t *bs; fat_dentry_t *d; uint16_t bps; unsigned dps; assert(node->dirty); bs = block_bb_get(node->idx->dev_handle); bps = uint16_t_le2host(bs->bps); dps = bps / sizeof(fat_dentry_t); /* Read the block that contains the dentry of interest. */ b = _fat_block_get(bs, node->idx->dev_handle, node->idx->pfc, (node->idx->pdi * sizeof(fat_dentry_t)) / bps); d = ((fat_dentry_t *)b->data) + (node->idx->pdi % dps); d->firstc = host2uint16_t_le(node->firstc); if (node->type == FAT_FILE) d->size = host2uint32_t_le(node->size); /* TODO: update other fields? (e.g time fields, attr field) */ b->dirty = true; /* need to sync block */ block_put(b); } /** Internal version of fat_node_get(). * * @param idxp Locked index structure. */ static void *fat_node_get_core(fat_idx_t *idxp) { block_t *b; fat_bs_t *bs; fat_dentry_t *d; fat_node_t *nodep = NULL; unsigned bps; unsigned dps; if (idxp->nodep) { /* * We are lucky. * The node is already instantiated in memory. */ futex_down(&idxp->nodep->lock); if (!idxp->nodep->refcnt++) list_remove(&idxp->nodep->ffn_link); futex_up(&idxp->nodep->lock); return idxp->nodep; } /* * We must instantiate the node from the file system. */ assert(idxp->pfc); futex_down(&ffn_futex); if (!list_empty(&ffn_head)) { /* Try to use a cached free node structure. */ fat_idx_t *idxp_tmp; nodep = list_get_instance(ffn_head.next, fat_node_t, ffn_link); if (futex_trydown(&nodep->lock) == ESYNCH_WOULD_BLOCK) goto skip_cache; idxp_tmp = nodep->idx; if (futex_trydown(&idxp_tmp->lock) == ESYNCH_WOULD_BLOCK) { futex_up(&nodep->lock); goto skip_cache; } list_remove(&nodep->ffn_link); futex_up(&ffn_futex); if (nodep->dirty) fat_node_sync(nodep); idxp_tmp->nodep = NULL; futex_up(&nodep->lock); futex_up(&idxp_tmp->lock); } else { skip_cache: /* Try to allocate a new node structure. */ futex_up(&ffn_futex); nodep = (fat_node_t *)malloc(sizeof(fat_node_t)); if (!nodep) return NULL; } fat_node_initialize(nodep); bs = block_bb_get(idxp->dev_handle); bps = uint16_t_le2host(bs->bps); dps = bps / sizeof(fat_dentry_t); /* Read the block that contains the dentry of interest. */ b = _fat_block_get(bs, idxp->dev_handle, idxp->pfc, (idxp->pdi * sizeof(fat_dentry_t)) / bps); assert(b); d = ((fat_dentry_t *)b->data) + (idxp->pdi % dps); if (d->attr & FAT_ATTR_SUBDIR) { /* * The only directory which does not have this bit set is the * root directory itself. The root directory node is handled * and initialized elsewhere. */ nodep->type = FAT_DIRECTORY; /* * Unfortunately, the 'size' field of the FAT dentry is not * defined for the directory entry type. We must determine the * size of the directory by walking the FAT. */ nodep->size = bps * _fat_blcks_get(bs, idxp->dev_handle, uint16_t_le2host(d->firstc), NULL); } else { nodep->type = FAT_FILE; nodep->size = uint32_t_le2host(d->size); } nodep->firstc = uint16_t_le2host(d->firstc); nodep->lnkcnt = 1; nodep->refcnt = 1; block_put(b); /* Link the idx structure with the node structure. */ nodep->idx = idxp; idxp->nodep = nodep; return nodep; } /** Instantiate a FAT in-core node. */ static void *fat_node_get(dev_handle_t dev_handle, fs_index_t index) { void *node; fat_idx_t *idxp; idxp = fat_idx_get_by_index(dev_handle, index); if (!idxp) return NULL; /* idxp->lock held */ node = fat_node_get_core(idxp); futex_up(&idxp->lock); return node; } static void fat_node_put(void *node) { fat_node_t *nodep = (fat_node_t *)node; futex_down(&nodep->lock); if (!--nodep->refcnt) { futex_down(&ffn_futex); list_append(&nodep->ffn_link, &ffn_head); futex_up(&ffn_futex); } futex_up(&nodep->lock); } static void *fat_create(int flags) { return NULL; /* not supported at the moment */ } static int fat_destroy(void *node) { return ENOTSUP; /* not supported at the moment */ } static bool fat_link(void *prnt, void *chld, const char *name) { return false; /* not supported at the moment */ } static int fat_unlink(void *prnt, void *chld) { return ENOTSUP; /* not supported at the moment */ } static void *fat_match(void *prnt, const char *component) { fat_bs_t *bs; fat_node_t *parentp = (fat_node_t *)prnt; char name[FAT_NAME_LEN + 1 + FAT_EXT_LEN + 1]; unsigned i, j; unsigned bps; /* bytes per sector */ unsigned dps; /* dentries per sector */ unsigned blocks; fat_dentry_t *d; block_t *b; futex_down(&parentp->idx->lock); bs = block_bb_get(parentp->idx->dev_handle); bps = uint16_t_le2host(bs->bps); dps = bps / sizeof(fat_dentry_t); blocks = parentp->size / bps; for (i = 0; i < blocks; i++) { b = fat_block_get(bs, parentp, i); for (j = 0; j < dps; j++) { d = ((fat_dentry_t *)b->data) + j; switch (fat_classify_dentry(d)) { case FAT_DENTRY_SKIP: continue; case FAT_DENTRY_LAST: block_put(b); futex_up(&parentp->idx->lock); return NULL; default: case FAT_DENTRY_VALID: dentry_name_canonify(d, name); break; } if (stricmp(name, component) == 0) { /* hit */ void *node; /* * Assume tree hierarchy for locking. We * already have the parent and now we are going * to lock the child. Never lock in the oposite * order. */ fat_idx_t *idx = fat_idx_get_by_pos( parentp->idx->dev_handle, parentp->firstc, i * dps + j); futex_up(&parentp->idx->lock); if (!idx) { /* * Can happen if memory is low or if we * run out of 32-bit indices. */ block_put(b); return NULL; } node = fat_node_get_core(idx); futex_up(&idx->lock); block_put(b); return node; } } block_put(b); } futex_up(&parentp->idx->lock); return NULL; } static fs_index_t fat_index_get(void *node) { fat_node_t *fnodep = (fat_node_t *)node; if (!fnodep) return 0; return fnodep->idx->index; } static size_t fat_size_get(void *node) { return ((fat_node_t *)node)->size; } static unsigned fat_lnkcnt_get(void *node) { return ((fat_node_t *)node)->lnkcnt; } static bool fat_has_children(void *node) { fat_bs_t *bs; fat_node_t *nodep = (fat_node_t *)node; unsigned bps; unsigned dps; unsigned blocks; block_t *b; unsigned i, j; if (nodep->type != FAT_DIRECTORY) return false; futex_down(&nodep->idx->lock); bs = block_bb_get(nodep->idx->dev_handle); bps = uint16_t_le2host(bs->bps); dps = bps / sizeof(fat_dentry_t); blocks = nodep->size / bps; for (i = 0; i < blocks; i++) { fat_dentry_t *d; b = fat_block_get(bs, nodep, i); for (j = 0; j < dps; j++) { d = ((fat_dentry_t *)b->data) + j; switch (fat_classify_dentry(d)) { case FAT_DENTRY_SKIP: continue; case FAT_DENTRY_LAST: block_put(b); futex_up(&nodep->idx->lock); return false; default: case FAT_DENTRY_VALID: block_put(b); futex_up(&nodep->idx->lock); return true; } block_put(b); futex_up(&nodep->idx->lock); return true; } block_put(b); } futex_up(&nodep->idx->lock); return false; } static void *fat_root_get(dev_handle_t dev_handle) { return fat_node_get(dev_handle, 0); } static char fat_plb_get_char(unsigned pos) { return fat_reg.plb_ro[pos % PLB_SIZE]; } static bool fat_is_directory(void *node) { return ((fat_node_t *)node)->type == FAT_DIRECTORY; } static bool fat_is_file(void *node) { return ((fat_node_t *)node)->type == FAT_FILE; } /** libfs operations */ libfs_ops_t fat_libfs_ops = { .match = fat_match, .node_get = fat_node_get, .node_put = fat_node_put, .create = fat_create, .destroy = fat_destroy, .link = fat_link, .unlink = fat_unlink, .index_get = fat_index_get, .size_get = fat_size_get, .lnkcnt_get = fat_lnkcnt_get, .has_children = fat_has_children, .root_get = fat_root_get, .plb_get_char = fat_plb_get_char, .is_directory = fat_is_directory, .is_file = fat_is_file }; void fat_mounted(ipc_callid_t rid, ipc_call_t *request) { dev_handle_t dev_handle = (dev_handle_t) IPC_GET_ARG1(*request); fat_bs_t *bs; uint16_t bps; uint16_t rde; int rc; /* initialize libblock */ rc = block_init(dev_handle, BS_SIZE); if (rc != EOK) { ipc_answer_0(rid, rc); return; } /* prepare the boot block */ rc = block_bb_read(dev_handle, BS_BLOCK * BS_SIZE, BS_SIZE); if (rc != EOK) { block_fini(dev_handle); ipc_answer_0(rid, rc); return; } /* get the buffer with the boot sector */ bs = block_bb_get(dev_handle); /* Read the number of root directory entries. */ bps = uint16_t_le2host(bs->bps); rde = uint16_t_le2host(bs->root_ent_max); if (bps != BS_SIZE) { block_fini(dev_handle); ipc_answer_0(rid, ENOTSUP); return; } /* Initialize the block cache */ rc = block_cache_init(dev_handle, bps, 0 /* XXX */); if (rc != EOK) { block_fini(dev_handle); ipc_answer_0(rid, rc); return; } rc = fat_idx_init_by_dev_handle(dev_handle); if (rc != EOK) { block_fini(dev_handle); ipc_answer_0(rid, rc); return; } /* Initialize the root node. */ fat_node_t *rootp = (fat_node_t *)malloc(sizeof(fat_node_t)); if (!rootp) { block_fini(dev_handle); fat_idx_fini_by_dev_handle(dev_handle); ipc_answer_0(rid, ENOMEM); return; } fat_node_initialize(rootp); fat_idx_t *ridxp = fat_idx_get_by_pos(dev_handle, FAT_CLST_ROOTPAR, 0); if (!ridxp) { block_fini(dev_handle); free(rootp); fat_idx_fini_by_dev_handle(dev_handle); ipc_answer_0(rid, ENOMEM); return; } assert(ridxp->index == 0); /* ridxp->lock held */ rootp->type = FAT_DIRECTORY; rootp->firstc = FAT_CLST_ROOT; rootp->refcnt = 1; rootp->lnkcnt = 0; /* FS root is not linked */ rootp->size = rde * sizeof(fat_dentry_t); rootp->idx = ridxp; ridxp->nodep = rootp; futex_up(&ridxp->lock); ipc_answer_3(rid, EOK, ridxp->index, rootp->size, rootp->lnkcnt); } void fat_mount(ipc_callid_t rid, ipc_call_t *request) { ipc_answer_0(rid, ENOTSUP); } void fat_lookup(ipc_callid_t rid, ipc_call_t *request) { libfs_lookup(&fat_libfs_ops, fat_reg.fs_handle, rid, request); } void fat_read(ipc_callid_t rid, ipc_call_t *request) { dev_handle_t dev_handle = (dev_handle_t)IPC_GET_ARG1(*request); fs_index_t index = (fs_index_t)IPC_GET_ARG2(*request); off_t pos = (off_t)IPC_GET_ARG3(*request); fat_node_t *nodep = (fat_node_t *)fat_node_get(dev_handle, index); fat_bs_t *bs; uint16_t bps; size_t bytes; block_t *b; if (!nodep) { ipc_answer_0(rid, ENOENT); return; } ipc_callid_t callid; size_t len; if (!ipc_data_read_receive(&callid, &len)) { fat_node_put(nodep); ipc_answer_0(callid, EINVAL); ipc_answer_0(rid, EINVAL); return; } bs = block_bb_get(dev_handle); bps = uint16_t_le2host(bs->bps); if (nodep->type == FAT_FILE) { /* * Our strategy for regular file reads is to read one block at * most and make use of the possibility to return less data than * requested. This keeps the code very simple. */ if (pos >= nodep->size) { /* reading beyond the EOF */ bytes = 0; (void) ipc_data_read_finalize(callid, NULL, 0); } else { bytes = min(len, bps - pos % bps); bytes = min(bytes, nodep->size - pos); b = fat_block_get(bs, nodep, pos / bps); (void) ipc_data_read_finalize(callid, b->data + pos % bps, bytes); block_put(b); } } else { unsigned bnum; off_t spos = pos; char name[FAT_NAME_LEN + 1 + FAT_EXT_LEN + 1]; fat_dentry_t *d; assert(nodep->type == FAT_DIRECTORY); assert(nodep->size % bps == 0); assert(bps % sizeof(fat_dentry_t) == 0); /* * Our strategy for readdir() is to use the position pointer as * an index into the array of all dentries. On entry, it points * to the first unread dentry. If we skip any dentries, we bump * the position pointer accordingly. */ bnum = (pos * sizeof(fat_dentry_t)) / bps; while (bnum < nodep->size / bps) { off_t o; b = fat_block_get(bs, nodep, bnum); for (o = pos % (bps / sizeof(fat_dentry_t)); o < bps / sizeof(fat_dentry_t); o++, pos++) { d = ((fat_dentry_t *)b->data) + o; switch (fat_classify_dentry(d)) { case FAT_DENTRY_SKIP: continue; case FAT_DENTRY_LAST: block_put(b); goto miss; default: case FAT_DENTRY_VALID: dentry_name_canonify(d, name); block_put(b); goto hit; } } block_put(b); bnum++; } miss: fat_node_put(nodep); ipc_answer_0(callid, ENOENT); ipc_answer_1(rid, ENOENT, 0); return; hit: (void) ipc_data_read_finalize(callid, name, strlen(name) + 1); bytes = (pos - spos) + 1; } fat_node_put(nodep); ipc_answer_1(rid, EOK, (ipcarg_t)bytes); } void fat_write(ipc_callid_t rid, ipc_call_t *request) { dev_handle_t dev_handle = (dev_handle_t)IPC_GET_ARG1(*request); fs_index_t index = (fs_index_t)IPC_GET_ARG2(*request); off_t pos = (off_t)IPC_GET_ARG3(*request); fat_node_t *nodep = (fat_node_t *)fat_node_get(dev_handle, index); fat_bs_t *bs; size_t bytes; block_t *b; uint16_t bps; unsigned spc; off_t boundary; if (!nodep) { ipc_answer_0(rid, ENOENT); return; } /* XXX remove me when you are ready */ { ipc_answer_0(rid, ENOTSUP); fat_node_put(nodep); return; } ipc_callid_t callid; size_t len; if (!ipc_data_write_receive(&callid, &len)) { fat_node_put(nodep); ipc_answer_0(callid, EINVAL); ipc_answer_0(rid, EINVAL); return; } /* * In all scenarios, we will attempt to write out only one block worth * of data at maximum. There might be some more efficient approaches, * but this one greatly simplifies fat_write(). Note that we can afford * to do this because the client must be ready to handle the return * value signalizing a smaller number of bytes written. */ bytes = min(len, bps - pos % bps); bs = block_bb_get(dev_handle); bps = uint16_t_le2host(bs->bps); spc = bs->spc; boundary = ROUND_UP(nodep->size, bps * spc); if (pos < boundary) { /* * This is the easier case - we are either overwriting already * existing contents or writing behind the EOF, but still within * the limits of the last cluster. The node size may grow to the * next block size boundary. */ fat_fill_gap(bs, nodep, FAT_CLST_RES0, pos); b = fat_block_get(bs, nodep, pos / bps); (void) ipc_data_write_finalize(callid, b->data + pos % bps, bytes); b->dirty = true; /* need to sync block */ block_put(b); if (pos + bytes > nodep->size) { nodep->size = pos + bytes; nodep->dirty = true; /* need to sync node */ } fat_node_put(nodep); ipc_answer_1(rid, EOK, bytes); return; } else { /* * This is the more difficult case. We must allocate new * clusters for the node and zero them out. */ int status; unsigned nclsts; fat_cluster_t mcl, lcl; nclsts = (ROUND_UP(pos + bytes, bps * spc) - boundary) / bps * spc; /* create an independent chain of nclsts clusters in all FATs */ status = fat_alloc_clusters(bs, dev_handle, nclsts, &mcl, &lcl); if (status != EOK) { /* could not allocate a chain of nclsts clusters */ fat_node_put(nodep); ipc_answer_0(callid, status); ipc_answer_0(rid, status); return; } /* zero fill any gaps */ fat_fill_gap(bs, nodep, mcl, pos); b = _fat_block_get(bs, dev_handle, lcl, (pos / bps) % spc); (void) ipc_data_write_finalize(callid, b->data + pos % bps, bytes); b->dirty = true; /* need to sync block */ block_put(b); /* * Append the cluster chain starting in mcl to the end of the * node's cluster chain. */ fat_append_clusters(bs, nodep, mcl); nodep->size = pos + bytes; nodep->dirty = true; /* need to sync node */ fat_node_put(nodep); ipc_answer_1(rid, EOK, bytes); return; } } void fat_truncate(ipc_callid_t rid, ipc_call_t *request) { ipc_answer_0(rid, ENOTSUP); } /** * @} */