/* * Copyright (c) 2008 Jakub Jermar * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * - The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** @addtogroup fs * @{ */ /** * @file fat_ops.c * @brief Implementation of VFS operations for the FAT file system server. */ #include "fat.h" #include "fat_dentry.h" #include "fat_fat.h" #include "../../vfs/vfs.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define FAT_NODE(node) ((node) ? (fat_node_t *) (node)->data : NULL) #define FS_NODE(node) ((node) ? (node)->bp : NULL) /** Futex protecting the list of cached free FAT nodes. */ static futex_t ffn_futex = FUTEX_INITIALIZER; /** List of cached free FAT nodes. */ static LIST_INITIALIZE(ffn_head); static void fat_node_initialize(fat_node_t *node) { futex_initialize(&node->lock, 1); node->bp = NULL; node->idx = NULL; node->type = 0; link_initialize(&node->ffn_link); node->size = 0; node->lnkcnt = 0; node->refcnt = 0; node->dirty = false; } static void fat_node_sync(fat_node_t *node) { block_t *b; fat_bs_t *bs; fat_dentry_t *d; uint16_t bps; unsigned dps; assert(node->dirty); bs = block_bb_get(node->idx->dev_handle); bps = uint16_t_le2host(bs->bps); dps = bps / sizeof(fat_dentry_t); /* Read the block that contains the dentry of interest. */ b = _fat_block_get(bs, node->idx->dev_handle, node->idx->pfc, (node->idx->pdi * sizeof(fat_dentry_t)) / bps, BLOCK_FLAGS_NONE); d = ((fat_dentry_t *)b->data) + (node->idx->pdi % dps); d->firstc = host2uint16_t_le(node->firstc); if (node->type == FAT_FILE) { d->size = host2uint32_t_le(node->size); } else if (node->type == FAT_DIRECTORY) { d->attr = FAT_ATTR_SUBDIR; } /* TODO: update other fields? (e.g time fields) */ b->dirty = true; /* need to sync block */ block_put(b); } static fat_node_t *fat_node_get_new(void) { fs_node_t *fn; fat_node_t *nodep; futex_down(&ffn_futex); if (!list_empty(&ffn_head)) { /* Try to use a cached free node structure. */ fat_idx_t *idxp_tmp; nodep = list_get_instance(ffn_head.next, fat_node_t, ffn_link); if (futex_trydown(&nodep->lock) == ESYNCH_WOULD_BLOCK) goto skip_cache; idxp_tmp = nodep->idx; if (futex_trydown(&idxp_tmp->lock) == ESYNCH_WOULD_BLOCK) { futex_up(&nodep->lock); goto skip_cache; } list_remove(&nodep->ffn_link); futex_up(&ffn_futex); if (nodep->dirty) fat_node_sync(nodep); idxp_tmp->nodep = NULL; futex_up(&nodep->lock); futex_up(&idxp_tmp->lock); fn = FS_NODE(nodep); } else { skip_cache: /* Try to allocate a new node structure. */ futex_up(&ffn_futex); fn = (fs_node_t *)malloc(sizeof(fs_node_t)); if (!fn) return NULL; nodep = (fat_node_t *)malloc(sizeof(fat_node_t)); if (!nodep) { free(fn); return NULL; } } fat_node_initialize(nodep); fs_node_initialize(fn); fn->data = nodep; nodep->bp = fn; return nodep; } /** Internal version of fat_node_get(). * * @param idxp Locked index structure. */ static fat_node_t *fat_node_get_core(fat_idx_t *idxp) { block_t *b; fat_bs_t *bs; fat_dentry_t *d; fat_node_t *nodep = NULL; unsigned bps; unsigned spc; unsigned dps; if (idxp->nodep) { /* * We are lucky. * The node is already instantiated in memory. */ futex_down(&idxp->nodep->lock); if (!idxp->nodep->refcnt++) list_remove(&idxp->nodep->ffn_link); futex_up(&idxp->nodep->lock); return idxp->nodep; } /* * We must instantiate the node from the file system. */ assert(idxp->pfc); nodep = fat_node_get_new(); if (!nodep) return NULL; bs = block_bb_get(idxp->dev_handle); bps = uint16_t_le2host(bs->bps); spc = bs->spc; dps = bps / sizeof(fat_dentry_t); /* Read the block that contains the dentry of interest. */ b = _fat_block_get(bs, idxp->dev_handle, idxp->pfc, (idxp->pdi * sizeof(fat_dentry_t)) / bps, BLOCK_FLAGS_NONE); assert(b); d = ((fat_dentry_t *)b->data) + (idxp->pdi % dps); if (d->attr & FAT_ATTR_SUBDIR) { /* * The only directory which does not have this bit set is the * root directory itself. The root directory node is handled * and initialized elsewhere. */ nodep->type = FAT_DIRECTORY; /* * Unfortunately, the 'size' field of the FAT dentry is not * defined for the directory entry type. We must determine the * size of the directory by walking the FAT. */ nodep->size = bps * spc * fat_clusters_get(bs, idxp->dev_handle, uint16_t_le2host(d->firstc)); } else { nodep->type = FAT_FILE; nodep->size = uint32_t_le2host(d->size); } nodep->firstc = uint16_t_le2host(d->firstc); nodep->lnkcnt = 1; nodep->refcnt = 1; block_put(b); /* Link the idx structure with the node structure. */ nodep->idx = idxp; idxp->nodep = nodep; return nodep; } /* * Forward declarations of FAT libfs operations. */ static fs_node_t *fat_node_get(dev_handle_t, fs_index_t); static void fat_node_put(fs_node_t *); static fs_node_t *fat_create_node(dev_handle_t, int); static int fat_destroy_node(fs_node_t *); static int fat_link(fs_node_t *, fs_node_t *, const char *); static int fat_unlink(fs_node_t *, fs_node_t *, const char *); static fs_node_t *fat_match(fs_node_t *, const char *); static fs_index_t fat_index_get(fs_node_t *); static size_t fat_size_get(fs_node_t *); static unsigned fat_lnkcnt_get(fs_node_t *); static bool fat_has_children(fs_node_t *); static fs_node_t *fat_root_get(dev_handle_t); static char fat_plb_get_char(unsigned); static bool fat_is_directory(fs_node_t *); static bool fat_is_file(fs_node_t *node); /* * FAT libfs operations. */ /** Instantiate a FAT in-core node. */ fs_node_t *fat_node_get(dev_handle_t dev_handle, fs_index_t index) { fat_node_t *nodep; fat_idx_t *idxp; idxp = fat_idx_get_by_index(dev_handle, index); if (!idxp) return NULL; /* idxp->lock held */ nodep = fat_node_get_core(idxp); futex_up(&idxp->lock); return FS_NODE(nodep); } void fat_node_put(fs_node_t *fn) { fat_node_t *nodep = FAT_NODE(fn); bool destroy = false; futex_down(&nodep->lock); if (!--nodep->refcnt) { if (nodep->idx) { futex_down(&ffn_futex); list_append(&nodep->ffn_link, &ffn_head); futex_up(&ffn_futex); } else { /* * The node does not have any index structure associated * with itself. This can only mean that we are releasing * the node after a failed attempt to allocate the index * structure for it. */ destroy = true; } } futex_up(&nodep->lock); if (destroy) { free(nodep->bp); free(nodep); } } fs_node_t *fat_create_node(dev_handle_t dev_handle, int flags) { fat_idx_t *idxp; fat_node_t *nodep; fat_bs_t *bs; fat_cluster_t mcl, lcl; uint16_t bps; int rc; bs = block_bb_get(dev_handle); bps = uint16_t_le2host(bs->bps); if (flags & L_DIRECTORY) { /* allocate a cluster */ rc = fat_alloc_clusters(bs, dev_handle, 1, &mcl, &lcl); if (rc != EOK) return NULL; } nodep = fat_node_get_new(); if (!nodep) { fat_free_clusters(bs, dev_handle, mcl); return NULL; } idxp = fat_idx_get_new(dev_handle); if (!idxp) { fat_free_clusters(bs, dev_handle, mcl); fat_node_put(FS_NODE(nodep)); return NULL; } /* idxp->lock held */ if (flags & L_DIRECTORY) { int i; block_t *b; /* * Populate the new cluster with unused dentries. */ for (i = 0; i < bs->spc; i++) { b = _fat_block_get(bs, dev_handle, mcl, i, BLOCK_FLAGS_NOREAD); /* mark all dentries as never-used */ memset(b->data, 0, bps); b->dirty = false; block_put(b); } nodep->type = FAT_DIRECTORY; nodep->firstc = mcl; nodep->size = bps * bs->spc; } else { nodep->type = FAT_FILE; nodep->firstc = FAT_CLST_RES0; nodep->size = 0; } nodep->lnkcnt = 0; /* not linked anywhere */ nodep->refcnt = 1; nodep->dirty = true; nodep->idx = idxp; idxp->nodep = nodep; futex_up(&idxp->lock); return FS_NODE(nodep); } int fat_destroy_node(fs_node_t *fn) { fat_node_t *nodep = FAT_NODE(fn); fat_bs_t *bs; /* * The node is not reachable from the file system. This means that the * link count should be zero and that the index structure cannot be * found in the position hash. Obviously, we don't need to lock the node * nor its index structure. */ assert(nodep->lnkcnt == 0); /* * The node may not have any children. */ assert(fat_has_children(fn) == false); bs = block_bb_get(nodep->idx->dev_handle); if (nodep->firstc != FAT_CLST_RES0) { assert(nodep->size); /* Free all clusters allocated to the node. */ fat_free_clusters(bs, nodep->idx->dev_handle, nodep->firstc); } fat_idx_destroy(nodep->idx); free(nodep->bp); free(nodep); return EOK; } int fat_link(fs_node_t *pfn, fs_node_t *cfn, const char *name) { fat_node_t *parentp = FAT_NODE(pfn); fat_node_t *childp = FAT_NODE(cfn); fat_dentry_t *d; fat_bs_t *bs; block_t *b; int i, j; uint16_t bps; unsigned dps; unsigned blocks; fat_cluster_t mcl, lcl; int rc; futex_down(&childp->lock); if (childp->lnkcnt == 1) { /* * On FAT, we don't support multiple hard links. */ futex_up(&childp->lock); return EMLINK; } assert(childp->lnkcnt == 0); futex_up(&childp->lock); if (!fat_dentry_name_verify(name)) { /* * Attempt to create unsupported name. */ return ENOTSUP; } /* * Get us an unused parent node's dentry or grow the parent and allocate * a new one. */ futex_down(&parentp->idx->lock); bs = block_bb_get(parentp->idx->dev_handle); bps = uint16_t_le2host(bs->bps); dps = bps / sizeof(fat_dentry_t); blocks = parentp->size / bps; for (i = 0; i < blocks; i++) { b = fat_block_get(bs, parentp, i, BLOCK_FLAGS_NONE); for (j = 0; j < dps; j++) { d = ((fat_dentry_t *)b->data) + j; switch (fat_classify_dentry(d)) { case FAT_DENTRY_SKIP: case FAT_DENTRY_VALID: /* skipping used and meta entries */ continue; case FAT_DENTRY_FREE: case FAT_DENTRY_LAST: /* found an empty slot */ goto hit; } } block_put(b); } j = 0; /* * We need to grow the parent in order to create a new unused dentry. */ if (parentp->idx->pfc == FAT_CLST_ROOT) { /* Can't grow the root directory. */ futex_up(&parentp->idx->lock); return ENOSPC; } rc = fat_alloc_clusters(bs, parentp->idx->dev_handle, 1, &mcl, &lcl); if (rc != EOK) { futex_up(&parentp->idx->lock); return rc; } fat_append_clusters(bs, parentp, mcl); b = fat_block_get(bs, parentp, i, BLOCK_FLAGS_NOREAD); d = (fat_dentry_t *)b->data; /* * Clear all dentries in the block except for the first one (the first * dentry will be cleared in the next step). */ memset(d + 1, 0, bps - sizeof(fat_dentry_t)); hit: /* * At this point we only establish the link between the parent and the * child. The dentry, except of the name and the extension, will remain * uninitialized until the corresponding node is synced. Thus the valid * dentry data is kept in the child node structure. */ memset(d, 0, sizeof(fat_dentry_t)); fat_dentry_name_set(d, name); b->dirty = true; /* need to sync block */ block_put(b); futex_up(&parentp->idx->lock); futex_down(&childp->idx->lock); /* * If possible, create the Sub-directory Identifier Entry and the * Sub-directory Parent Pointer Entry (i.e. "." and ".."). These entries * are not mandatory according to Standard ECMA-107 and HelenOS VFS does * not use them anyway, so this is rather a sign of our good will. */ b = fat_block_get(bs, childp, 0, BLOCK_FLAGS_NONE); d = (fat_dentry_t *)b->data; if (fat_classify_dentry(d) == FAT_DENTRY_LAST || str_cmp(d->name, FAT_NAME_DOT) == 0) { memset(d, 0, sizeof(fat_dentry_t)); str_cpy(d->name, 8, FAT_NAME_DOT); str_cpy(d->ext, 3, FAT_EXT_PAD); d->attr = FAT_ATTR_SUBDIR; d->firstc = host2uint16_t_le(childp->firstc); /* TODO: initialize also the date/time members. */ } d++; if (fat_classify_dentry(d) == FAT_DENTRY_LAST || str_cmp(d->name, FAT_NAME_DOT_DOT) == 0) { memset(d, 0, sizeof(fat_dentry_t)); str_cpy(d->name, 8, FAT_NAME_DOT_DOT); str_cpy(d->ext, 3, FAT_EXT_PAD); d->attr = FAT_ATTR_SUBDIR; d->firstc = (parentp->firstc == FAT_CLST_ROOT) ? host2uint16_t_le(FAT_CLST_RES0) : host2uint16_t_le(parentp->firstc); /* TODO: initialize also the date/time members. */ } b->dirty = true; /* need to sync block */ block_put(b); childp->idx->pfc = parentp->firstc; childp->idx->pdi = i * dps + j; futex_up(&childp->idx->lock); futex_down(&childp->lock); childp->lnkcnt = 1; childp->dirty = true; /* need to sync node */ futex_up(&childp->lock); /* * Hash in the index structure into the position hash. */ fat_idx_hashin(childp->idx); return EOK; } int fat_unlink(fs_node_t *pfn, fs_node_t *cfn, const char *nm) { fat_node_t *parentp = FAT_NODE(pfn); fat_node_t *childp = FAT_NODE(cfn); fat_bs_t *bs; fat_dentry_t *d; uint16_t bps; block_t *b; if (!parentp) return EBUSY; if (fat_has_children(cfn)) return ENOTEMPTY; futex_down(&parentp->lock); futex_down(&childp->lock); assert(childp->lnkcnt == 1); futex_down(&childp->idx->lock); bs = block_bb_get(childp->idx->dev_handle); bps = uint16_t_le2host(bs->bps); b = _fat_block_get(bs, childp->idx->dev_handle, childp->idx->pfc, (childp->idx->pdi * sizeof(fat_dentry_t)) / bps, BLOCK_FLAGS_NONE); d = (fat_dentry_t *)b->data + (childp->idx->pdi % (bps / sizeof(fat_dentry_t))); /* mark the dentry as not-currently-used */ d->name[0] = FAT_DENTRY_ERASED; b->dirty = true; /* need to sync block */ block_put(b); /* remove the index structure from the position hash */ fat_idx_hashout(childp->idx); /* clear position information */ childp->idx->pfc = FAT_CLST_RES0; childp->idx->pdi = 0; futex_up(&childp->idx->lock); childp->lnkcnt = 0; childp->dirty = true; futex_up(&childp->lock); futex_up(&parentp->lock); return EOK; } fs_node_t *fat_match(fs_node_t *pfn, const char *component) { fat_bs_t *bs; fat_node_t *parentp = FAT_NODE(pfn); char name[FAT_NAME_LEN + 1 + FAT_EXT_LEN + 1]; unsigned i, j; unsigned bps; /* bytes per sector */ unsigned dps; /* dentries per sector */ unsigned blocks; fat_dentry_t *d; block_t *b; futex_down(&parentp->idx->lock); bs = block_bb_get(parentp->idx->dev_handle); bps = uint16_t_le2host(bs->bps); dps = bps / sizeof(fat_dentry_t); blocks = parentp->size / bps; for (i = 0; i < blocks; i++) { b = fat_block_get(bs, parentp, i, BLOCK_FLAGS_NONE); for (j = 0; j < dps; j++) { d = ((fat_dentry_t *)b->data) + j; switch (fat_classify_dentry(d)) { case FAT_DENTRY_SKIP: case FAT_DENTRY_FREE: continue; case FAT_DENTRY_LAST: block_put(b); futex_up(&parentp->idx->lock); return NULL; default: case FAT_DENTRY_VALID: fat_dentry_name_get(d, name); break; } if (fat_dentry_namecmp(name, component) == 0) { /* hit */ fat_node_t *nodep; /* * Assume tree hierarchy for locking. We * already have the parent and now we are going * to lock the child. Never lock in the oposite * order. */ fat_idx_t *idx = fat_idx_get_by_pos( parentp->idx->dev_handle, parentp->firstc, i * dps + j); futex_up(&parentp->idx->lock); if (!idx) { /* * Can happen if memory is low or if we * run out of 32-bit indices. */ block_put(b); return NULL; } nodep = fat_node_get_core(idx); futex_up(&idx->lock); block_put(b); return FS_NODE(nodep); } } block_put(b); } futex_up(&parentp->idx->lock); return NULL; } fs_index_t fat_index_get(fs_node_t *fn) { return FAT_NODE(fn)->idx->index; } size_t fat_size_get(fs_node_t *fn) { return FAT_NODE(fn)->size; } unsigned fat_lnkcnt_get(fs_node_t *fn) { return FAT_NODE(fn)->lnkcnt; } bool fat_has_children(fs_node_t *fn) { fat_bs_t *bs; fat_node_t *nodep = FAT_NODE(fn); unsigned bps; unsigned dps; unsigned blocks; block_t *b; unsigned i, j; if (nodep->type != FAT_DIRECTORY) return false; futex_down(&nodep->idx->lock); bs = block_bb_get(nodep->idx->dev_handle); bps = uint16_t_le2host(bs->bps); dps = bps / sizeof(fat_dentry_t); blocks = nodep->size / bps; for (i = 0; i < blocks; i++) { fat_dentry_t *d; b = fat_block_get(bs, nodep, i, BLOCK_FLAGS_NONE); for (j = 0; j < dps; j++) { d = ((fat_dentry_t *)b->data) + j; switch (fat_classify_dentry(d)) { case FAT_DENTRY_SKIP: case FAT_DENTRY_FREE: continue; case FAT_DENTRY_LAST: block_put(b); futex_up(&nodep->idx->lock); return false; default: case FAT_DENTRY_VALID: block_put(b); futex_up(&nodep->idx->lock); return true; } block_put(b); futex_up(&nodep->idx->lock); return true; } block_put(b); } futex_up(&nodep->idx->lock); return false; } fs_node_t *fat_root_get(dev_handle_t dev_handle) { return fat_node_get(dev_handle, 0); } char fat_plb_get_char(unsigned pos) { return fat_reg.plb_ro[pos % PLB_SIZE]; } bool fat_is_directory(fs_node_t *fn) { return FAT_NODE(fn)->type == FAT_DIRECTORY; } bool fat_is_file(fs_node_t *fn) { return FAT_NODE(fn)->type == FAT_FILE; } /** libfs operations */ libfs_ops_t fat_libfs_ops = { .match = fat_match, .node_get = fat_node_get, .node_put = fat_node_put, .create = fat_create_node, .destroy = fat_destroy_node, .link = fat_link, .unlink = fat_unlink, .index_get = fat_index_get, .size_get = fat_size_get, .lnkcnt_get = fat_lnkcnt_get, .has_children = fat_has_children, .root_get = fat_root_get, .plb_get_char = fat_plb_get_char, .is_directory = fat_is_directory, .is_file = fat_is_file }; /* * VFS operations. */ void fat_mounted(ipc_callid_t rid, ipc_call_t *request) { dev_handle_t dev_handle = (dev_handle_t) IPC_GET_ARG1(*request); fat_bs_t *bs; uint16_t bps; uint16_t rde; int rc; /* accept the mount options */ ipc_callid_t callid; size_t size; if (!ipc_data_write_receive(&callid, &size)) { ipc_answer_0(callid, EINVAL); ipc_answer_0(rid, EINVAL); return; } char *opts = malloc(size + 1); if (!opts) { ipc_answer_0(callid, ENOMEM); ipc_answer_0(rid, ENOMEM); return; } ipcarg_t retval = ipc_data_write_finalize(callid, opts, size); if (retval != EOK) { ipc_answer_0(rid, retval); free(opts); return; } opts[size] = '\0'; /* initialize libblock */ rc = block_init(dev_handle, BS_SIZE); if (rc != EOK) { ipc_answer_0(rid, rc); return; } /* prepare the boot block */ rc = block_bb_read(dev_handle, BS_BLOCK * BS_SIZE, BS_SIZE); if (rc != EOK) { block_fini(dev_handle); ipc_answer_0(rid, rc); return; } /* get the buffer with the boot sector */ bs = block_bb_get(dev_handle); /* Read the number of root directory entries. */ bps = uint16_t_le2host(bs->bps); rde = uint16_t_le2host(bs->root_ent_max); if (bps != BS_SIZE) { block_fini(dev_handle); ipc_answer_0(rid, ENOTSUP); return; } /* Initialize the block cache */ rc = block_cache_init(dev_handle, bps, 0 /* XXX */); if (rc != EOK) { block_fini(dev_handle); ipc_answer_0(rid, rc); return; } rc = fat_idx_init_by_dev_handle(dev_handle); if (rc != EOK) { block_fini(dev_handle); ipc_answer_0(rid, rc); return; } /* Initialize the root node. */ fs_node_t *rfn = (fs_node_t *)malloc(sizeof(fs_node_t)); if (!rfn) { block_fini(dev_handle); fat_idx_fini_by_dev_handle(dev_handle); ipc_answer_0(rid, ENOMEM); return; } fs_node_initialize(rfn); fat_node_t *rootp = (fat_node_t *)malloc(sizeof(fat_node_t)); if (!rootp) { free(rfn); block_fini(dev_handle); fat_idx_fini_by_dev_handle(dev_handle); ipc_answer_0(rid, ENOMEM); return; } fat_node_initialize(rootp); fat_idx_t *ridxp = fat_idx_get_by_pos(dev_handle, FAT_CLST_ROOTPAR, 0); if (!ridxp) { free(rfn); free(rootp); block_fini(dev_handle); fat_idx_fini_by_dev_handle(dev_handle); ipc_answer_0(rid, ENOMEM); return; } assert(ridxp->index == 0); /* ridxp->lock held */ rootp->type = FAT_DIRECTORY; rootp->firstc = FAT_CLST_ROOT; rootp->refcnt = 1; rootp->lnkcnt = 0; /* FS root is not linked */ rootp->size = rde * sizeof(fat_dentry_t); rootp->idx = ridxp; ridxp->nodep = rootp; rootp->bp = rfn; rfn->data = rootp; futex_up(&ridxp->lock); ipc_answer_3(rid, EOK, ridxp->index, rootp->size, rootp->lnkcnt); } void fat_mount(ipc_callid_t rid, ipc_call_t *request) { libfs_mount(&fat_libfs_ops, fat_reg.fs_handle, rid, request); } void fat_lookup(ipc_callid_t rid, ipc_call_t *request) { libfs_lookup(&fat_libfs_ops, fat_reg.fs_handle, rid, request); } void fat_read(ipc_callid_t rid, ipc_call_t *request) { dev_handle_t dev_handle = (dev_handle_t)IPC_GET_ARG1(*request); fs_index_t index = (fs_index_t)IPC_GET_ARG2(*request); off_t pos = (off_t)IPC_GET_ARG3(*request); fs_node_t *fn = fat_node_get(dev_handle, index); fat_node_t *nodep; fat_bs_t *bs; uint16_t bps; size_t bytes; block_t *b; if (!fn) { ipc_answer_0(rid, ENOENT); return; } nodep = FAT_NODE(fn); ipc_callid_t callid; size_t len; if (!ipc_data_read_receive(&callid, &len)) { fat_node_put(fn); ipc_answer_0(callid, EINVAL); ipc_answer_0(rid, EINVAL); return; } bs = block_bb_get(dev_handle); bps = uint16_t_le2host(bs->bps); if (nodep->type == FAT_FILE) { /* * Our strategy for regular file reads is to read one block at * most and make use of the possibility to return less data than * requested. This keeps the code very simple. */ if (pos >= nodep->size) { /* reading beyond the EOF */ bytes = 0; (void) ipc_data_read_finalize(callid, NULL, 0); } else { bytes = min(len, bps - pos % bps); bytes = min(bytes, nodep->size - pos); b = fat_block_get(bs, nodep, pos / bps, BLOCK_FLAGS_NONE); (void) ipc_data_read_finalize(callid, b->data + pos % bps, bytes); block_put(b); } } else { unsigned bnum; off_t spos = pos; char name[FAT_NAME_LEN + 1 + FAT_EXT_LEN + 1]; fat_dentry_t *d; assert(nodep->type == FAT_DIRECTORY); assert(nodep->size % bps == 0); assert(bps % sizeof(fat_dentry_t) == 0); /* * Our strategy for readdir() is to use the position pointer as * an index into the array of all dentries. On entry, it points * to the first unread dentry. If we skip any dentries, we bump * the position pointer accordingly. */ bnum = (pos * sizeof(fat_dentry_t)) / bps; while (bnum < nodep->size / bps) { off_t o; b = fat_block_get(bs, nodep, bnum, BLOCK_FLAGS_NONE); for (o = pos % (bps / sizeof(fat_dentry_t)); o < bps / sizeof(fat_dentry_t); o++, pos++) { d = ((fat_dentry_t *)b->data) + o; switch (fat_classify_dentry(d)) { case FAT_DENTRY_SKIP: case FAT_DENTRY_FREE: continue; case FAT_DENTRY_LAST: block_put(b); goto miss; default: case FAT_DENTRY_VALID: fat_dentry_name_get(d, name); block_put(b); goto hit; } } block_put(b); bnum++; } miss: fat_node_put(fn); ipc_answer_0(callid, ENOENT); ipc_answer_1(rid, ENOENT, 0); return; hit: (void) ipc_data_read_finalize(callid, name, str_size(name) + 1); bytes = (pos - spos) + 1; } fat_node_put(fn); ipc_answer_1(rid, EOK, (ipcarg_t)bytes); } void fat_write(ipc_callid_t rid, ipc_call_t *request) { dev_handle_t dev_handle = (dev_handle_t)IPC_GET_ARG1(*request); fs_index_t index = (fs_index_t)IPC_GET_ARG2(*request); off_t pos = (off_t)IPC_GET_ARG3(*request); fs_node_t *fn = fat_node_get(dev_handle, index); fat_node_t *nodep; fat_bs_t *bs; size_t bytes; block_t *b; uint16_t bps; unsigned spc; unsigned bpc; /* bytes per cluster */ off_t boundary; int flags = BLOCK_FLAGS_NONE; if (!fn) { ipc_answer_0(rid, ENOENT); return; } nodep = FAT_NODE(fn); ipc_callid_t callid; size_t len; if (!ipc_data_write_receive(&callid, &len)) { fat_node_put(fn); ipc_answer_0(callid, EINVAL); ipc_answer_0(rid, EINVAL); return; } bs = block_bb_get(dev_handle); bps = uint16_t_le2host(bs->bps); spc = bs->spc; bpc = bps * spc; /* * In all scenarios, we will attempt to write out only one block worth * of data at maximum. There might be some more efficient approaches, * but this one greatly simplifies fat_write(). Note that we can afford * to do this because the client must be ready to handle the return * value signalizing a smaller number of bytes written. */ bytes = min(len, bps - pos % bps); if (bytes == bps) flags |= BLOCK_FLAGS_NOREAD; boundary = ROUND_UP(nodep->size, bpc); if (pos < boundary) { /* * This is the easier case - we are either overwriting already * existing contents or writing behind the EOF, but still within * the limits of the last cluster. The node size may grow to the * next block size boundary. */ fat_fill_gap(bs, nodep, FAT_CLST_RES0, pos); b = fat_block_get(bs, nodep, pos / bps, flags); (void) ipc_data_write_finalize(callid, b->data + pos % bps, bytes); b->dirty = true; /* need to sync block */ block_put(b); if (pos + bytes > nodep->size) { nodep->size = pos + bytes; nodep->dirty = true; /* need to sync node */ } ipc_answer_2(rid, EOK, bytes, nodep->size); fat_node_put(fn); return; } else { /* * This is the more difficult case. We must allocate new * clusters for the node and zero them out. */ int status; unsigned nclsts; fat_cluster_t mcl, lcl; nclsts = (ROUND_UP(pos + bytes, bpc) - boundary) / bpc; /* create an independent chain of nclsts clusters in all FATs */ status = fat_alloc_clusters(bs, dev_handle, nclsts, &mcl, &lcl); if (status != EOK) { /* could not allocate a chain of nclsts clusters */ fat_node_put(fn); ipc_answer_0(callid, status); ipc_answer_0(rid, status); return; } /* zero fill any gaps */ fat_fill_gap(bs, nodep, mcl, pos); b = _fat_block_get(bs, dev_handle, lcl, (pos / bps) % spc, flags); (void) ipc_data_write_finalize(callid, b->data + pos % bps, bytes); b->dirty = true; /* need to sync block */ block_put(b); /* * Append the cluster chain starting in mcl to the end of the * node's cluster chain. */ fat_append_clusters(bs, nodep, mcl); nodep->size = pos + bytes; nodep->dirty = true; /* need to sync node */ ipc_answer_2(rid, EOK, bytes, nodep->size); fat_node_put(fn); return; } } void fat_truncate(ipc_callid_t rid, ipc_call_t *request) { dev_handle_t dev_handle = (dev_handle_t)IPC_GET_ARG1(*request); fs_index_t index = (fs_index_t)IPC_GET_ARG2(*request); size_t size = (off_t)IPC_GET_ARG3(*request); fs_node_t *fn = fat_node_get(dev_handle, index); fat_node_t *nodep; fat_bs_t *bs; uint16_t bps; uint8_t spc; unsigned bpc; /* bytes per cluster */ int rc; if (!fn) { ipc_answer_0(rid, ENOENT); return; } nodep = FAT_NODE(fn); bs = block_bb_get(dev_handle); bps = uint16_t_le2host(bs->bps); spc = bs->spc; bpc = bps * spc; if (nodep->size == size) { rc = EOK; } else if (nodep->size < size) { /* * The standard says we have the freedom to grow the node. * For now, we simply return an error. */ rc = EINVAL; } else if (ROUND_UP(nodep->size, bpc) == ROUND_UP(size, bpc)) { /* * The node will be shrunk, but no clusters will be deallocated. */ nodep->size = size; nodep->dirty = true; /* need to sync node */ rc = EOK; } else { /* * The node will be shrunk, clusters will be deallocated. */ if (size == 0) { fat_chop_clusters(bs, nodep, FAT_CLST_RES0); } else { fat_cluster_t lastc; (void) fat_cluster_walk(bs, dev_handle, nodep->firstc, &lastc, (size - 1) / bpc); fat_chop_clusters(bs, nodep, lastc); } nodep->size = size; nodep->dirty = true; /* need to sync node */ rc = EOK; } fat_node_put(fn); ipc_answer_0(rid, rc); return; } void fat_destroy(ipc_callid_t rid, ipc_call_t *request) { dev_handle_t dev_handle = (dev_handle_t)IPC_GET_ARG1(*request); fs_index_t index = (fs_index_t)IPC_GET_ARG2(*request); int rc; fs_node_t *fn = fat_node_get(dev_handle, index); if (!fn) { ipc_answer_0(rid, ENOENT); return; } rc = fat_destroy_node(fn); ipc_answer_0(rid, rc); } /** * @} */