/* * Copyright (c) 2008 Jakub Jermar * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * - The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** @addtogroup fs * @{ */ /** * @file fat_fat.c * @brief Functions that manipulate the File Allocation Tables. */ #include "fat_fat.h" #include "fat_dentry.h" #include "fat.h" #include "../../vfs/vfs.h" #include #include #include #include #include #include #include #include /** * The fat_alloc_lock mutex protects all copies of the File Allocation Table * during allocation of clusters. The lock does not have to be held durring * deallocation of clusters. */ static FIBRIL_MUTEX_INITIALIZE(fat_alloc_lock); /** Walk the cluster chain. * * @param bs Buffer holding the boot sector for the file. * @param dev_handle Device handle of the device with the file. * @param firstc First cluster to start the walk with. * @param lastc If non-NULL, output argument hodling the last cluster * number visited. * @param numc If non-NULL, output argument holding the number of * clusters seen during the walk. * @param max_clusters Maximum number of clusters to visit. * * @return EOK on success or a negative error code. */ int fat_cluster_walk(fat_bs_t *bs, dev_handle_t dev_handle, fat_cluster_t firstc, fat_cluster_t *lastc, uint16_t *numc, uint16_t max_clusters) { block_t *b; unsigned bps; unsigned rscnt; /* block address of the first FAT */ uint16_t clusters = 0; fat_cluster_t clst = firstc; int rc; bps = uint16_t_le2host(bs->bps); rscnt = uint16_t_le2host(bs->rscnt); if (firstc == FAT_CLST_RES0) { /* No space allocated to the file. */ if (lastc) *lastc = firstc; if (numc) *numc = 0; return EOK; } while (clst < FAT_CLST_LAST1 && clusters < max_clusters) { bn_t fsec; /* sector offset relative to FAT1 */ unsigned fidx; /* FAT1 entry index */ assert(clst >= FAT_CLST_FIRST); if (lastc) *lastc = clst; /* remember the last cluster number */ fsec = (clst * sizeof(fat_cluster_t)) / bps; fidx = clst % (bps / sizeof(fat_cluster_t)); /* read FAT1 */ rc = block_get(&b, dev_handle, rscnt + fsec, BLOCK_FLAGS_NONE); if (rc != EOK) return rc; clst = uint16_t_le2host(((fat_cluster_t *)b->data)[fidx]); assert(clst != FAT_CLST_BAD); rc = block_put(b); if (rc != EOK) return rc; clusters++; } if (lastc && clst < FAT_CLST_LAST1) *lastc = clst; if (numc) *numc = clusters; return EOK; } /** Read block from file located on a FAT file system. * * @param block Pointer to a block pointer for storing result. * @param bs Buffer holding the boot sector of the file system. * @param dev_handle Device handle of the file system. * @param firstc First cluster used by the file. Can be zero if the file * is empty. * @param bn Block number. * @param flags Flags passed to libblock. * * @return EOK on success or a negative error code. */ int _fat_block_get(block_t **block, fat_bs_t *bs, dev_handle_t dev_handle, fat_cluster_t firstc, bn_t bn, int flags) { unsigned bps; unsigned rscnt; /* block address of the first FAT */ unsigned rde; unsigned rds; /* root directory size */ unsigned sf; unsigned ssa; /* size of the system area */ uint16_t clusters; unsigned max_clusters; fat_cluster_t lastc; int rc; bps = uint16_t_le2host(bs->bps); rscnt = uint16_t_le2host(bs->rscnt); rde = uint16_t_le2host(bs->root_ent_max); sf = uint16_t_le2host(bs->sec_per_fat); rds = (sizeof(fat_dentry_t) * rde) / bps; rds += ((sizeof(fat_dentry_t) * rde) % bps != 0); ssa = rscnt + bs->fatcnt * sf + rds; if (firstc == FAT_CLST_ROOT) { /* root directory special case */ assert(bn < rds); rc = block_get(block, dev_handle, rscnt + bs->fatcnt * sf + bn, flags); return rc; } max_clusters = bn / bs->spc; rc = fat_cluster_walk(bs, dev_handle, firstc, &lastc, &clusters, max_clusters); if (rc != EOK) return rc; assert(clusters == max_clusters); rc = block_get(block, dev_handle, ssa + (lastc - FAT_CLST_FIRST) * bs->spc + bn % bs->spc, flags); return rc; } /** Fill the gap between EOF and a new file position. * * @param bs Buffer holding the boot sector for nodep. * @param nodep FAT node with the gap. * @param mcl First cluster in an independent cluster chain that will * be later appended to the end of the node's own cluster * chain. If pos is still in the last allocated cluster, * this argument is ignored. * @param pos Position in the last node block. * * @return EOK on success or a negative error code. */ int fat_fill_gap(fat_bs_t *bs, fat_node_t *nodep, fat_cluster_t mcl, off_t pos) { uint16_t bps; unsigned spc; block_t *b; off_t o, boundary; int rc; bps = uint16_t_le2host(bs->bps); spc = bs->spc; boundary = ROUND_UP(nodep->size, bps * spc); /* zero out already allocated space */ for (o = nodep->size; o < pos && o < boundary; o = ALIGN_DOWN(o + bps, bps)) { int flags = (o % bps == 0) ? BLOCK_FLAGS_NOREAD : BLOCK_FLAGS_NONE; rc = fat_block_get(&b, bs, nodep, o / bps, flags); if (rc != EOK) return rc; memset(b->data + o % bps, 0, bps - o % bps); b->dirty = true; /* need to sync node */ rc = block_put(b); if (rc != EOK) return rc; } if (o >= pos) return EOK; /* zero out the initial part of the new cluster chain */ for (o = boundary; o < pos; o += bps) { rc = _fat_block_get(&b, bs, nodep->idx->dev_handle, mcl, (o - boundary) / bps, BLOCK_FLAGS_NOREAD); if (rc != EOK) return rc; memset(b->data, 0, min(bps, pos - o)); b->dirty = true; /* need to sync node */ rc = block_put(b); if (rc != EOK) return rc; } return EOK; } /** Get cluster from the first FAT. * * @param bs Buffer holding the boot sector for the file system. * @param dev_handle Device handle for the file system. * @param clst Cluster which to get. * @param value Output argument holding the value of the cluster. * * @return EOK or a negative error code. */ int fat_get_cluster(fat_bs_t *bs, dev_handle_t dev_handle, fat_cluster_t clst, fat_cluster_t *value) { block_t *b; uint16_t bps; uint16_t rscnt; fat_cluster_t *cp; int rc; bps = uint16_t_le2host(bs->bps); rscnt = uint16_t_le2host(bs->rscnt); rc = block_get(&b, dev_handle, rscnt + (clst * sizeof(fat_cluster_t)) / bps, BLOCK_FLAGS_NONE); if (rc != EOK) return rc; cp = (fat_cluster_t *)b->data + clst % (bps / sizeof(fat_cluster_t)); *value = uint16_t_le2host(*cp); rc = block_put(b); return rc; } /** Set cluster in one instance of FAT. * * @param bs Buffer holding the boot sector for the file system. * @param dev_handle Device handle for the file system. * @param fatno Number of the FAT instance where to make the change. * @param clst Cluster which is to be set. * @param value Value to set the cluster with. * * @return EOK on success or a negative error code. */ int fat_set_cluster(fat_bs_t *bs, dev_handle_t dev_handle, unsigned fatno, fat_cluster_t clst, fat_cluster_t value) { block_t *b; uint16_t bps; uint16_t rscnt; uint16_t sf; fat_cluster_t *cp; int rc; bps = uint16_t_le2host(bs->bps); rscnt = uint16_t_le2host(bs->rscnt); sf = uint16_t_le2host(bs->sec_per_fat); assert(fatno < bs->fatcnt); rc = block_get(&b, dev_handle, rscnt + sf * fatno + (clst * sizeof(fat_cluster_t)) / bps, BLOCK_FLAGS_NONE); if (rc != EOK) return rc; cp = (fat_cluster_t *)b->data + clst % (bps / sizeof(fat_cluster_t)); *cp = host2uint16_t_le(value); b->dirty = true; /* need to sync block */ rc = block_put(b); return rc; } /** Replay the allocatoin of clusters in all shadow instances of FAT. * * @param bs Buffer holding the boot sector of the file system. * @param dev_handle Device handle of the file system. * @param lifo Chain of allocated clusters. * @param nclsts Number of clusters in the lifo chain. * * @return EOK on success or a negative error code. */ int fat_alloc_shadow_clusters(fat_bs_t *bs, dev_handle_t dev_handle, fat_cluster_t *lifo, unsigned nclsts) { uint8_t fatno; unsigned c; int rc; for (fatno = FAT1 + 1; fatno < bs->fatcnt; fatno++) { for (c = 0; c < nclsts; c++) { rc = fat_set_cluster(bs, dev_handle, fatno, lifo[c], c == 0 ? FAT_CLST_LAST1 : lifo[c - 1]); if (rc != EOK) return rc; } } return EOK; } /** Allocate clusters in all copies of FAT. * * This function will attempt to allocate the requested number of clusters in * all instances of the FAT. The FAT will be altered so that the allocated * clusters form an independent chain (i.e. a chain which does not belong to any * file yet). * * @param bs Buffer holding the boot sector of the file system. * @param dev_handle Device handle of the file system. * @param nclsts Number of clusters to allocate. * @param mcl Output parameter where the first cluster in the chain * will be returned. * @param lcl Output parameter where the last cluster in the chain * will be returned. * * @return EOK on success, a negative error code otherwise. */ int fat_alloc_clusters(fat_bs_t *bs, dev_handle_t dev_handle, unsigned nclsts, fat_cluster_t *mcl, fat_cluster_t *lcl) { uint16_t bps; uint16_t rscnt; uint16_t sf; uint16_t ts; unsigned rde; unsigned rds; unsigned ssa; block_t *blk; fat_cluster_t *lifo; /* stack for storing free cluster numbers */ unsigned found = 0; /* top of the free cluster number stack */ unsigned b, c, cl; int rc; lifo = (fat_cluster_t *) malloc(nclsts * sizeof(fat_cluster_t)); if (!lifo) return ENOMEM; bps = uint16_t_le2host(bs->bps); rscnt = uint16_t_le2host(bs->rscnt); sf = uint16_t_le2host(bs->sec_per_fat); rde = uint16_t_le2host(bs->root_ent_max); ts = uint16_t_le2host(bs->totsec16); rds = (sizeof(fat_dentry_t) * rde) / bps; rds += ((sizeof(fat_dentry_t) * rde) % bps != 0); ssa = rscnt + bs->fatcnt * sf + rds; /* * Search FAT1 for unused clusters. */ fibril_mutex_lock(&fat_alloc_lock); for (b = 0, cl = 0; b < sf; b++) { rc = block_get(&blk, dev_handle, rscnt + b, BLOCK_FLAGS_NONE); if (rc != EOK) goto error; for (c = 0; c < bps / sizeof(fat_cluster_t); c++, cl++) { /* * Check if the cluster is physically there. This check * becomes necessary when the file system is created * with fewer total sectors than how many is inferred * from the size of the file allocation table. */ if ((cl - 2) * bs->spc + ssa >= ts) { rc = block_put(blk); if (rc != EOK) goto error; goto out; } fat_cluster_t *clst = (fat_cluster_t *)blk->data + c; if (uint16_t_le2host(*clst) == FAT_CLST_RES0) { /* * The cluster is free. Put it into our stack * of found clusters and mark it as non-free. */ lifo[found] = cl; *clst = (found == 0) ? host2uint16_t_le(FAT_CLST_LAST1) : host2uint16_t_le(lifo[found - 1]); blk->dirty = true; /* need to sync block */ if (++found == nclsts) { /* we are almost done */ rc = block_put(blk); if (rc != EOK) goto error; /* update the shadow copies of FAT */ rc = fat_alloc_shadow_clusters(bs, dev_handle, lifo, nclsts); if (rc != EOK) goto error; *mcl = lifo[found - 1]; *lcl = lifo[0]; free(lifo); fibril_mutex_unlock(&fat_alloc_lock); return EOK; } } } rc = block_put(blk); if (rc != EOK) { error: fibril_mutex_unlock(&fat_alloc_lock); free(lifo); return rc; } } out: fibril_mutex_unlock(&fat_alloc_lock); /* * We could not find enough clusters. Now we need to free the clusters * we have allocated so far. */ while (found--) { rc = fat_set_cluster(bs, dev_handle, FAT1, lifo[found], FAT_CLST_RES0); if (rc != EOK) { free(lifo); return rc; } } free(lifo); return ENOSPC; } /** Free clusters forming a cluster chain in all copies of FAT. * * @param bs Buffer hodling the boot sector of the file system. * @param dev_handle Device handle of the file system. * @param firstc First cluster in the chain which is to be freed. * * @return EOK on success or a negative return code. */ int fat_free_clusters(fat_bs_t *bs, dev_handle_t dev_handle, fat_cluster_t firstc) { unsigned fatno; fat_cluster_t nextc; int rc; /* Mark all clusters in the chain as free in all copies of FAT. */ while (firstc < FAT_CLST_LAST1) { assert(firstc >= FAT_CLST_FIRST && firstc < FAT_CLST_BAD); rc = fat_get_cluster(bs, dev_handle, firstc, &nextc); if (rc != EOK) return rc; for (fatno = FAT1; fatno < bs->fatcnt; fatno++) { rc = fat_set_cluster(bs, dev_handle, fatno, firstc, FAT_CLST_RES0); if (rc != EOK) return rc; } firstc = nextc; } return EOK; } /** Append a cluster chain to the last file cluster in all FATs. * * @param bs Buffer holding the boot sector of the file system. * @param nodep Node representing the file. * @param mcl First cluster of the cluster chain to append. * * @return EOK on success or a negative error code. */ int fat_append_clusters(fat_bs_t *bs, fat_node_t *nodep, fat_cluster_t mcl) { dev_handle_t dev_handle = nodep->idx->dev_handle; fat_cluster_t lcl; uint16_t numc; uint8_t fatno; int rc; rc = fat_cluster_walk(bs, dev_handle, nodep->firstc, &lcl, &numc, (uint16_t) -1); if (rc != EOK) return rc; if (numc == 0) { /* No clusters allocated to the node yet. */ nodep->firstc = mcl; nodep->dirty = true; /* need to sync node */ return EOK; } for (fatno = FAT1; fatno < bs->fatcnt; fatno++) { rc = fat_set_cluster(bs, nodep->idx->dev_handle, fatno, lcl, mcl); if (rc != EOK) return rc; } return EOK; } /** Chop off node clusters in all copies of FAT. * * @param bs Buffer holding the boot sector of the file system. * @param nodep FAT node where the chopping will take place. * @param lastc Last cluster which will remain in the node. If this * argument is FAT_CLST_RES0, then all clusters will * be chopped off. * * @return EOK on success or a negative return code. */ int fat_chop_clusters(fat_bs_t *bs, fat_node_t *nodep, fat_cluster_t lastc) { int rc; dev_handle_t dev_handle = nodep->idx->dev_handle; if (lastc == FAT_CLST_RES0) { /* The node will have zero size and no clusters allocated. */ rc = fat_free_clusters(bs, dev_handle, nodep->firstc); if (rc != EOK) return rc; nodep->firstc = FAT_CLST_RES0; nodep->dirty = true; /* need to sync node */ } else { fat_cluster_t nextc; unsigned fatno; rc = fat_get_cluster(bs, dev_handle, lastc, &nextc); if (rc != EOK) return rc; /* Terminate the cluster chain in all copies of FAT. */ for (fatno = FAT1; fatno < bs->fatcnt; fatno++) { rc = fat_set_cluster(bs, dev_handle, fatno, lastc, FAT_CLST_LAST1); if (rc != EOK) return rc; } /* Free all following clusters. */ rc = fat_free_clusters(bs, dev_handle, nextc); if (rc != EOK) return rc; } return EOK; } int fat_zero_cluster(struct fat_bs *bs, dev_handle_t dev_handle, fat_cluster_t c) { int i; block_t *b; unsigned bps; int rc; bps = uint16_t_le2host(bs->bps); for (i = 0; i < bs->spc; i++) { rc = _fat_block_get(&b, bs, dev_handle, c, i, BLOCK_FLAGS_NOREAD); if (rc != EOK) return rc; memset(b->data, 0, bps); b->dirty = true; rc = block_put(b); if (rc != EOK) return rc; } return EOK; } /** * @} */