/* * Copyright (c) 2009 Jiri Svoboda * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * - The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** @addtogroup bd * @{ */ /** * @file * @brief ATA disk driver * * This driver supports CHS, 28-bit and 48-bit LBA addressing. It only uses * PIO transfers. There is no support DMA, the PACKET feature set or any other * fancy features such as S.M.A.R.T, removable devices, etc. * * This driver is based on the ATA-1, ATA-2, ATA-3 and ATA/ATAPI-4 through 7 * standards, as published by the ANSI, NCITS and INCITS standards bodies, * which are freely available. This driver contains no vendor-specific * code at this moment. * * The driver services a single controller which can have up to two disks * attached. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ata_hw.h" #include "ata_bd.h" #define NAME "ata_bd" #define NAMESPACE "bd" /** Number of defined legacy controller base addresses. */ #define LEGACY_CTLS 4 /** * Size of data returned from Identify Device or Identify Packet Device * command. */ static const size_t identify_data_size = 512; /** Size of the communication area. */ static size_t comm_size; /** I/O base address of the command registers. */ static uintptr_t cmd_physical; /** I/O base address of the control registers. */ static uintptr_t ctl_physical; /** I/O base addresses for legacy (ISA-compatible) controllers. */ static ata_base_t legacy_base[LEGACY_CTLS] = { { 0x1f0, 0x3f0 }, { 0x170, 0x370 }, { 0x1e8, 0x3e8 }, { 0x168, 0x368 } }; static ata_cmd_t *cmd; static ata_ctl_t *ctl; /** Per-disk state. */ static disk_t disk[MAX_DISKS]; static void print_syntax(void); static int ata_bd_init(void); static void ata_bd_connection(ipc_callid_t iid, ipc_call_t *icall); static int ata_bd_read_blocks(int disk_id, uint64_t ba, size_t cnt, void *buf); static int ata_bd_write_blocks(int disk_id, uint64_t ba, size_t cnt, const void *buf); static int ata_rcmd_read(int disk_id, uint64_t ba, size_t cnt, void *buf); static int ata_rcmd_write(int disk_id, uint64_t ba, size_t cnt, const void *buf); static int disk_init(disk_t *d, int disk_id); static int drive_identify(int drive_id, void *buf); static int identify_pkt_dev(int dev_idx, void *buf); static int ata_cmd_packet(int dev_idx, const void *cpkt, size_t cpkt_size, void *obuf, size_t obuf_size); static int ata_pcmd_inquiry(int dev_idx, void *obuf, size_t obuf_size); static int ata_pcmd_read_12(int dev_idx, uint64_t ba, size_t cnt, void *obuf, size_t obuf_size); static void disk_print_summary(disk_t *d); static int coord_calc(disk_t *d, uint64_t ba, block_coord_t *bc); static void coord_sc_program(const block_coord_t *bc, uint16_t scnt); static int wait_status(unsigned set, unsigned n_reset, uint8_t *pstatus, unsigned timeout); int main(int argc, char **argv) { char name[16]; int i, rc; int n_disks; unsigned ctl_num; char *eptr; printf(NAME ": ATA disk driver\n"); if (argc > 1) { ctl_num = strtoul(argv[1], &eptr, 0); if (*eptr != '\0' || ctl_num == 0 || ctl_num > 4) { printf("Invalid argument.\n"); print_syntax(); return -1; } } else { ctl_num = 1; } cmd_physical = legacy_base[ctl_num - 1].cmd; ctl_physical = legacy_base[ctl_num - 1].ctl; printf("I/O address %p/%p\n", (void *) cmd_physical, (void *) ctl_physical); if (ata_bd_init() != EOK) return -1; for (i = 0; i < MAX_DISKS; i++) { printf("Identify drive %d... ", i); fflush(stdout); rc = disk_init(&disk[i], i); if (rc == EOK) { disk_print_summary(&disk[i]); } else { printf("Not found.\n"); } } n_disks = 0; for (i = 0; i < MAX_DISKS; i++) { /* Skip unattached drives. */ if (disk[i].present == false) continue; snprintf(name, 16, "%s/ata%udisk%d", NAMESPACE, ctl_num, i); rc = devmap_device_register(name, &disk[i].devmap_handle); if (rc != EOK) { printf(NAME ": Unable to register device %s.\n", name); return rc; } ++n_disks; } if (n_disks == 0) { printf("No disks detected.\n"); return -1; } printf(NAME ": Accepting connections\n"); task_retval(0); async_manager(); /* Not reached */ return 0; } static void print_syntax(void) { printf("Syntax: " NAME " \n"); printf("Controller number = 1..4\n"); } /** Print one-line device summary. */ static void disk_print_summary(disk_t *d) { uint64_t mbytes; printf("%s: ", d->model); if (d->dev_type == ata_reg_dev) { switch (d->amode) { case am_chs: printf("CHS %u cylinders, %u heads, %u sectors", disk->geom.cylinders, disk->geom.heads, disk->geom.sectors); break; case am_lba28: printf("LBA-28"); break; case am_lba48: printf("LBA-48"); break; } } else { printf("PACKET"); } printf(" %" PRIu64 " blocks", d->blocks); mbytes = d->blocks / (2 * 1024); if (mbytes > 0) printf(" %" PRIu64 " MB.", mbytes); printf("\n"); } /** Register driver and enable device I/O. */ static int ata_bd_init(void) { void *vaddr; int rc; rc = devmap_driver_register(NAME, ata_bd_connection); if (rc < 0) { printf(NAME ": Unable to register driver.\n"); return rc; } rc = pio_enable((void *) cmd_physical, sizeof(ata_cmd_t), &vaddr); if (rc != EOK) { printf(NAME ": Could not initialize device I/O space.\n"); return rc; } cmd = vaddr; rc = pio_enable((void *) ctl_physical, sizeof(ata_ctl_t), &vaddr); if (rc != EOK) { printf(NAME ": Could not initialize device I/O space.\n"); return rc; } ctl = vaddr; return EOK; } /** Block device connection handler */ static void ata_bd_connection(ipc_callid_t iid, ipc_call_t *icall) { void *fs_va = NULL; ipc_callid_t callid; ipc_call_t call; sysarg_t method; devmap_handle_t dh; unsigned int flags; int retval; uint64_t ba; size_t cnt; int disk_id, i; /* Get the device handle. */ dh = IPC_GET_ARG1(*icall); /* Determine which disk device is the client connecting to. */ disk_id = -1; for (i = 0; i < MAX_DISKS; i++) if (disk[i].devmap_handle == dh) disk_id = i; if (disk_id < 0 || disk[disk_id].present == false) { async_answer_0(iid, EINVAL); return; } /* Answer the IPC_M_CONNECT_ME_TO call. */ async_answer_0(iid, EOK); if (!async_share_out_receive(&callid, &comm_size, &flags)) { async_answer_0(callid, EHANGUP); return; } fs_va = as_get_mappable_page(comm_size); if (fs_va == NULL) { async_answer_0(callid, EHANGUP); return; } (void) async_share_out_finalize(callid, fs_va); while (1) { callid = async_get_call(&call); method = IPC_GET_IMETHOD(call); switch (method) { case IPC_M_PHONE_HUNGUP: /* The other side has hung up. */ async_answer_0(callid, EOK); return; case BD_READ_BLOCKS: ba = MERGE_LOUP32(IPC_GET_ARG1(call), IPC_GET_ARG2(call)); cnt = IPC_GET_ARG3(call); if (cnt * disk[disk_id].block_size > comm_size) { retval = ELIMIT; break; } retval = ata_bd_read_blocks(disk_id, ba, cnt, fs_va); break; case BD_WRITE_BLOCKS: ba = MERGE_LOUP32(IPC_GET_ARG1(call), IPC_GET_ARG2(call)); cnt = IPC_GET_ARG3(call); if (cnt * disk[disk_id].block_size > comm_size) { retval = ELIMIT; break; } retval = ata_bd_write_blocks(disk_id, ba, cnt, fs_va); break; case BD_GET_BLOCK_SIZE: async_answer_1(callid, EOK, disk[disk_id].block_size); continue; case BD_GET_NUM_BLOCKS: async_answer_2(callid, EOK, LOWER32(disk[disk_id].blocks), UPPER32(disk[disk_id].blocks)); continue; default: retval = EINVAL; break; } async_answer_0(callid, retval); } } /** Initialize a disk. * * Probes for a disk, determines its parameters and initializes * the disk structure. */ static int disk_init(disk_t *d, int disk_id) { identify_data_t idata; uint8_t model[40]; ata_inquiry_data_t inq_data; uint16_t w; uint8_t c; uint16_t bc; size_t pos, len; int rc; unsigned i; d->present = false; fibril_mutex_initialize(&d->lock); /* Try identify command. */ rc = drive_identify(disk_id, &idata); if (rc == EOK) { /* Success. It's a register (non-packet) device. */ printf("ATA register-only device found.\n"); d->dev_type = ata_reg_dev; } else if (rc == EIO) { /* * There is something, but not a register device. Check to see * whether the IDENTIFY command left the packet signature in * the registers in case this is a packet device. * * According to the ATA specification, the LBA low and * interrupt reason registers should be set to 0x01. However, * there are many devices that do not follow this and only set * the byte count registers. So, only check these. */ bc = ((uint16_t)pio_read_8(&cmd->cylinder_high) << 8) | pio_read_8(&cmd->cylinder_low); if (bc == PDEV_SIGNATURE_BC) { rc = identify_pkt_dev(disk_id, &idata); if (rc == EOK) { /* We have a packet device. */ d->dev_type = ata_pkt_dev; } else { return EIO; } } else { /* Nope. Something's there, but not recognized. */ return EIO; } } else { /* Operation timed out. That means there is no device there. */ return EIO; } if (d->dev_type == ata_pkt_dev) { /* Packet device */ d->amode = 0; d->geom.cylinders = 0; d->geom.heads = 0; d->geom.sectors = 0; d->blocks = 0; } else if ((idata.caps & rd_cap_lba) == 0) { /* Device only supports CHS addressing. */ d->amode = am_chs; d->geom.cylinders = idata.cylinders; d->geom.heads = idata.heads; d->geom.sectors = idata.sectors; d->blocks = d->geom.cylinders * d->geom.heads * d->geom.sectors; } else if ((idata.cmd_set1 & cs1_addr48) == 0) { /* Device only supports LBA-28 addressing. */ d->amode = am_lba28; d->geom.cylinders = 0; d->geom.heads = 0; d->geom.sectors = 0; d->blocks = (uint32_t) idata.total_lba28_0 | ((uint32_t) idata.total_lba28_1 << 16); } else { /* Device supports LBA-48 addressing. */ d->amode = am_lba48; d->geom.cylinders = 0; d->geom.heads = 0; d->geom.sectors = 0; d->blocks = (uint64_t) idata.total_lba48_0 | ((uint64_t) idata.total_lba48_1 << 16) | ((uint64_t) idata.total_lba48_2 << 32) | ((uint64_t) idata.total_lba48_3 << 48); } /* * Convert model name to string representation. */ for (i = 0; i < 20; i++) { w = idata.model_name[i]; model[2 * i] = w >> 8; model[2 * i + 1] = w & 0x00ff; } len = 40; while (len > 0 && model[len - 1] == 0x20) --len; pos = 0; for (i = 0; i < len; ++i) { c = model[i]; if (c >= 0x80) c = '?'; chr_encode(c, d->model, &pos, 40); } d->model[pos] = '\0'; if (d->dev_type == ata_pkt_dev) { /* Send inquiry. */ rc = ata_pcmd_inquiry(0, &inq_data, sizeof(inq_data)); if (rc != EOK) { printf("Device inquiry failed.\n"); d->present = false; return EIO; } /* Check device type. */ if (INQUIRY_PDEV_TYPE(inq_data.pdev_type) != PDEV_TYPE_CDROM) printf("Warning: Peripheral device type is not CD-ROM.\n"); /* Assume 2k block size for now. */ d->block_size = 2048; } else { /* Assume register Read always uses 512-byte blocks. */ d->block_size = 512; } d->present = true; return EOK; } /** Read multiple blocks from the device. */ static int ata_bd_read_blocks(int disk_id, uint64_t ba, size_t cnt, void *buf) { int rc; while (cnt > 0) { if (disk[disk_id].dev_type == ata_reg_dev) rc = ata_rcmd_read(disk_id, ba, 1, buf); else rc = ata_pcmd_read_12(disk_id, ba, 1, buf, disk[disk_id].block_size); if (rc != EOK) return rc; ++ba; --cnt; buf += disk[disk_id].block_size; } return EOK; } /** Write multiple blocks to the device. */ static int ata_bd_write_blocks(int disk_id, uint64_t ba, size_t cnt, const void *buf) { int rc; if (disk[disk_id].dev_type != ata_reg_dev) return ENOTSUP; while (cnt > 0) { rc = ata_rcmd_write(disk_id, ba, 1, buf); if (rc != EOK) return rc; ++ba; --cnt; buf += disk[disk_id].block_size; } return EOK; } /** Issue IDENTIFY command. * * Reads @c identify data into the provided buffer. This is used to detect * whether an ATA device is present and if so, to determine its parameters. * * @param disk_id Device ID, 0 or 1. * @param buf Pointer to a 512-byte buffer. * * @return ETIMEOUT on timeout (this can mean the device is * not present). EIO if device responds with error. */ static int drive_identify(int disk_id, void *buf) { uint16_t data; uint8_t status; uint8_t drv_head; size_t i; drv_head = ((disk_id != 0) ? DHR_DRV : 0); if (wait_status(0, ~SR_BSY, NULL, TIMEOUT_PROBE) != EOK) return ETIMEOUT; pio_write_8(&cmd->drive_head, drv_head); /* * Do not wait for DRDY to be set in case this is a packet device. * We determine whether the device is present by waiting for DRQ to be * set after issuing the command. */ if (wait_status(0, ~SR_BSY, NULL, TIMEOUT_PROBE) != EOK) return ETIMEOUT; pio_write_8(&cmd->command, CMD_IDENTIFY_DRIVE); if (wait_status(0, ~SR_BSY, &status, TIMEOUT_PROBE) != EOK) return ETIMEOUT; /* * If ERR is set, this may be a packet device, so return EIO to cause * the caller to check for one. */ if ((status & SR_ERR) != 0) { return EIO; } if (wait_status(SR_DRQ, ~SR_BSY, &status, TIMEOUT_PROBE) != EOK) return ETIMEOUT; /* Read data from the disk buffer. */ for (i = 0; i < identify_data_size / 2; i++) { data = pio_read_16(&cmd->data_port); ((uint16_t *) buf)[i] = data; } return EOK; } /** Issue Identify Packet Device command. * * Reads @c identify data into the provided buffer. This is used to detect * whether an ATAPI device is present and if so, to determine its parameters. * * @param dev_idx Device index, 0 or 1. * @param buf Pointer to a 512-byte buffer. */ static int identify_pkt_dev(int dev_idx, void *buf) { uint16_t data; uint8_t status; uint8_t drv_head; size_t i; drv_head = ((dev_idx != 0) ? DHR_DRV : 0); if (wait_status(0, ~SR_BSY, NULL, TIMEOUT_PROBE) != EOK) return EIO; pio_write_8(&cmd->drive_head, drv_head); /* For ATAPI commands we do not need to wait for DRDY. */ if (wait_status(0, ~SR_BSY, NULL, TIMEOUT_PROBE) != EOK) return EIO; pio_write_8(&cmd->command, CMD_IDENTIFY_PKT_DEV); if (wait_status(0, ~SR_BSY, &status, TIMEOUT_BSY) != EOK) return EIO; /* Read data from the device buffer. */ if ((status & SR_DRQ) != 0) { for (i = 0; i < identify_data_size / 2; i++) { data = pio_read_16(&cmd->data_port); ((uint16_t *) buf)[i] = data; } } if ((status & SR_ERR) != 0) return EIO; return EOK; } /** Issue packet command (i. e. write a command packet to the device). * * Only data-in commands are supported (e.g. inquiry, read). * * @param dev_idx Device index (0 or 1) * @param obuf Buffer for storing data read from device * @param obuf_size Size of obuf in bytes * * @return EOK on success, EIO on error. */ static int ata_cmd_packet(int dev_idx, const void *cpkt, size_t cpkt_size, void *obuf, size_t obuf_size) { size_t i; uint8_t status; uint8_t drv_head; disk_t *d; size_t data_size; uint16_t val; d = &disk[dev_idx]; fibril_mutex_lock(&d->lock); /* New value for Drive/Head register */ drv_head = ((dev_idx != 0) ? DHR_DRV : 0); if (wait_status(0, ~SR_BSY, NULL, TIMEOUT_PROBE) != EOK) { fibril_mutex_unlock(&d->lock); return EIO; } pio_write_8(&cmd->drive_head, drv_head); if (wait_status(0, ~(SR_BSY|SR_DRQ), NULL, TIMEOUT_BSY) != EOK) { fibril_mutex_unlock(&d->lock); return EIO; } /* Byte count <- max. number of bytes we can read in one transfer. */ pio_write_8(&cmd->cylinder_low, 0xfe); pio_write_8(&cmd->cylinder_high, 0xff); pio_write_8(&cmd->command, CMD_PACKET); if (wait_status(SR_DRQ, ~SR_BSY, &status, TIMEOUT_BSY) != EOK) { fibril_mutex_unlock(&d->lock); return EIO; } /* Write command packet. */ for (i = 0; i < (cpkt_size + 1) / 2; i++) pio_write_16(&cmd->data_port, ((uint16_t *) cpkt)[i]); if (wait_status(0, ~SR_BSY, &status, TIMEOUT_BSY) != EOK) { fibril_mutex_unlock(&d->lock); return EIO; } if ((status & SR_DRQ) == 0) { fibril_mutex_unlock(&d->lock); return EIO; } /* Read byte count. */ data_size = (uint16_t) pio_read_8(&cmd->cylinder_low) + ((uint16_t) pio_read_8(&cmd->cylinder_high) << 8); /* Check whether data fits into output buffer. */ if (data_size > obuf_size) { /* Output buffer is too small to store data. */ fibril_mutex_unlock(&d->lock); return EIO; } /* Read data from the device buffer. */ for (i = 0; i < (data_size + 1) / 2; i++) { val = pio_read_16(&cmd->data_port); ((uint16_t *) obuf)[i] = val; } if (status & SR_ERR) { fibril_mutex_unlock(&d->lock); return EIO; } fibril_mutex_unlock(&d->lock); return EOK; } /** Issue ATAPI Inquiry. * * @param dev_idx Device index (0 or 1) * @param obuf Buffer for storing inquiry data read from device * @param obuf_size Size of obuf in bytes * * @return EOK on success, EIO on error. */ static int ata_pcmd_inquiry(int dev_idx, void *obuf, size_t obuf_size) { ata_pcmd_inquiry_t cp; int rc; memset(&cp, 0, sizeof(cp)); cp.opcode = PCMD_INQUIRY; cp.alloc_len = min(obuf_size, 0xff); /* Allocation length */ rc = ata_cmd_packet(0, &cp, sizeof(cp), obuf, obuf_size); if (rc != EOK) return rc; return EOK; } /** Issue ATAPI read(12) command. * * Output buffer must be large enough to hold the data, otherwise the * function will fail. * * @param dev_idx Device index (0 or 1) * @param ba Starting block address * @param cnt Number of blocks to read * @param obuf Buffer for storing inquiry data read from device * @param obuf_size Size of obuf in bytes * * @return EOK on success, EIO on error. */ static int ata_pcmd_read_12(int dev_idx, uint64_t ba, size_t cnt, void *obuf, size_t obuf_size) { ata_pcmd_read_12_t cp; int rc; if (ba > UINT32_MAX) return EINVAL; memset(&cp, 0, sizeof(cp)); cp.opcode = PCMD_READ_12; cp.ba = host2uint32_t_be(ba); cp.nblocks = host2uint32_t_be(cnt); rc = ata_cmd_packet(0, &cp, sizeof(cp), obuf, obuf_size); if (rc != EOK) return rc; return EOK; } /** Read a physical from the device. * * @param disk_id Device index (0 or 1) * @param ba Address the first block. * @param cnt Number of blocks to transfer. * @param buf Buffer for holding the data. * * @return EOK on success, EIO on error. */ static int ata_rcmd_read(int disk_id, uint64_t ba, size_t blk_cnt, void *buf) { size_t i; uint16_t data; uint8_t status; uint8_t drv_head; disk_t *d; block_coord_t bc; d = &disk[disk_id]; /* Silence warning. */ memset(&bc, 0, sizeof(bc)); /* Compute block coordinates. */ if (coord_calc(d, ba, &bc) != EOK) return EINVAL; /* New value for Drive/Head register */ drv_head = ((disk_id != 0) ? DHR_DRV : 0) | ((d->amode != am_chs) ? DHR_LBA : 0) | (bc.h & 0x0f); fibril_mutex_lock(&d->lock); /* Program a Read Sectors operation. */ if (wait_status(0, ~SR_BSY, NULL, TIMEOUT_BSY) != EOK) { fibril_mutex_unlock(&d->lock); return EIO; } pio_write_8(&cmd->drive_head, drv_head); if (wait_status(SR_DRDY, ~SR_BSY, NULL, TIMEOUT_DRDY) != EOK) { fibril_mutex_unlock(&d->lock); return EIO; } /* Program block coordinates into the device. */ coord_sc_program(&bc, 1); pio_write_8(&cmd->command, d->amode == am_lba48 ? CMD_READ_SECTORS_EXT : CMD_READ_SECTORS); if (wait_status(0, ~SR_BSY, &status, TIMEOUT_BSY) != EOK) { fibril_mutex_unlock(&d->lock); return EIO; } if ((status & SR_DRQ) != 0) { /* Read data from the device buffer. */ for (i = 0; i < disk[disk_id].block_size / 2; i++) { data = pio_read_16(&cmd->data_port); ((uint16_t *) buf)[i] = data; } } if ((status & SR_ERR) != 0) return EIO; fibril_mutex_unlock(&d->lock); return EOK; } /** Write a physical block to the device. * * @param disk_id Device index (0 or 1) * @param ba Address of the first block. * @param cnt Number of blocks to transfer. * @param buf Buffer holding the data to write. * * @return EOK on success, EIO on error. */ static int ata_rcmd_write(int disk_id, uint64_t ba, size_t cnt, const void *buf) { size_t i; uint8_t status; uint8_t drv_head; disk_t *d; block_coord_t bc; d = &disk[disk_id]; /* Silence warning. */ memset(&bc, 0, sizeof(bc)); /* Compute block coordinates. */ if (coord_calc(d, ba, &bc) != EOK) return EINVAL; /* New value for Drive/Head register */ drv_head = ((disk_id != 0) ? DHR_DRV : 0) | ((d->amode != am_chs) ? DHR_LBA : 0) | (bc.h & 0x0f); fibril_mutex_lock(&d->lock); /* Program a Write Sectors operation. */ if (wait_status(0, ~SR_BSY, NULL, TIMEOUT_BSY) != EOK) { fibril_mutex_unlock(&d->lock); return EIO; } pio_write_8(&cmd->drive_head, drv_head); if (wait_status(SR_DRDY, ~SR_BSY, NULL, TIMEOUT_DRDY) != EOK) { fibril_mutex_unlock(&d->lock); return EIO; } /* Program block coordinates into the device. */ coord_sc_program(&bc, 1); pio_write_8(&cmd->command, d->amode == am_lba48 ? CMD_WRITE_SECTORS_EXT : CMD_WRITE_SECTORS); if (wait_status(0, ~SR_BSY, &status, TIMEOUT_BSY) != EOK) { fibril_mutex_unlock(&d->lock); return EIO; } if ((status & SR_DRQ) != 0) { /* Write data to the device buffer. */ for (i = 0; i < disk[disk_id].block_size / 2; i++) { pio_write_16(&cmd->data_port, ((uint16_t *) buf)[i]); } } fibril_mutex_unlock(&d->lock); if (status & SR_ERR) return EIO; return EOK; } /** Calculate block coordinates. * * Calculates block coordinates in the best coordinate system supported * by the device. These can be later programmed into the device using * @c coord_sc_program(). * * @return EOK on success or EINVAL if block index is past end of device. */ static int coord_calc(disk_t *d, uint64_t ba, block_coord_t *bc) { uint64_t c; uint64_t idx; /* Check device bounds. */ if (ba >= d->blocks) return EINVAL; bc->amode = d->amode; switch (d->amode) { case am_chs: /* Compute CHS coordinates. */ c = ba / (d->geom.heads * d->geom.sectors); idx = ba % (d->geom.heads * d->geom.sectors); bc->cyl_lo = c & 0xff; bc->cyl_hi = (c >> 8) & 0xff; bc->h = (idx / d->geom.sectors) & 0x0f; bc->sector = (1 + (idx % d->geom.sectors)) & 0xff; break; case am_lba28: /* Compute LBA-28 coordinates. */ bc->c0 = ba & 0xff; /* bits 0-7 */ bc->c1 = (ba >> 8) & 0xff; /* bits 8-15 */ bc->c2 = (ba >> 16) & 0xff; /* bits 16-23 */ bc->h = (ba >> 24) & 0x0f; /* bits 24-27 */ break; case am_lba48: /* Compute LBA-48 coordinates. */ bc->c0 = ba & 0xff; /* bits 0-7 */ bc->c1 = (ba >> 8) & 0xff; /* bits 8-15 */ bc->c2 = (ba >> 16) & 0xff; /* bits 16-23 */ bc->c3 = (ba >> 24) & 0xff; /* bits 24-31 */ bc->c4 = (ba >> 32) & 0xff; /* bits 32-39 */ bc->c5 = (ba >> 40) & 0xff; /* bits 40-47 */ bc->h = 0; break; } return EOK; } /** Program block coordinates and sector count into ATA registers. * * Note that bc->h must be programmed separately into the device/head register. */ static void coord_sc_program(const block_coord_t *bc, uint16_t scnt) { if (bc->amode == am_lba48) { /* Write high-order bits. */ pio_write_8(&cmd->sector_count, scnt >> 8); pio_write_8(&cmd->sector_number, bc->c3); pio_write_8(&cmd->cylinder_low, bc->c4); pio_write_8(&cmd->cylinder_high, bc->c5); } /* Write low-order bits. */ pio_write_8(&cmd->sector_count, scnt & 0x00ff); pio_write_8(&cmd->sector_number, bc->c0); pio_write_8(&cmd->cylinder_low, bc->c1); pio_write_8(&cmd->cylinder_high, bc->c2); } /** Wait until some status bits are set and some are reset. * * Example: wait_status(SR_DRDY, ~SR_BSY) waits for SR_DRDY to become * set and SR_BSY to become reset. * * @param set Combination if bits which must be all set. * @param n_reset Negated combination of bits which must be all reset. * @param pstatus Pointer where to store last read status or NULL. * @param timeout Timeout in 10ms units. * * @return EOK on success, EIO on timeout. */ static int wait_status(unsigned set, unsigned n_reset, uint8_t *pstatus, unsigned timeout) { uint8_t status; int cnt; status = pio_read_8(&cmd->status); /* * This is crude, yet simple. First try with 1us delays * (most likely the device will respond very fast). If not, * start trying every 10 ms. */ cnt = 100; while ((status & ~n_reset) != 0 || (status & set) != set) { async_usleep(1); --cnt; if (cnt <= 0) break; status = pio_read_8(&cmd->status); } cnt = timeout; while ((status & ~n_reset) != 0 || (status & set) != set) { async_usleep(10000); --cnt; if (cnt <= 0) break; status = pio_read_8(&cmd->status); } if (pstatus) *pstatus = status; if (cnt == 0) return EIO; return EOK; } /** * @} */