[6d5e378] | 1 | /*
|
---|
| 2 | * Copyright (c) 2011 Petr Koupy
|
---|
| 3 | * All rights reserved.
|
---|
| 4 | *
|
---|
| 5 | * Redistribution and use in source and binary forms, with or without
|
---|
| 6 | * modification, are permitted provided that the following conditions
|
---|
| 7 | * are met:
|
---|
| 8 | *
|
---|
| 9 | * - Redistributions of source code must retain the above copyright
|
---|
| 10 | * notice, this list of conditions and the following disclaimer.
|
---|
| 11 | * - Redistributions in binary form must reproduce the above copyright
|
---|
| 12 | * notice, this list of conditions and the following disclaimer in the
|
---|
| 13 | * documentation and/or other materials provided with the distribution.
|
---|
| 14 | * - The name of the author may not be used to endorse or promote products
|
---|
| 15 | * derived from this software without specific prior written permission.
|
---|
| 16 | *
|
---|
| 17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
| 18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
| 19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
| 20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
| 21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
| 22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
| 23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
| 24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
| 25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
| 26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
| 27 | */
|
---|
| 28 |
|
---|
| 29 | /** @addtogroup softrend
|
---|
| 30 | * @{
|
---|
| 31 | */
|
---|
| 32 | /**
|
---|
| 33 | * @file
|
---|
| 34 | */
|
---|
| 35 |
|
---|
| 36 | #include "transform.h"
|
---|
| 37 |
|
---|
| 38 | void transform_multiply(transform_t *res, const transform_t *left, const transform_t *right)
|
---|
| 39 | {
|
---|
| 40 | for (int i = 0; i < 3; ++i) {
|
---|
| 41 | for (int j = 0; j < 3; ++j) {
|
---|
| 42 | double comb = 0;
|
---|
| 43 | for (int k = 0; k < 3; ++k) {
|
---|
| 44 | comb += left->m[i][k] * right->m[k][j];
|
---|
| 45 | }
|
---|
| 46 | res->m[i][j] = comb;
|
---|
| 47 | }
|
---|
| 48 | }
|
---|
| 49 | }
|
---|
| 50 |
|
---|
| 51 | void transform_invert(transform_t *t)
|
---|
| 52 | {
|
---|
| 53 | double a = t->m[1][1] * t->m[2][2] - t->m[1][2] * t->m[2][1];
|
---|
| 54 | double b = t->m[1][2] * t->m[2][0] - t->m[2][2] * t->m[1][0];
|
---|
| 55 | double c = t->m[1][0] * t->m[2][1] - t->m[1][1] * t->m[2][0];
|
---|
| 56 | double d = t->m[0][2] * t->m[2][1] - t->m[0][1] * t->m[2][2];
|
---|
| 57 | double e = t->m[0][0] * t->m[2][2] - t->m[0][2] * t->m[2][0];
|
---|
| 58 | double f = t->m[2][0] * t->m[0][1] - t->m[0][0] * t->m[2][1];
|
---|
| 59 | double g = t->m[0][1] * t->m[1][2] - t->m[0][2] * t->m[1][1];
|
---|
| 60 | double h = t->m[0][2] * t->m[1][0] - t->m[0][0] * t->m[1][2];
|
---|
| 61 | double k = t->m[0][0] * t->m[1][1] - t->m[0][1] * t->m[1][0];
|
---|
| 62 |
|
---|
| 63 | double det = t->m[0][0] * a + t->m[0][1] * b + t->m[0][2] * c;
|
---|
| 64 | det = 1 / det;
|
---|
| 65 |
|
---|
| 66 | t->m[0][0] = a * det; t->m[0][1] = d * det; t->m[0][2] = g * det;
|
---|
| 67 | t->m[1][0] = b * det; t->m[1][1] = e * det; t->m[1][2] = h * det;
|
---|
| 68 | t->m[2][0] = c * det; t->m[2][1] = f * det; t->m[2][2] = k * det;
|
---|
| 69 | }
|
---|
| 70 |
|
---|
| 71 | void transform_identity(transform_t *t)
|
---|
| 72 | {
|
---|
| 73 | t->m[0][0] = 1; t->m[0][1] = 0; t->m[0][2] = 0;
|
---|
| 74 | t->m[1][0] = 0; t->m[1][1] = 1; t->m[1][2] = 0;
|
---|
| 75 | t->m[2][0] = 0; t->m[2][1] = 0; t->m[2][2] = 1;
|
---|
| 76 | }
|
---|
| 77 |
|
---|
| 78 | void transform_translate(transform_t *t, double dx, double dy)
|
---|
| 79 | {
|
---|
| 80 | transform_t a;
|
---|
| 81 | a.m[0][0] = 1; a.m[0][1] = 0; a.m[0][2] = dx;
|
---|
| 82 | a.m[1][0] = 0; a.m[1][1] = 1; a.m[1][2] = dy;
|
---|
| 83 | a.m[2][0] = 0; a.m[2][1] = 0; a.m[2][2] = 1;
|
---|
| 84 |
|
---|
| 85 | transform_t r;
|
---|
| 86 | transform_multiply(&r, &a, t);
|
---|
| 87 | *t = r;
|
---|
| 88 | }
|
---|
| 89 |
|
---|
| 90 | void transform_scale(transform_t *t, double qx, double qy)
|
---|
| 91 | {
|
---|
| 92 | transform_t a;
|
---|
| 93 | a.m[0][0] = qx; a.m[0][1] = 0; a.m[0][2] = 0;
|
---|
| 94 | a.m[1][0] = 0; a.m[1][1] = qy; a.m[1][2] = 0;
|
---|
| 95 | a.m[2][0] = 0; a.m[2][1] = 0; a.m[2][2] = 1;
|
---|
| 96 |
|
---|
| 97 | transform_t r;
|
---|
| 98 | transform_multiply(&r, &a, t);
|
---|
| 99 | *t = r;
|
---|
| 100 | }
|
---|
| 101 |
|
---|
| 102 | void transform_rotate(transform_t *t, double rad)
|
---|
| 103 | {
|
---|
| 104 | double s, c;
|
---|
| 105 |
|
---|
| 106 | // FIXME: temporary solution until there are trigonometric functions in libc
|
---|
| 107 |
|
---|
| 108 | while (rad < 0) {
|
---|
| 109 | rad += (2 * PI);
|
---|
| 110 | }
|
---|
| 111 |
|
---|
| 112 | while (rad > (2 * PI)) {
|
---|
| 113 | rad -= (2 * PI);
|
---|
| 114 | }
|
---|
| 115 |
|
---|
| 116 | if (rad >= 0 && rad < (PI / 4)) {
|
---|
| 117 | s = 0; c = 1;
|
---|
| 118 | } else if (rad >= (PI / 4) && rad < (3 * PI / 4)) {
|
---|
| 119 | s = 1; c = 0;
|
---|
| 120 | } else if (rad >= (3 * PI / 4) && rad < (5 * PI / 4)) {
|
---|
| 121 | s = 0; c = -1;
|
---|
| 122 | } else if (rad >= (5 * PI / 4) && rad < (7 * PI / 4)) {
|
---|
| 123 | s = -1; c = 0;
|
---|
| 124 | } else {
|
---|
| 125 | s = 0; c = 1;
|
---|
| 126 | }
|
---|
| 127 |
|
---|
| 128 | transform_t a;
|
---|
| 129 | a.m[0][0] = c; a.m[0][1] = -s; a.m[0][2] = 0;
|
---|
| 130 | a.m[1][0] = s; a.m[1][1] = c; a.m[1][2] = 0;
|
---|
| 131 | a.m[2][0] = 0; a.m[2][1] = 0; a.m[2][2] = 1;
|
---|
| 132 |
|
---|
| 133 | transform_t r;
|
---|
| 134 | transform_multiply(&r, &a, t);
|
---|
| 135 | *t = r;
|
---|
| 136 | }
|
---|
| 137 |
|
---|
[7dba813] | 138 | bool transform_is_fast(transform_t *t)
|
---|
| 139 | {
|
---|
| 140 | return (t->m[0][0] == 1) && (t->m[0][1] == 0)
|
---|
| 141 | && (t->m[1][0] == 0) && (t->m[1][1] == 1)
|
---|
| 142 | && ((t->m[0][2] - ((long) t->m[0][2])) == 0.0)
|
---|
| 143 | && ((t->m[1][2] - ((long) t->m[1][2])) == 0.0);
|
---|
| 144 | }
|
---|
| 145 |
|
---|
[6d5e378] | 146 | void transform_apply_linear(const transform_t *t, double *x, double *y)
|
---|
| 147 | {
|
---|
| 148 | double x_ = *x;
|
---|
| 149 | double y_ = *y;
|
---|
| 150 | *x = x_ * t->m[0][0] + y_ * t->m[0][1];
|
---|
| 151 | *y = x_ * t->m[1][0] + y_ * t->m[1][1];
|
---|
| 152 | }
|
---|
| 153 |
|
---|
| 154 | void transform_apply_affine(const transform_t *t, double *x, double *y)
|
---|
| 155 | {
|
---|
| 156 | double x_ = *x;
|
---|
| 157 | double y_ = *y;
|
---|
| 158 | *x = x_ * t->m[0][0] + y_ * t->m[0][1] + t->m[0][2];
|
---|
| 159 | *y = x_ * t->m[1][0] + y_ * t->m[1][1] + t->m[1][2];
|
---|
| 160 | }
|
---|
| 161 |
|
---|
| 162 | /** @}
|
---|
| 163 | */
|
---|