1 | /*
|
---|
2 | * Copyright (c) 2005 Josef Cejka
|
---|
3 | * Copyright (c) 2011 Petr Koupy
|
---|
4 | * All rights reserved.
|
---|
5 | *
|
---|
6 | * Redistribution and use in source and binary forms, with or without
|
---|
7 | * modification, are permitted provided that the following conditions
|
---|
8 | * are met:
|
---|
9 | *
|
---|
10 | * - Redistributions of source code must retain the above copyright
|
---|
11 | * notice, this list of conditions and the following disclaimer.
|
---|
12 | * - Redistributions in binary form must reproduce the above copyright
|
---|
13 | * notice, this list of conditions and the following disclaimer in the
|
---|
14 | * documentation and/or other materials provided with the distribution.
|
---|
15 | * - The name of the author may not be used to endorse or promote products
|
---|
16 | * derived from this software without specific prior written permission.
|
---|
17 | *
|
---|
18 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
19 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
20 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
21 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
22 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
23 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
24 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
25 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
26 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
27 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
28 | */
|
---|
29 |
|
---|
30 | /** @addtogroup softfloat
|
---|
31 | * @{
|
---|
32 | */
|
---|
33 | /** @file Multiplication functions.
|
---|
34 | */
|
---|
35 |
|
---|
36 | #include "mul.h"
|
---|
37 | #include "comparison.h"
|
---|
38 | #include "common.h"
|
---|
39 |
|
---|
40 | /** Multiply two single-precision floats.
|
---|
41 | *
|
---|
42 | * @param a First input operand.
|
---|
43 | * @param b Second input operand.
|
---|
44 | *
|
---|
45 | * @return Result of multiplication.
|
---|
46 | *
|
---|
47 | */
|
---|
48 | float32 mul_float32(float32 a, float32 b)
|
---|
49 | {
|
---|
50 | float32 result;
|
---|
51 | uint64_t frac1, frac2;
|
---|
52 | int32_t exp;
|
---|
53 |
|
---|
54 | result.parts.sign = a.parts.sign ^ b.parts.sign;
|
---|
55 |
|
---|
56 | if (is_float32_nan(a) || is_float32_nan(b)) {
|
---|
57 | /* TODO: fix SigNaNs */
|
---|
58 | if (is_float32_signan(a)) {
|
---|
59 | result.parts.fraction = a.parts.fraction;
|
---|
60 | result.parts.exp = a.parts.exp;
|
---|
61 | return result;
|
---|
62 | }
|
---|
63 |
|
---|
64 | if (is_float32_signan(b)) { /* TODO: fix SigNaN */
|
---|
65 | result.parts.fraction = b.parts.fraction;
|
---|
66 | result.parts.exp = b.parts.exp;
|
---|
67 | return result;
|
---|
68 | }
|
---|
69 |
|
---|
70 | /* set NaN as result */
|
---|
71 | result.bin = FLOAT32_NAN;
|
---|
72 | return result;
|
---|
73 | }
|
---|
74 |
|
---|
75 | if (is_float32_infinity(a)) {
|
---|
76 | if (is_float32_zero(b)) {
|
---|
77 | /* FIXME: zero * infinity */
|
---|
78 | result.bin = FLOAT32_NAN;
|
---|
79 | return result;
|
---|
80 | }
|
---|
81 |
|
---|
82 | result.parts.fraction = a.parts.fraction;
|
---|
83 | result.parts.exp = a.parts.exp;
|
---|
84 | return result;
|
---|
85 | }
|
---|
86 |
|
---|
87 | if (is_float32_infinity(b)) {
|
---|
88 | if (is_float32_zero(a)) {
|
---|
89 | /* FIXME: zero * infinity */
|
---|
90 | result.bin = FLOAT32_NAN;
|
---|
91 | return result;
|
---|
92 | }
|
---|
93 |
|
---|
94 | result.parts.fraction = b.parts.fraction;
|
---|
95 | result.parts.exp = b.parts.exp;
|
---|
96 | return result;
|
---|
97 | }
|
---|
98 |
|
---|
99 | /* exp is signed so we can easy detect underflow */
|
---|
100 | exp = a.parts.exp + b.parts.exp;
|
---|
101 | exp -= FLOAT32_BIAS;
|
---|
102 |
|
---|
103 | if (exp >= FLOAT32_MAX_EXPONENT) {
|
---|
104 | /* FIXME: overflow */
|
---|
105 | /* set infinity as result */
|
---|
106 | result.bin = FLOAT32_INF;
|
---|
107 | result.parts.sign = a.parts.sign ^ b.parts.sign;
|
---|
108 | return result;
|
---|
109 | }
|
---|
110 |
|
---|
111 | if (exp < 0) {
|
---|
112 | /* FIXME: underflow */
|
---|
113 | /* return signed zero */
|
---|
114 | result.parts.fraction = 0x0;
|
---|
115 | result.parts.exp = 0x0;
|
---|
116 | return result;
|
---|
117 | }
|
---|
118 |
|
---|
119 | frac1 = a.parts.fraction;
|
---|
120 | if (a.parts.exp > 0) {
|
---|
121 | frac1 |= FLOAT32_HIDDEN_BIT_MASK;
|
---|
122 | } else {
|
---|
123 | ++exp;
|
---|
124 | }
|
---|
125 |
|
---|
126 | frac2 = b.parts.fraction;
|
---|
127 |
|
---|
128 | if (b.parts.exp > 0) {
|
---|
129 | frac2 |= FLOAT32_HIDDEN_BIT_MASK;
|
---|
130 | } else {
|
---|
131 | ++exp;
|
---|
132 | }
|
---|
133 |
|
---|
134 | frac1 <<= 1; /* one bit space for rounding */
|
---|
135 |
|
---|
136 | frac1 = frac1 * frac2;
|
---|
137 |
|
---|
138 | /* round and return */
|
---|
139 | while ((exp < FLOAT32_MAX_EXPONENT) &&
|
---|
140 | (frac1 >= (1 << (FLOAT32_FRACTION_SIZE + 2)))) {
|
---|
141 | /* 23 bits of fraction + one more for hidden bit (all shifted 1 bit left) */
|
---|
142 | ++exp;
|
---|
143 | frac1 >>= 1;
|
---|
144 | }
|
---|
145 |
|
---|
146 | /* rounding */
|
---|
147 | /* ++frac1; FIXME: not works - without it is ok */
|
---|
148 | frac1 >>= 1; /* shift off rounding space */
|
---|
149 |
|
---|
150 | if ((exp < FLOAT32_MAX_EXPONENT) &&
|
---|
151 | (frac1 >= (1 << (FLOAT32_FRACTION_SIZE + 1)))) {
|
---|
152 | ++exp;
|
---|
153 | frac1 >>= 1;
|
---|
154 | }
|
---|
155 |
|
---|
156 | if (exp >= FLOAT32_MAX_EXPONENT) {
|
---|
157 | /* TODO: fix overflow */
|
---|
158 | /* return infinity*/
|
---|
159 | result.parts.exp = FLOAT32_MAX_EXPONENT;
|
---|
160 | result.parts.fraction = 0x0;
|
---|
161 | return result;
|
---|
162 | }
|
---|
163 |
|
---|
164 | exp -= FLOAT32_FRACTION_SIZE;
|
---|
165 |
|
---|
166 | if (exp <= FLOAT32_FRACTION_SIZE) {
|
---|
167 | /* denormalized number */
|
---|
168 | frac1 >>= 1; /* denormalize */
|
---|
169 |
|
---|
170 | while ((frac1 > 0) && (exp < 0)) {
|
---|
171 | frac1 >>= 1;
|
---|
172 | ++exp;
|
---|
173 | }
|
---|
174 |
|
---|
175 | if (frac1 == 0) {
|
---|
176 | /* FIXME : underflow */
|
---|
177 | result.parts.exp = 0;
|
---|
178 | result.parts.fraction = 0;
|
---|
179 | return result;
|
---|
180 | }
|
---|
181 | }
|
---|
182 |
|
---|
183 | result.parts.exp = exp;
|
---|
184 | result.parts.fraction = frac1 & ((1 << FLOAT32_FRACTION_SIZE) - 1);
|
---|
185 |
|
---|
186 | return result;
|
---|
187 | }
|
---|
188 |
|
---|
189 | /** Multiply two double-precision floats.
|
---|
190 | *
|
---|
191 | * @param a First input operand.
|
---|
192 | * @param b Second input operand.
|
---|
193 | *
|
---|
194 | * @return Result of multiplication.
|
---|
195 | *
|
---|
196 | */
|
---|
197 | float64 mul_float64(float64 a, float64 b)
|
---|
198 | {
|
---|
199 | float64 result;
|
---|
200 | uint64_t frac1, frac2;
|
---|
201 | int32_t exp;
|
---|
202 |
|
---|
203 | result.parts.sign = a.parts.sign ^ b.parts.sign;
|
---|
204 |
|
---|
205 | if (is_float64_nan(a) || is_float64_nan(b)) {
|
---|
206 | /* TODO: fix SigNaNs */
|
---|
207 | if (is_float64_signan(a)) {
|
---|
208 | result.parts.fraction = a.parts.fraction;
|
---|
209 | result.parts.exp = a.parts.exp;
|
---|
210 | return result;
|
---|
211 | }
|
---|
212 | if (is_float64_signan(b)) { /* TODO: fix SigNaN */
|
---|
213 | result.parts.fraction = b.parts.fraction;
|
---|
214 | result.parts.exp = b.parts.exp;
|
---|
215 | return result;
|
---|
216 | }
|
---|
217 | /* set NaN as result */
|
---|
218 | result.bin = FLOAT64_NAN;
|
---|
219 | return result;
|
---|
220 | }
|
---|
221 |
|
---|
222 | if (is_float64_infinity(a)) {
|
---|
223 | if (is_float64_zero(b)) {
|
---|
224 | /* FIXME: zero * infinity */
|
---|
225 | result.bin = FLOAT64_NAN;
|
---|
226 | return result;
|
---|
227 | }
|
---|
228 | result.parts.fraction = a.parts.fraction;
|
---|
229 | result.parts.exp = a.parts.exp;
|
---|
230 | return result;
|
---|
231 | }
|
---|
232 |
|
---|
233 | if (is_float64_infinity(b)) {
|
---|
234 | if (is_float64_zero(a)) {
|
---|
235 | /* FIXME: zero * infinity */
|
---|
236 | result.bin = FLOAT64_NAN;
|
---|
237 | return result;
|
---|
238 | }
|
---|
239 | result.parts.fraction = b.parts.fraction;
|
---|
240 | result.parts.exp = b.parts.exp;
|
---|
241 | return result;
|
---|
242 | }
|
---|
243 |
|
---|
244 | /* exp is signed so we can easy detect underflow */
|
---|
245 | exp = a.parts.exp + b.parts.exp - FLOAT64_BIAS;
|
---|
246 |
|
---|
247 | frac1 = a.parts.fraction;
|
---|
248 |
|
---|
249 | if (a.parts.exp > 0) {
|
---|
250 | frac1 |= FLOAT64_HIDDEN_BIT_MASK;
|
---|
251 | } else {
|
---|
252 | ++exp;
|
---|
253 | }
|
---|
254 |
|
---|
255 | frac2 = b.parts.fraction;
|
---|
256 |
|
---|
257 | if (b.parts.exp > 0) {
|
---|
258 | frac2 |= FLOAT64_HIDDEN_BIT_MASK;
|
---|
259 | } else {
|
---|
260 | ++exp;
|
---|
261 | }
|
---|
262 |
|
---|
263 | frac1 <<= (64 - FLOAT64_FRACTION_SIZE - 1);
|
---|
264 | frac2 <<= (64 - FLOAT64_FRACTION_SIZE - 2);
|
---|
265 |
|
---|
266 | mul64(frac1, frac2, &frac1, &frac2);
|
---|
267 |
|
---|
268 | frac1 |= (frac2 != 0);
|
---|
269 | if (frac1 & (0x1ll << 62)) {
|
---|
270 | frac1 <<= 1;
|
---|
271 | exp--;
|
---|
272 | }
|
---|
273 |
|
---|
274 | result = finish_float64(exp, frac1, result.parts.sign);
|
---|
275 | return result;
|
---|
276 | }
|
---|
277 |
|
---|
278 | /** Multiply two quadruple-precision floats.
|
---|
279 | *
|
---|
280 | * @param a First input operand.
|
---|
281 | * @param b Second input operand.
|
---|
282 | *
|
---|
283 | * @return Result of multiplication.
|
---|
284 | *
|
---|
285 | */
|
---|
286 | float128 mul_float128(float128 a, float128 b)
|
---|
287 | {
|
---|
288 | float128 result;
|
---|
289 | uint64_t frac1_hi, frac1_lo, frac2_hi, frac2_lo, tmp_hi, tmp_lo;
|
---|
290 | int32_t exp;
|
---|
291 |
|
---|
292 | result.parts.sign = a.parts.sign ^ b.parts.sign;
|
---|
293 |
|
---|
294 | if (is_float128_nan(a) || is_float128_nan(b)) {
|
---|
295 | /* TODO: fix SigNaNs */
|
---|
296 | if (is_float128_signan(a)) {
|
---|
297 | result.parts.frac_hi = a.parts.frac_hi;
|
---|
298 | result.parts.frac_lo = a.parts.frac_lo;
|
---|
299 | result.parts.exp = a.parts.exp;
|
---|
300 | return result;
|
---|
301 | }
|
---|
302 | if (is_float128_signan(b)) { /* TODO: fix SigNaN */
|
---|
303 | result.parts.frac_hi = b.parts.frac_hi;
|
---|
304 | result.parts.frac_lo = b.parts.frac_lo;
|
---|
305 | result.parts.exp = b.parts.exp;
|
---|
306 | return result;
|
---|
307 | }
|
---|
308 | /* set NaN as result */
|
---|
309 | result.bin.hi = FLOAT128_NAN_HI;
|
---|
310 | result.bin.lo = FLOAT128_NAN_LO;
|
---|
311 | return result;
|
---|
312 | }
|
---|
313 |
|
---|
314 | if (is_float128_infinity(a)) {
|
---|
315 | if (is_float128_zero(b)) {
|
---|
316 | /* FIXME: zero * infinity */
|
---|
317 | result.bin.hi = FLOAT128_NAN_HI;
|
---|
318 | result.bin.lo = FLOAT128_NAN_LO;
|
---|
319 | return result;
|
---|
320 | }
|
---|
321 | result.parts.frac_hi = a.parts.frac_hi;
|
---|
322 | result.parts.frac_lo = a.parts.frac_lo;
|
---|
323 | result.parts.exp = a.parts.exp;
|
---|
324 | return result;
|
---|
325 | }
|
---|
326 |
|
---|
327 | if (is_float128_infinity(b)) {
|
---|
328 | if (is_float128_zero(a)) {
|
---|
329 | /* FIXME: zero * infinity */
|
---|
330 | result.bin.hi = FLOAT128_NAN_HI;
|
---|
331 | result.bin.lo = FLOAT128_NAN_LO;
|
---|
332 | return result;
|
---|
333 | }
|
---|
334 | result.parts.frac_hi = b.parts.frac_hi;
|
---|
335 | result.parts.frac_lo = b.parts.frac_lo;
|
---|
336 | result.parts.exp = b.parts.exp;
|
---|
337 | return result;
|
---|
338 | }
|
---|
339 |
|
---|
340 | /* exp is signed so we can easy detect underflow */
|
---|
341 | exp = a.parts.exp + b.parts.exp - FLOAT128_BIAS - 1;
|
---|
342 |
|
---|
343 | frac1_hi = a.parts.frac_hi;
|
---|
344 | frac1_lo = a.parts.frac_lo;
|
---|
345 |
|
---|
346 | if (a.parts.exp > 0) {
|
---|
347 | or128(frac1_hi, frac1_lo,
|
---|
348 | FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
349 | &frac1_hi, &frac1_lo);
|
---|
350 | } else {
|
---|
351 | ++exp;
|
---|
352 | }
|
---|
353 |
|
---|
354 | frac2_hi = b.parts.frac_hi;
|
---|
355 | frac2_lo = b.parts.frac_lo;
|
---|
356 |
|
---|
357 | if (b.parts.exp > 0) {
|
---|
358 | or128(frac2_hi, frac2_lo,
|
---|
359 | FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
360 | &frac2_hi, &frac2_lo);
|
---|
361 | } else {
|
---|
362 | ++exp;
|
---|
363 | }
|
---|
364 |
|
---|
365 | lshift128(frac2_hi, frac2_lo,
|
---|
366 | 128 - FLOAT128_FRACTION_SIZE, &frac2_hi, &frac2_lo);
|
---|
367 |
|
---|
368 | tmp_hi = frac1_hi;
|
---|
369 | tmp_lo = frac1_lo;
|
---|
370 | mul128(frac1_hi, frac1_lo, frac2_hi, frac2_lo,
|
---|
371 | &frac1_hi, &frac1_lo, &frac2_hi, &frac2_lo);
|
---|
372 | add128(frac1_hi, frac1_lo, tmp_hi, tmp_lo, &frac1_hi, &frac1_lo);
|
---|
373 | frac2_hi |= (frac2_lo != 0x0ll);
|
---|
374 |
|
---|
375 | if ((FLOAT128_HIDDEN_BIT_MASK_HI << 1) <= frac1_hi) {
|
---|
376 | frac2_hi >>= 1;
|
---|
377 | if (frac1_lo & 0x1ll) {
|
---|
378 | frac2_hi |= (0x1ull < 64);
|
---|
379 | }
|
---|
380 | rshift128(frac1_hi, frac1_lo, 1, &frac1_hi, &frac1_lo);
|
---|
381 | ++exp;
|
---|
382 | }
|
---|
383 |
|
---|
384 | result = finish_float128(exp, frac1_hi, frac1_lo, result.parts.sign, frac2_hi);
|
---|
385 | return result;
|
---|
386 | }
|
---|
387 |
|
---|
388 | #ifdef float32_t
|
---|
389 |
|
---|
390 | float32_t __mulsf3(float32_t a, float32_t b)
|
---|
391 | {
|
---|
392 | float32_u ua;
|
---|
393 | ua.val = a;
|
---|
394 |
|
---|
395 | float32_u ub;
|
---|
396 | ub.val = b;
|
---|
397 |
|
---|
398 | float32_u res;
|
---|
399 | res.data = mul_float32(ua.data, ub.data);
|
---|
400 |
|
---|
401 | return res.val;
|
---|
402 | }
|
---|
403 |
|
---|
404 | float32_t __aeabi_fmul(float32_t a, float32_t b)
|
---|
405 | {
|
---|
406 | float32_u ua;
|
---|
407 | ua.val = a;
|
---|
408 |
|
---|
409 | float32_u ub;
|
---|
410 | ub.val = b;
|
---|
411 |
|
---|
412 | float32_u res;
|
---|
413 | res.data = mul_float32(ua.data, ub.data);
|
---|
414 |
|
---|
415 | return res.val;
|
---|
416 | }
|
---|
417 |
|
---|
418 | #endif
|
---|
419 |
|
---|
420 | #ifdef float64_t
|
---|
421 |
|
---|
422 | float64_t __muldf3(float64_t a, float64_t b)
|
---|
423 | {
|
---|
424 | float64_u ua;
|
---|
425 | ua.val = a;
|
---|
426 |
|
---|
427 | float64_u ub;
|
---|
428 | ub.val = b;
|
---|
429 |
|
---|
430 | float64_u res;
|
---|
431 | res.data = mul_float64(ua.data, ub.data);
|
---|
432 |
|
---|
433 | return res.val;
|
---|
434 | }
|
---|
435 |
|
---|
436 | float64_t __aeabi_dmul(float64_t a, float64_t b)
|
---|
437 | {
|
---|
438 | float64_u ua;
|
---|
439 | ua.val = a;
|
---|
440 |
|
---|
441 | float64_u ub;
|
---|
442 | ub.val = b;
|
---|
443 |
|
---|
444 | float64_u res;
|
---|
445 | res.data = mul_float64(ua.data, ub.data);
|
---|
446 |
|
---|
447 | return res.val;
|
---|
448 | }
|
---|
449 |
|
---|
450 | #endif
|
---|
451 |
|
---|
452 | #ifdef float128_t
|
---|
453 |
|
---|
454 | float128_t __multf3(float128_t a, float128_t b)
|
---|
455 | {
|
---|
456 | float128_u ua;
|
---|
457 | ua.val = a;
|
---|
458 |
|
---|
459 | float128_u ub;
|
---|
460 | ub.val = b;
|
---|
461 |
|
---|
462 | float128_u res;
|
---|
463 | res.data = mul_float128(ua.data, ub.data);
|
---|
464 |
|
---|
465 | return res.val;
|
---|
466 | }
|
---|
467 |
|
---|
468 | void _Qp_mul(float128_t *c, float128_t *a, float128_t *b)
|
---|
469 | {
|
---|
470 | *c = __multf3(*a, *b);
|
---|
471 | }
|
---|
472 |
|
---|
473 | #endif
|
---|
474 |
|
---|
475 | /** @}
|
---|
476 | */
|
---|