| 1 | /*
|
|---|
| 2 | * Copyright (c) 2005 Josef Cejka
|
|---|
| 3 | * Copyright (c) 2011 Petr Koupy
|
|---|
| 4 | * All rights reserved.
|
|---|
| 5 | *
|
|---|
| 6 | * Redistribution and use in source and binary forms, with or without
|
|---|
| 7 | * modification, are permitted provided that the following conditions
|
|---|
| 8 | * are met:
|
|---|
| 9 | *
|
|---|
| 10 | * - Redistributions of source code must retain the above copyright
|
|---|
| 11 | * notice, this list of conditions and the following disclaimer.
|
|---|
| 12 | * - Redistributions in binary form must reproduce the above copyright
|
|---|
| 13 | * notice, this list of conditions and the following disclaimer in the
|
|---|
| 14 | * documentation and/or other materials provided with the distribution.
|
|---|
| 15 | * - The name of the author may not be used to endorse or promote products
|
|---|
| 16 | * derived from this software without specific prior written permission.
|
|---|
| 17 | *
|
|---|
| 18 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|---|
| 19 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|---|
| 20 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|---|
| 21 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|---|
| 22 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|---|
| 23 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|---|
| 24 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|---|
| 25 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|---|
| 26 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|---|
| 27 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|---|
| 28 | */
|
|---|
| 29 |
|
|---|
| 30 | /** @addtogroup softfloat
|
|---|
| 31 | * @{
|
|---|
| 32 | */
|
|---|
| 33 | /** @file Multiplication functions.
|
|---|
| 34 | */
|
|---|
| 35 |
|
|---|
| 36 | #include "mul.h"
|
|---|
| 37 | #include "comparison.h"
|
|---|
| 38 | #include "common.h"
|
|---|
| 39 |
|
|---|
| 40 | /** Multiply two single-precision floats.
|
|---|
| 41 | *
|
|---|
| 42 | * @param a First input operand.
|
|---|
| 43 | * @param b Second input operand.
|
|---|
| 44 | *
|
|---|
| 45 | * @return Result of multiplication.
|
|---|
| 46 | *
|
|---|
| 47 | */
|
|---|
| 48 | float32 mul_float32(float32 a, float32 b)
|
|---|
| 49 | {
|
|---|
| 50 | float32 result;
|
|---|
| 51 | uint64_t frac1, frac2;
|
|---|
| 52 | int32_t exp;
|
|---|
| 53 |
|
|---|
| 54 | result.parts.sign = a.parts.sign ^ b.parts.sign;
|
|---|
| 55 |
|
|---|
| 56 | if (is_float32_nan(a) || is_float32_nan(b)) {
|
|---|
| 57 | /* TODO: fix SigNaNs */
|
|---|
| 58 | if (is_float32_signan(a)) {
|
|---|
| 59 | result.parts.fraction = a.parts.fraction;
|
|---|
| 60 | result.parts.exp = a.parts.exp;
|
|---|
| 61 | return result;
|
|---|
| 62 | }
|
|---|
| 63 |
|
|---|
| 64 | if (is_float32_signan(b)) { /* TODO: fix SigNaN */
|
|---|
| 65 | result.parts.fraction = b.parts.fraction;
|
|---|
| 66 | result.parts.exp = b.parts.exp;
|
|---|
| 67 | return result;
|
|---|
| 68 | }
|
|---|
| 69 |
|
|---|
| 70 | /* set NaN as result */
|
|---|
| 71 | result.bin = FLOAT32_NAN;
|
|---|
| 72 | return result;
|
|---|
| 73 | }
|
|---|
| 74 |
|
|---|
| 75 | if (is_float32_infinity(a)) {
|
|---|
| 76 | if (is_float32_zero(b)) {
|
|---|
| 77 | /* FIXME: zero * infinity */
|
|---|
| 78 | result.bin = FLOAT32_NAN;
|
|---|
| 79 | return result;
|
|---|
| 80 | }
|
|---|
| 81 |
|
|---|
| 82 | result.parts.fraction = a.parts.fraction;
|
|---|
| 83 | result.parts.exp = a.parts.exp;
|
|---|
| 84 | return result;
|
|---|
| 85 | }
|
|---|
| 86 |
|
|---|
| 87 | if (is_float32_infinity(b)) {
|
|---|
| 88 | if (is_float32_zero(a)) {
|
|---|
| 89 | /* FIXME: zero * infinity */
|
|---|
| 90 | result.bin = FLOAT32_NAN;
|
|---|
| 91 | return result;
|
|---|
| 92 | }
|
|---|
| 93 |
|
|---|
| 94 | result.parts.fraction = b.parts.fraction;
|
|---|
| 95 | result.parts.exp = b.parts.exp;
|
|---|
| 96 | return result;
|
|---|
| 97 | }
|
|---|
| 98 |
|
|---|
| 99 | /* exp is signed so we can easy detect underflow */
|
|---|
| 100 | exp = a.parts.exp + b.parts.exp;
|
|---|
| 101 | exp -= FLOAT32_BIAS;
|
|---|
| 102 |
|
|---|
| 103 | if (exp >= FLOAT32_MAX_EXPONENT) {
|
|---|
| 104 | /* FIXME: overflow */
|
|---|
| 105 | /* set infinity as result */
|
|---|
| 106 | result.bin = FLOAT32_INF;
|
|---|
| 107 | result.parts.sign = a.parts.sign ^ b.parts.sign;
|
|---|
| 108 | return result;
|
|---|
| 109 | }
|
|---|
| 110 |
|
|---|
| 111 | if (exp < 0) {
|
|---|
| 112 | /* FIXME: underflow */
|
|---|
| 113 | /* return signed zero */
|
|---|
| 114 | result.parts.fraction = 0x0;
|
|---|
| 115 | result.parts.exp = 0x0;
|
|---|
| 116 | return result;
|
|---|
| 117 | }
|
|---|
| 118 |
|
|---|
| 119 | frac1 = a.parts.fraction;
|
|---|
| 120 | if (a.parts.exp > 0) {
|
|---|
| 121 | frac1 |= FLOAT32_HIDDEN_BIT_MASK;
|
|---|
| 122 | } else {
|
|---|
| 123 | ++exp;
|
|---|
| 124 | }
|
|---|
| 125 |
|
|---|
| 126 | frac2 = b.parts.fraction;
|
|---|
| 127 |
|
|---|
| 128 | if (b.parts.exp > 0) {
|
|---|
| 129 | frac2 |= FLOAT32_HIDDEN_BIT_MASK;
|
|---|
| 130 | } else {
|
|---|
| 131 | ++exp;
|
|---|
| 132 | }
|
|---|
| 133 |
|
|---|
| 134 | frac1 <<= 1; /* one bit space for rounding */
|
|---|
| 135 |
|
|---|
| 136 | frac1 = frac1 * frac2;
|
|---|
| 137 |
|
|---|
| 138 | /* round and return */
|
|---|
| 139 | while ((exp < FLOAT32_MAX_EXPONENT) &&
|
|---|
| 140 | (frac1 >= (1 << (FLOAT32_FRACTION_SIZE + 2)))) {
|
|---|
| 141 | /* 23 bits of fraction + one more for hidden bit (all shifted 1 bit left) */
|
|---|
| 142 | ++exp;
|
|---|
| 143 | frac1 >>= 1;
|
|---|
| 144 | }
|
|---|
| 145 |
|
|---|
| 146 | /* rounding */
|
|---|
| 147 | /* ++frac1; FIXME: not works - without it is ok */
|
|---|
| 148 | frac1 >>= 1; /* shift off rounding space */
|
|---|
| 149 |
|
|---|
| 150 | if ((exp < FLOAT32_MAX_EXPONENT) &&
|
|---|
| 151 | (frac1 >= (1 << (FLOAT32_FRACTION_SIZE + 1)))) {
|
|---|
| 152 | ++exp;
|
|---|
| 153 | frac1 >>= 1;
|
|---|
| 154 | }
|
|---|
| 155 |
|
|---|
| 156 | if (exp >= FLOAT32_MAX_EXPONENT) {
|
|---|
| 157 | /* TODO: fix overflow */
|
|---|
| 158 | /* return infinity*/
|
|---|
| 159 | result.parts.exp = FLOAT32_MAX_EXPONENT;
|
|---|
| 160 | result.parts.fraction = 0x0;
|
|---|
| 161 | return result;
|
|---|
| 162 | }
|
|---|
| 163 |
|
|---|
| 164 | exp -= FLOAT32_FRACTION_SIZE;
|
|---|
| 165 |
|
|---|
| 166 | if (exp <= FLOAT32_FRACTION_SIZE) {
|
|---|
| 167 | /* denormalized number */
|
|---|
| 168 | frac1 >>= 1; /* denormalize */
|
|---|
| 169 |
|
|---|
| 170 | while ((frac1 > 0) && (exp < 0)) {
|
|---|
| 171 | frac1 >>= 1;
|
|---|
| 172 | ++exp;
|
|---|
| 173 | }
|
|---|
| 174 |
|
|---|
| 175 | if (frac1 == 0) {
|
|---|
| 176 | /* FIXME : underflow */
|
|---|
| 177 | result.parts.exp = 0;
|
|---|
| 178 | result.parts.fraction = 0;
|
|---|
| 179 | return result;
|
|---|
| 180 | }
|
|---|
| 181 | }
|
|---|
| 182 |
|
|---|
| 183 | result.parts.exp = exp;
|
|---|
| 184 | result.parts.fraction = frac1 & ((1 << FLOAT32_FRACTION_SIZE) - 1);
|
|---|
| 185 |
|
|---|
| 186 | return result;
|
|---|
| 187 | }
|
|---|
| 188 |
|
|---|
| 189 | /** Multiply two double-precision floats.
|
|---|
| 190 | *
|
|---|
| 191 | * @param a First input operand.
|
|---|
| 192 | * @param b Second input operand.
|
|---|
| 193 | *
|
|---|
| 194 | * @return Result of multiplication.
|
|---|
| 195 | *
|
|---|
| 196 | */
|
|---|
| 197 | float64 mul_float64(float64 a, float64 b)
|
|---|
| 198 | {
|
|---|
| 199 | float64 result;
|
|---|
| 200 | uint64_t frac1, frac2;
|
|---|
| 201 | int32_t exp;
|
|---|
| 202 |
|
|---|
| 203 | result.parts.sign = a.parts.sign ^ b.parts.sign;
|
|---|
| 204 |
|
|---|
| 205 | if (is_float64_nan(a) || is_float64_nan(b)) {
|
|---|
| 206 | /* TODO: fix SigNaNs */
|
|---|
| 207 | if (is_float64_signan(a)) {
|
|---|
| 208 | result.parts.fraction = a.parts.fraction;
|
|---|
| 209 | result.parts.exp = a.parts.exp;
|
|---|
| 210 | return result;
|
|---|
| 211 | }
|
|---|
| 212 | if (is_float64_signan(b)) { /* TODO: fix SigNaN */
|
|---|
| 213 | result.parts.fraction = b.parts.fraction;
|
|---|
| 214 | result.parts.exp = b.parts.exp;
|
|---|
| 215 | return result;
|
|---|
| 216 | }
|
|---|
| 217 | /* set NaN as result */
|
|---|
| 218 | result.bin = FLOAT64_NAN;
|
|---|
| 219 | return result;
|
|---|
| 220 | }
|
|---|
| 221 |
|
|---|
| 222 | if (is_float64_infinity(a)) {
|
|---|
| 223 | if (is_float64_zero(b)) {
|
|---|
| 224 | /* FIXME: zero * infinity */
|
|---|
| 225 | result.bin = FLOAT64_NAN;
|
|---|
| 226 | return result;
|
|---|
| 227 | }
|
|---|
| 228 | result.parts.fraction = a.parts.fraction;
|
|---|
| 229 | result.parts.exp = a.parts.exp;
|
|---|
| 230 | return result;
|
|---|
| 231 | }
|
|---|
| 232 |
|
|---|
| 233 | if (is_float64_infinity(b)) {
|
|---|
| 234 | if (is_float64_zero(a)) {
|
|---|
| 235 | /* FIXME: zero * infinity */
|
|---|
| 236 | result.bin = FLOAT64_NAN;
|
|---|
| 237 | return result;
|
|---|
| 238 | }
|
|---|
| 239 | result.parts.fraction = b.parts.fraction;
|
|---|
| 240 | result.parts.exp = b.parts.exp;
|
|---|
| 241 | return result;
|
|---|
| 242 | }
|
|---|
| 243 |
|
|---|
| 244 | /* exp is signed so we can easy detect underflow */
|
|---|
| 245 | exp = a.parts.exp + b.parts.exp - FLOAT64_BIAS;
|
|---|
| 246 |
|
|---|
| 247 | frac1 = a.parts.fraction;
|
|---|
| 248 |
|
|---|
| 249 | if (a.parts.exp > 0) {
|
|---|
| 250 | frac1 |= FLOAT64_HIDDEN_BIT_MASK;
|
|---|
| 251 | } else {
|
|---|
| 252 | ++exp;
|
|---|
| 253 | }
|
|---|
| 254 |
|
|---|
| 255 | frac2 = b.parts.fraction;
|
|---|
| 256 |
|
|---|
| 257 | if (b.parts.exp > 0) {
|
|---|
| 258 | frac2 |= FLOAT64_HIDDEN_BIT_MASK;
|
|---|
| 259 | } else {
|
|---|
| 260 | ++exp;
|
|---|
| 261 | }
|
|---|
| 262 |
|
|---|
| 263 | frac1 <<= (64 - FLOAT64_FRACTION_SIZE - 1);
|
|---|
| 264 | frac2 <<= (64 - FLOAT64_FRACTION_SIZE - 2);
|
|---|
| 265 |
|
|---|
| 266 | mul64(frac1, frac2, &frac1, &frac2);
|
|---|
| 267 |
|
|---|
| 268 | frac1 |= (frac2 != 0);
|
|---|
| 269 | if (frac1 & (0x1ll << 62)) {
|
|---|
| 270 | frac1 <<= 1;
|
|---|
| 271 | exp--;
|
|---|
| 272 | }
|
|---|
| 273 |
|
|---|
| 274 | result = finish_float64(exp, frac1, result.parts.sign);
|
|---|
| 275 | return result;
|
|---|
| 276 | }
|
|---|
| 277 |
|
|---|
| 278 | /** Multiply two quadruple-precision floats.
|
|---|
| 279 | *
|
|---|
| 280 | * @param a First input operand.
|
|---|
| 281 | * @param b Second input operand.
|
|---|
| 282 | *
|
|---|
| 283 | * @return Result of multiplication.
|
|---|
| 284 | *
|
|---|
| 285 | */
|
|---|
| 286 | float128 mul_float128(float128 a, float128 b)
|
|---|
| 287 | {
|
|---|
| 288 | float128 result;
|
|---|
| 289 | uint64_t frac1_hi, frac1_lo, frac2_hi, frac2_lo, tmp_hi, tmp_lo;
|
|---|
| 290 | int32_t exp;
|
|---|
| 291 |
|
|---|
| 292 | result.parts.sign = a.parts.sign ^ b.parts.sign;
|
|---|
| 293 |
|
|---|
| 294 | if (is_float128_nan(a) || is_float128_nan(b)) {
|
|---|
| 295 | /* TODO: fix SigNaNs */
|
|---|
| 296 | if (is_float128_signan(a)) {
|
|---|
| 297 | result.parts.frac_hi = a.parts.frac_hi;
|
|---|
| 298 | result.parts.frac_lo = a.parts.frac_lo;
|
|---|
| 299 | result.parts.exp = a.parts.exp;
|
|---|
| 300 | return result;
|
|---|
| 301 | }
|
|---|
| 302 | if (is_float128_signan(b)) { /* TODO: fix SigNaN */
|
|---|
| 303 | result.parts.frac_hi = b.parts.frac_hi;
|
|---|
| 304 | result.parts.frac_lo = b.parts.frac_lo;
|
|---|
| 305 | result.parts.exp = b.parts.exp;
|
|---|
| 306 | return result;
|
|---|
| 307 | }
|
|---|
| 308 | /* set NaN as result */
|
|---|
| 309 | result.bin.hi = FLOAT128_NAN_HI;
|
|---|
| 310 | result.bin.lo = FLOAT128_NAN_LO;
|
|---|
| 311 | return result;
|
|---|
| 312 | }
|
|---|
| 313 |
|
|---|
| 314 | if (is_float128_infinity(a)) {
|
|---|
| 315 | if (is_float128_zero(b)) {
|
|---|
| 316 | /* FIXME: zero * infinity */
|
|---|
| 317 | result.bin.hi = FLOAT128_NAN_HI;
|
|---|
| 318 | result.bin.lo = FLOAT128_NAN_LO;
|
|---|
| 319 | return result;
|
|---|
| 320 | }
|
|---|
| 321 | result.parts.frac_hi = a.parts.frac_hi;
|
|---|
| 322 | result.parts.frac_lo = a.parts.frac_lo;
|
|---|
| 323 | result.parts.exp = a.parts.exp;
|
|---|
| 324 | return result;
|
|---|
| 325 | }
|
|---|
| 326 |
|
|---|
| 327 | if (is_float128_infinity(b)) {
|
|---|
| 328 | if (is_float128_zero(a)) {
|
|---|
| 329 | /* FIXME: zero * infinity */
|
|---|
| 330 | result.bin.hi = FLOAT128_NAN_HI;
|
|---|
| 331 | result.bin.lo = FLOAT128_NAN_LO;
|
|---|
| 332 | return result;
|
|---|
| 333 | }
|
|---|
| 334 | result.parts.frac_hi = b.parts.frac_hi;
|
|---|
| 335 | result.parts.frac_lo = b.parts.frac_lo;
|
|---|
| 336 | result.parts.exp = b.parts.exp;
|
|---|
| 337 | return result;
|
|---|
| 338 | }
|
|---|
| 339 |
|
|---|
| 340 | /* exp is signed so we can easy detect underflow */
|
|---|
| 341 | exp = a.parts.exp + b.parts.exp - FLOAT128_BIAS - 1;
|
|---|
| 342 |
|
|---|
| 343 | frac1_hi = a.parts.frac_hi;
|
|---|
| 344 | frac1_lo = a.parts.frac_lo;
|
|---|
| 345 |
|
|---|
| 346 | if (a.parts.exp > 0) {
|
|---|
| 347 | or128(frac1_hi, frac1_lo,
|
|---|
| 348 | FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
|---|
| 349 | &frac1_hi, &frac1_lo);
|
|---|
| 350 | } else {
|
|---|
| 351 | ++exp;
|
|---|
| 352 | }
|
|---|
| 353 |
|
|---|
| 354 | frac2_hi = b.parts.frac_hi;
|
|---|
| 355 | frac2_lo = b.parts.frac_lo;
|
|---|
| 356 |
|
|---|
| 357 | if (b.parts.exp > 0) {
|
|---|
| 358 | or128(frac2_hi, frac2_lo,
|
|---|
| 359 | FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
|---|
| 360 | &frac2_hi, &frac2_lo);
|
|---|
| 361 | } else {
|
|---|
| 362 | ++exp;
|
|---|
| 363 | }
|
|---|
| 364 |
|
|---|
| 365 | lshift128(frac2_hi, frac2_lo,
|
|---|
| 366 | 128 - FLOAT128_FRACTION_SIZE, &frac2_hi, &frac2_lo);
|
|---|
| 367 |
|
|---|
| 368 | tmp_hi = frac1_hi;
|
|---|
| 369 | tmp_lo = frac1_lo;
|
|---|
| 370 | mul128(frac1_hi, frac1_lo, frac2_hi, frac2_lo,
|
|---|
| 371 | &frac1_hi, &frac1_lo, &frac2_hi, &frac2_lo);
|
|---|
| 372 | add128(frac1_hi, frac1_lo, tmp_hi, tmp_lo, &frac1_hi, &frac1_lo);
|
|---|
| 373 | frac2_hi |= (frac2_lo != 0x0ll);
|
|---|
| 374 |
|
|---|
| 375 | if ((FLOAT128_HIDDEN_BIT_MASK_HI << 1) <= frac1_hi) {
|
|---|
| 376 | frac2_hi >>= 1;
|
|---|
| 377 | if (frac1_lo & 0x1ll) {
|
|---|
| 378 | frac2_hi |= (0x1ull < 64);
|
|---|
| 379 | }
|
|---|
| 380 | rshift128(frac1_hi, frac1_lo, 1, &frac1_hi, &frac1_lo);
|
|---|
| 381 | ++exp;
|
|---|
| 382 | }
|
|---|
| 383 |
|
|---|
| 384 | result = finish_float128(exp, frac1_hi, frac1_lo, result.parts.sign, frac2_hi);
|
|---|
| 385 | return result;
|
|---|
| 386 | }
|
|---|
| 387 |
|
|---|
| 388 | #ifdef float32_t
|
|---|
| 389 |
|
|---|
| 390 | float32_t __mulsf3(float32_t a, float32_t b)
|
|---|
| 391 | {
|
|---|
| 392 | float32_u ua;
|
|---|
| 393 | ua.val = a;
|
|---|
| 394 |
|
|---|
| 395 | float32_u ub;
|
|---|
| 396 | ub.val = b;
|
|---|
| 397 |
|
|---|
| 398 | float32_u res;
|
|---|
| 399 | res.data = mul_float32(ua.data, ub.data);
|
|---|
| 400 |
|
|---|
| 401 | return res.val;
|
|---|
| 402 | }
|
|---|
| 403 |
|
|---|
| 404 | float32_t __aeabi_fmul(float32_t a, float32_t b)
|
|---|
| 405 | {
|
|---|
| 406 | float32_u ua;
|
|---|
| 407 | ua.val = a;
|
|---|
| 408 |
|
|---|
| 409 | float32_u ub;
|
|---|
| 410 | ub.val = b;
|
|---|
| 411 |
|
|---|
| 412 | float32_u res;
|
|---|
| 413 | res.data = mul_float32(ua.data, ub.data);
|
|---|
| 414 |
|
|---|
| 415 | return res.val;
|
|---|
| 416 | }
|
|---|
| 417 |
|
|---|
| 418 | #endif
|
|---|
| 419 |
|
|---|
| 420 | #ifdef float64_t
|
|---|
| 421 |
|
|---|
| 422 | float64_t __muldf3(float64_t a, float64_t b)
|
|---|
| 423 | {
|
|---|
| 424 | float64_u ua;
|
|---|
| 425 | ua.val = a;
|
|---|
| 426 |
|
|---|
| 427 | float64_u ub;
|
|---|
| 428 | ub.val = b;
|
|---|
| 429 |
|
|---|
| 430 | float64_u res;
|
|---|
| 431 | res.data = mul_float64(ua.data, ub.data);
|
|---|
| 432 |
|
|---|
| 433 | return res.val;
|
|---|
| 434 | }
|
|---|
| 435 |
|
|---|
| 436 | float64_t __aeabi_dmul(float64_t a, float64_t b)
|
|---|
| 437 | {
|
|---|
| 438 | float64_u ua;
|
|---|
| 439 | ua.val = a;
|
|---|
| 440 |
|
|---|
| 441 | float64_u ub;
|
|---|
| 442 | ub.val = b;
|
|---|
| 443 |
|
|---|
| 444 | float64_u res;
|
|---|
| 445 | res.data = mul_float64(ua.data, ub.data);
|
|---|
| 446 |
|
|---|
| 447 | return res.val;
|
|---|
| 448 | }
|
|---|
| 449 |
|
|---|
| 450 | #endif
|
|---|
| 451 |
|
|---|
| 452 | #ifdef float128_t
|
|---|
| 453 |
|
|---|
| 454 | float128_t __multf3(float128_t a, float128_t b)
|
|---|
| 455 | {
|
|---|
| 456 | float128_u ua;
|
|---|
| 457 | ua.val = a;
|
|---|
| 458 |
|
|---|
| 459 | float128_u ub;
|
|---|
| 460 | ub.val = b;
|
|---|
| 461 |
|
|---|
| 462 | float128_u res;
|
|---|
| 463 | res.data = mul_float128(ua.data, ub.data);
|
|---|
| 464 |
|
|---|
| 465 | return res.val;
|
|---|
| 466 | }
|
|---|
| 467 |
|
|---|
| 468 | void _Qp_mul(float128_t *c, float128_t *a, float128_t *b)
|
|---|
| 469 | {
|
|---|
| 470 | *c = __multf3(*a, *b);
|
|---|
| 471 | }
|
|---|
| 472 |
|
|---|
| 473 | #endif
|
|---|
| 474 |
|
|---|
| 475 | /** @}
|
|---|
| 476 | */
|
|---|