1 | /*
|
---|
2 | * Copyright (c) 2005 Josef Cejka
|
---|
3 | * Copyright (c) 2011 Petr Koupy
|
---|
4 | * All rights reserved.
|
---|
5 | *
|
---|
6 | * Redistribution and use in source and binary forms, with or without
|
---|
7 | * modification, are permitted provided that the following conditions
|
---|
8 | * are met:
|
---|
9 | *
|
---|
10 | * - Redistributions of source code must retain the above copyright
|
---|
11 | * notice, this list of conditions and the following disclaimer.
|
---|
12 | * - Redistributions in binary form must reproduce the above copyright
|
---|
13 | * notice, this list of conditions and the following disclaimer in the
|
---|
14 | * documentation and/or other materials provided with the distribution.
|
---|
15 | * - The name of the author may not be used to endorse or promote products
|
---|
16 | * derived from this software without specific prior written permission.
|
---|
17 | *
|
---|
18 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
19 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
20 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
21 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
22 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
23 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
24 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
25 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
26 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
27 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
28 | */
|
---|
29 |
|
---|
30 | /** @addtogroup softfloat
|
---|
31 | * @{
|
---|
32 | */
|
---|
33 | /** @file Substraction functions.
|
---|
34 | */
|
---|
35 |
|
---|
36 | #include <sftypes.h>
|
---|
37 | #include <sub.h>
|
---|
38 | #include <comparison.h>
|
---|
39 | #include <common.h>
|
---|
40 |
|
---|
41 | /**
|
---|
42 | * Subtract two single-precision floats with the same signs.
|
---|
43 | *
|
---|
44 | * @param a First input operand.
|
---|
45 | * @param b Second input operand.
|
---|
46 | * @return Result of substraction.
|
---|
47 | */
|
---|
48 | float32 subFloat32(float32 a, float32 b)
|
---|
49 | {
|
---|
50 | int expdiff;
|
---|
51 | uint32_t exp1, exp2, frac1, frac2;
|
---|
52 | float32 result;
|
---|
53 |
|
---|
54 | result.f = 0;
|
---|
55 |
|
---|
56 | expdiff = a.parts.exp - b.parts.exp;
|
---|
57 | if ((expdiff < 0 ) || ((expdiff == 0) && (a.parts.fraction < b.parts.fraction))) {
|
---|
58 | if (isFloat32NaN(b)) {
|
---|
59 | /* TODO: fix SigNaN */
|
---|
60 | if (isFloat32SigNaN(b)) {
|
---|
61 | }
|
---|
62 | return b;
|
---|
63 | }
|
---|
64 |
|
---|
65 | if (b.parts.exp == FLOAT32_MAX_EXPONENT) {
|
---|
66 | b.parts.sign = !b.parts.sign; /* num -(+-inf) = -+inf */
|
---|
67 | return b;
|
---|
68 | }
|
---|
69 |
|
---|
70 | result.parts.sign = !a.parts.sign;
|
---|
71 |
|
---|
72 | frac1 = b.parts.fraction;
|
---|
73 | exp1 = b.parts.exp;
|
---|
74 | frac2 = a.parts.fraction;
|
---|
75 | exp2 = a.parts.exp;
|
---|
76 | expdiff *= -1;
|
---|
77 | } else {
|
---|
78 | if (isFloat32NaN(a)) {
|
---|
79 | /* TODO: fix SigNaN */
|
---|
80 | if (isFloat32SigNaN(a) || isFloat32SigNaN(b)) {
|
---|
81 | }
|
---|
82 | return a;
|
---|
83 | }
|
---|
84 |
|
---|
85 | if (a.parts.exp == FLOAT32_MAX_EXPONENT) {
|
---|
86 | if (b.parts.exp == FLOAT32_MAX_EXPONENT) {
|
---|
87 | /* inf - inf => nan */
|
---|
88 | /* TODO: fix exception */
|
---|
89 | result.binary = FLOAT32_NAN;
|
---|
90 | return result;
|
---|
91 | }
|
---|
92 | return a;
|
---|
93 | }
|
---|
94 |
|
---|
95 | result.parts.sign = a.parts.sign;
|
---|
96 |
|
---|
97 | frac1 = a.parts.fraction;
|
---|
98 | exp1 = a.parts.exp;
|
---|
99 | frac2 = b.parts.fraction;
|
---|
100 | exp2 = b.parts.exp;
|
---|
101 | }
|
---|
102 |
|
---|
103 | if (exp1 == 0) {
|
---|
104 | /* both are denormalized */
|
---|
105 | result.parts.fraction = frac1 - frac2;
|
---|
106 | if (result.parts.fraction > frac1) {
|
---|
107 | /* TODO: underflow exception */
|
---|
108 | return result;
|
---|
109 | }
|
---|
110 | result.parts.exp = 0;
|
---|
111 | return result;
|
---|
112 | }
|
---|
113 |
|
---|
114 | /* add hidden bit */
|
---|
115 | frac1 |= FLOAT32_HIDDEN_BIT_MASK;
|
---|
116 |
|
---|
117 | if (exp2 == 0) {
|
---|
118 | /* denormalized */
|
---|
119 | --expdiff;
|
---|
120 | } else {
|
---|
121 | /* normalized */
|
---|
122 | frac2 |= FLOAT32_HIDDEN_BIT_MASK;
|
---|
123 | }
|
---|
124 |
|
---|
125 | /* create some space for rounding */
|
---|
126 | frac1 <<= 6;
|
---|
127 | frac2 <<= 6;
|
---|
128 |
|
---|
129 | if (expdiff > FLOAT32_FRACTION_SIZE + 1) {
|
---|
130 | goto done;
|
---|
131 | }
|
---|
132 |
|
---|
133 | frac1 = frac1 - (frac2 >> expdiff);
|
---|
134 |
|
---|
135 | done:
|
---|
136 | /* TODO: find first nonzero digit and shift result and detect possibly underflow */
|
---|
137 | while ((exp1 > 0) && (!(frac1 & (FLOAT32_HIDDEN_BIT_MASK << 6 )))) {
|
---|
138 | --exp1;
|
---|
139 | frac1 <<= 1;
|
---|
140 | /* TODO: fix underflow - frac1 == 0 does not necessary means underflow... */
|
---|
141 | }
|
---|
142 |
|
---|
143 | /* rounding - if first bit after fraction is set then round up */
|
---|
144 | frac1 += 0x20;
|
---|
145 |
|
---|
146 | if (frac1 & (FLOAT32_HIDDEN_BIT_MASK << 7)) {
|
---|
147 | ++exp1;
|
---|
148 | frac1 >>= 1;
|
---|
149 | }
|
---|
150 |
|
---|
151 | /* Clear hidden bit and shift */
|
---|
152 | result.parts.fraction = ((frac1 >> 6) & (~FLOAT32_HIDDEN_BIT_MASK));
|
---|
153 | result.parts.exp = exp1;
|
---|
154 |
|
---|
155 | return result;
|
---|
156 | }
|
---|
157 |
|
---|
158 | /**
|
---|
159 | * Subtract two double-precision floats with the same signs.
|
---|
160 | *
|
---|
161 | * @param a First input operand.
|
---|
162 | * @param b Second input operand.
|
---|
163 | * @return Result of substraction.
|
---|
164 | */
|
---|
165 | float64 subFloat64(float64 a, float64 b)
|
---|
166 | {
|
---|
167 | int expdiff;
|
---|
168 | uint32_t exp1, exp2;
|
---|
169 | uint64_t frac1, frac2;
|
---|
170 | float64 result;
|
---|
171 |
|
---|
172 | result.d = 0;
|
---|
173 |
|
---|
174 | expdiff = a.parts.exp - b.parts.exp;
|
---|
175 | if ((expdiff < 0 ) || ((expdiff == 0) && (a.parts.fraction < b.parts.fraction))) {
|
---|
176 | if (isFloat64NaN(b)) {
|
---|
177 | /* TODO: fix SigNaN */
|
---|
178 | if (isFloat64SigNaN(b)) {
|
---|
179 | }
|
---|
180 | return b;
|
---|
181 | }
|
---|
182 |
|
---|
183 | if (b.parts.exp == FLOAT64_MAX_EXPONENT) {
|
---|
184 | b.parts.sign = !b.parts.sign; /* num -(+-inf) = -+inf */
|
---|
185 | return b;
|
---|
186 | }
|
---|
187 |
|
---|
188 | result.parts.sign = !a.parts.sign;
|
---|
189 |
|
---|
190 | frac1 = b.parts.fraction;
|
---|
191 | exp1 = b.parts.exp;
|
---|
192 | frac2 = a.parts.fraction;
|
---|
193 | exp2 = a.parts.exp;
|
---|
194 | expdiff *= -1;
|
---|
195 | } else {
|
---|
196 | if (isFloat64NaN(a)) {
|
---|
197 | /* TODO: fix SigNaN */
|
---|
198 | if (isFloat64SigNaN(a) || isFloat64SigNaN(b)) {
|
---|
199 | }
|
---|
200 | return a;
|
---|
201 | }
|
---|
202 |
|
---|
203 | if (a.parts.exp == FLOAT64_MAX_EXPONENT) {
|
---|
204 | if (b.parts.exp == FLOAT64_MAX_EXPONENT) {
|
---|
205 | /* inf - inf => nan */
|
---|
206 | /* TODO: fix exception */
|
---|
207 | result.binary = FLOAT64_NAN;
|
---|
208 | return result;
|
---|
209 | }
|
---|
210 | return a;
|
---|
211 | }
|
---|
212 |
|
---|
213 | result.parts.sign = a.parts.sign;
|
---|
214 |
|
---|
215 | frac1 = a.parts.fraction;
|
---|
216 | exp1 = a.parts.exp;
|
---|
217 | frac2 = b.parts.fraction;
|
---|
218 | exp2 = b.parts.exp;
|
---|
219 | }
|
---|
220 |
|
---|
221 | if (exp1 == 0) {
|
---|
222 | /* both are denormalized */
|
---|
223 | result.parts.fraction = frac1 - frac2;
|
---|
224 | if (result.parts.fraction > frac1) {
|
---|
225 | /* TODO: underflow exception */
|
---|
226 | return result;
|
---|
227 | }
|
---|
228 | result.parts.exp = 0;
|
---|
229 | return result;
|
---|
230 | }
|
---|
231 |
|
---|
232 | /* add hidden bit */
|
---|
233 | frac1 |= FLOAT64_HIDDEN_BIT_MASK;
|
---|
234 |
|
---|
235 | if (exp2 == 0) {
|
---|
236 | /* denormalized */
|
---|
237 | --expdiff;
|
---|
238 | } else {
|
---|
239 | /* normalized */
|
---|
240 | frac2 |= FLOAT64_HIDDEN_BIT_MASK;
|
---|
241 | }
|
---|
242 |
|
---|
243 | /* create some space for rounding */
|
---|
244 | frac1 <<= 6;
|
---|
245 | frac2 <<= 6;
|
---|
246 |
|
---|
247 | if (expdiff > FLOAT64_FRACTION_SIZE + 1) {
|
---|
248 | goto done;
|
---|
249 | }
|
---|
250 |
|
---|
251 | frac1 = frac1 - (frac2 >> expdiff);
|
---|
252 |
|
---|
253 | done:
|
---|
254 | /* TODO: find first nonzero digit and shift result and detect possibly underflow */
|
---|
255 | while ((exp1 > 0) && (!(frac1 & (FLOAT64_HIDDEN_BIT_MASK << 6 )))) {
|
---|
256 | --exp1;
|
---|
257 | frac1 <<= 1;
|
---|
258 | /* TODO: fix underflow - frac1 == 0 does not necessary means underflow... */
|
---|
259 | }
|
---|
260 |
|
---|
261 | /* rounding - if first bit after fraction is set then round up */
|
---|
262 | frac1 += 0x20;
|
---|
263 |
|
---|
264 | if (frac1 & (FLOAT64_HIDDEN_BIT_MASK << 7)) {
|
---|
265 | ++exp1;
|
---|
266 | frac1 >>= 1;
|
---|
267 | }
|
---|
268 |
|
---|
269 | /* Clear hidden bit and shift */
|
---|
270 | result.parts.fraction = ((frac1 >> 6) & (~FLOAT64_HIDDEN_BIT_MASK));
|
---|
271 | result.parts.exp = exp1;
|
---|
272 |
|
---|
273 | return result;
|
---|
274 | }
|
---|
275 |
|
---|
276 | /**
|
---|
277 | * Subtract two quadruple-precision floats with the same signs.
|
---|
278 | *
|
---|
279 | * @param a First input operand.
|
---|
280 | * @param b Second input operand.
|
---|
281 | * @return Result of substraction.
|
---|
282 | */
|
---|
283 | float128 subFloat128(float128 a, float128 b)
|
---|
284 | {
|
---|
285 | int expdiff;
|
---|
286 | uint32_t exp1, exp2;
|
---|
287 | uint64_t frac1_hi, frac1_lo, frac2_hi, frac2_lo, tmp_hi, tmp_lo;
|
---|
288 | float128 result;
|
---|
289 |
|
---|
290 | result.binary.hi = 0;
|
---|
291 | result.binary.lo = 0;
|
---|
292 |
|
---|
293 | expdiff = a.parts.exp - b.parts.exp;
|
---|
294 | if ((expdiff < 0 ) || ((expdiff == 0) &&
|
---|
295 | lt128(a.parts.frac_hi, a.parts.frac_lo, b.parts.frac_hi, b.parts.frac_lo))) {
|
---|
296 | if (isFloat128NaN(b)) {
|
---|
297 | /* TODO: fix SigNaN */
|
---|
298 | if (isFloat128SigNaN(b)) {
|
---|
299 | }
|
---|
300 | return b;
|
---|
301 | }
|
---|
302 |
|
---|
303 | if (b.parts.exp == FLOAT128_MAX_EXPONENT) {
|
---|
304 | b.parts.sign = !b.parts.sign; /* num -(+-inf) = -+inf */
|
---|
305 | return b;
|
---|
306 | }
|
---|
307 |
|
---|
308 | result.parts.sign = !a.parts.sign;
|
---|
309 |
|
---|
310 | frac1_hi = b.parts.frac_hi;
|
---|
311 | frac1_lo = b.parts.frac_lo;
|
---|
312 | exp1 = b.parts.exp;
|
---|
313 | frac2_hi = a.parts.frac_hi;
|
---|
314 | frac2_lo = a.parts.frac_lo;
|
---|
315 | exp2 = a.parts.exp;
|
---|
316 | expdiff *= -1;
|
---|
317 | } else {
|
---|
318 | if (isFloat128NaN(a)) {
|
---|
319 | /* TODO: fix SigNaN */
|
---|
320 | if (isFloat128SigNaN(a) || isFloat128SigNaN(b)) {
|
---|
321 | }
|
---|
322 | return a;
|
---|
323 | }
|
---|
324 |
|
---|
325 | if (a.parts.exp == FLOAT128_MAX_EXPONENT) {
|
---|
326 | if (b.parts.exp == FLOAT128_MAX_EXPONENT) {
|
---|
327 | /* inf - inf => nan */
|
---|
328 | /* TODO: fix exception */
|
---|
329 | result.binary.hi = FLOAT128_NAN_HI;
|
---|
330 | result.binary.lo = FLOAT128_NAN_LO;
|
---|
331 | return result;
|
---|
332 | }
|
---|
333 | return a;
|
---|
334 | }
|
---|
335 |
|
---|
336 | result.parts.sign = a.parts.sign;
|
---|
337 |
|
---|
338 | frac1_hi = a.parts.frac_hi;
|
---|
339 | frac1_lo = a.parts.frac_lo;
|
---|
340 | exp1 = a.parts.exp;
|
---|
341 | frac2_hi = b.parts.frac_hi;
|
---|
342 | frac2_lo = b.parts.frac_lo;
|
---|
343 | exp2 = b.parts.exp;
|
---|
344 | }
|
---|
345 |
|
---|
346 | if (exp1 == 0) {
|
---|
347 | /* both are denormalized */
|
---|
348 | sub128(frac1_hi, frac1_lo, frac2_hi, frac2_lo, &tmp_hi, &tmp_lo);
|
---|
349 | result.parts.frac_hi = tmp_hi;
|
---|
350 | result.parts.frac_lo = tmp_lo;
|
---|
351 | if (lt128(frac1_hi, frac1_lo, result.parts.frac_hi, result.parts.frac_lo)) {
|
---|
352 | /* TODO: underflow exception */
|
---|
353 | return result;
|
---|
354 | }
|
---|
355 | result.parts.exp = 0;
|
---|
356 | return result;
|
---|
357 | }
|
---|
358 |
|
---|
359 | /* add hidden bit */
|
---|
360 | or128(frac1_hi, frac1_lo,
|
---|
361 | FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
362 | &frac1_hi, &frac1_lo);
|
---|
363 |
|
---|
364 | if (exp2 == 0) {
|
---|
365 | /* denormalized */
|
---|
366 | --expdiff;
|
---|
367 | } else {
|
---|
368 | /* normalized */
|
---|
369 | or128(frac2_hi, frac2_lo,
|
---|
370 | FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
371 | &frac2_hi, &frac2_lo);
|
---|
372 | }
|
---|
373 |
|
---|
374 | /* create some space for rounding */
|
---|
375 | lshift128(frac1_hi, frac1_lo, 6, &frac1_hi, &frac1_lo);
|
---|
376 | lshift128(frac2_hi, frac2_lo, 6, &frac2_hi, &frac2_lo);
|
---|
377 |
|
---|
378 | if (expdiff > FLOAT128_FRACTION_SIZE + 1) {
|
---|
379 | goto done;
|
---|
380 | }
|
---|
381 |
|
---|
382 | rshift128(frac2_hi, frac2_lo, expdiff, &tmp_hi, &tmp_lo);
|
---|
383 | sub128(frac1_hi, frac1_lo, tmp_hi, tmp_lo, &frac1_hi, &frac1_lo);
|
---|
384 |
|
---|
385 | done:
|
---|
386 | /* TODO: find first nonzero digit and shift result and detect possibly underflow */
|
---|
387 | lshift128(FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO, 6,
|
---|
388 | &tmp_hi, &tmp_lo);
|
---|
389 | and128(frac1_hi, frac1_lo, tmp_hi, tmp_lo, &tmp_hi, &tmp_lo);
|
---|
390 | while ((exp1 > 0) && (!lt128(0x0ll, 0x0ll, tmp_hi, tmp_lo))) {
|
---|
391 | --exp1;
|
---|
392 | lshift128(frac1_hi, frac1_lo, 1, &frac1_hi, &frac1_lo);
|
---|
393 | /* TODO: fix underflow - frac1 == 0 does not necessary means underflow... */
|
---|
394 |
|
---|
395 | lshift128(FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO, 6,
|
---|
396 | &tmp_hi, &tmp_lo);
|
---|
397 | and128(frac1_hi, frac1_lo, tmp_hi, tmp_lo, &tmp_hi, &tmp_lo);
|
---|
398 | }
|
---|
399 |
|
---|
400 | /* rounding - if first bit after fraction is set then round up */
|
---|
401 | add128(frac1_hi, frac1_lo, 0x0ll, 0x20ll, &frac1_hi, &frac1_lo);
|
---|
402 |
|
---|
403 | lshift128(FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO, 7,
|
---|
404 | &tmp_hi, &tmp_lo);
|
---|
405 | and128(frac1_hi, frac1_lo, tmp_hi, tmp_lo, &tmp_hi, &tmp_lo);
|
---|
406 | if (lt128(0x0ll, 0x0ll, tmp_hi, tmp_lo)) {
|
---|
407 | ++exp1;
|
---|
408 | rshift128(frac1_hi, frac1_lo, 1, &frac1_hi, &frac1_lo);
|
---|
409 | }
|
---|
410 |
|
---|
411 | /* Clear hidden bit and shift */
|
---|
412 | rshift128(frac1_hi, frac1_lo, 6, &frac1_hi, &frac1_lo);
|
---|
413 | not128(FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
414 | &tmp_hi, &tmp_lo);
|
---|
415 | and128(frac1_hi, frac1_lo, tmp_hi, tmp_lo, &tmp_hi, &tmp_lo);
|
---|
416 | result.parts.frac_hi = tmp_hi;
|
---|
417 | result.parts.frac_lo = tmp_lo;
|
---|
418 |
|
---|
419 | result.parts.exp = exp1;
|
---|
420 |
|
---|
421 | return result;
|
---|
422 | }
|
---|
423 |
|
---|
424 | /** @}
|
---|
425 | */
|
---|