1 | /*
|
---|
2 | * Copyright (c) 2005 Josef Cejka
|
---|
3 | * Copyright (c) 2011 Petr Koupy
|
---|
4 | * All rights reserved.
|
---|
5 | *
|
---|
6 | * Redistribution and use in source and binary forms, with or without
|
---|
7 | * modification, are permitted provided that the following conditions
|
---|
8 | * are met:
|
---|
9 | *
|
---|
10 | * - Redistributions of source code must retain the above copyright
|
---|
11 | * notice, this list of conditions and the following disclaimer.
|
---|
12 | * - Redistributions in binary form must reproduce the above copyright
|
---|
13 | * notice, this list of conditions and the following disclaimer in the
|
---|
14 | * documentation and/or other materials provided with the distribution.
|
---|
15 | * - The name of the author may not be used to endorse or promote products
|
---|
16 | * derived from this software without specific prior written permission.
|
---|
17 | *
|
---|
18 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
19 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
20 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
21 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
22 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
23 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
24 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
25 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
26 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
27 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
28 | */
|
---|
29 |
|
---|
30 | /** @addtogroup softfloat
|
---|
31 | * @{
|
---|
32 | */
|
---|
33 | /** @file Multiplication functions.
|
---|
34 | */
|
---|
35 |
|
---|
36 | #include <sftypes.h>
|
---|
37 | #include <mul.h>
|
---|
38 | #include <comparison.h>
|
---|
39 | #include <common.h>
|
---|
40 |
|
---|
41 | /**
|
---|
42 | * Multiply two single-precision floats.
|
---|
43 | *
|
---|
44 | * @param a First input operand.
|
---|
45 | * @param b Second input operand.
|
---|
46 | * @return Result of multiplication.
|
---|
47 | */
|
---|
48 | float32 mulFloat32(float32 a, float32 b)
|
---|
49 | {
|
---|
50 | float32 result;
|
---|
51 | uint64_t frac1, frac2;
|
---|
52 | int32_t exp;
|
---|
53 |
|
---|
54 | result.parts.sign = a.parts.sign ^ b.parts.sign;
|
---|
55 |
|
---|
56 | if (isFloat32NaN(a) || isFloat32NaN(b)) {
|
---|
57 | /* TODO: fix SigNaNs */
|
---|
58 | if (isFloat32SigNaN(a)) {
|
---|
59 | result.parts.fraction = a.parts.fraction;
|
---|
60 | result.parts.exp = a.parts.exp;
|
---|
61 | return result;
|
---|
62 | }
|
---|
63 | if (isFloat32SigNaN(b)) { /* TODO: fix SigNaN */
|
---|
64 | result.parts.fraction = b.parts.fraction;
|
---|
65 | result.parts.exp = b.parts.exp;
|
---|
66 | return result;
|
---|
67 | }
|
---|
68 | /* set NaN as result */
|
---|
69 | result.binary = FLOAT32_NAN;
|
---|
70 | return result;
|
---|
71 | }
|
---|
72 |
|
---|
73 | if (isFloat32Infinity(a)) {
|
---|
74 | if (isFloat32Zero(b)) {
|
---|
75 | /* FIXME: zero * infinity */
|
---|
76 | result.binary = FLOAT32_NAN;
|
---|
77 | return result;
|
---|
78 | }
|
---|
79 | result.parts.fraction = a.parts.fraction;
|
---|
80 | result.parts.exp = a.parts.exp;
|
---|
81 | return result;
|
---|
82 | }
|
---|
83 |
|
---|
84 | if (isFloat32Infinity(b)) {
|
---|
85 | if (isFloat32Zero(a)) {
|
---|
86 | /* FIXME: zero * infinity */
|
---|
87 | result.binary = FLOAT32_NAN;
|
---|
88 | return result;
|
---|
89 | }
|
---|
90 | result.parts.fraction = b.parts.fraction;
|
---|
91 | result.parts.exp = b.parts.exp;
|
---|
92 | return result;
|
---|
93 | }
|
---|
94 |
|
---|
95 | /* exp is signed so we can easy detect underflow */
|
---|
96 | exp = a.parts.exp + b.parts.exp;
|
---|
97 | exp -= FLOAT32_BIAS;
|
---|
98 |
|
---|
99 | if (exp >= FLOAT32_MAX_EXPONENT) {
|
---|
100 | /* FIXME: overflow */
|
---|
101 | /* set infinity as result */
|
---|
102 | result.binary = FLOAT32_INF;
|
---|
103 | result.parts.sign = a.parts.sign ^ b.parts.sign;
|
---|
104 | return result;
|
---|
105 | }
|
---|
106 |
|
---|
107 | if (exp < 0) {
|
---|
108 | /* FIXME: underflow */
|
---|
109 | /* return signed zero */
|
---|
110 | result.parts.fraction = 0x0;
|
---|
111 | result.parts.exp = 0x0;
|
---|
112 | return result;
|
---|
113 | }
|
---|
114 |
|
---|
115 | frac1 = a.parts.fraction;
|
---|
116 | if (a.parts.exp > 0) {
|
---|
117 | frac1 |= FLOAT32_HIDDEN_BIT_MASK;
|
---|
118 | } else {
|
---|
119 | ++exp;
|
---|
120 | }
|
---|
121 |
|
---|
122 | frac2 = b.parts.fraction;
|
---|
123 |
|
---|
124 | if (b.parts.exp > 0) {
|
---|
125 | frac2 |= FLOAT32_HIDDEN_BIT_MASK;
|
---|
126 | } else {
|
---|
127 | ++exp;
|
---|
128 | }
|
---|
129 |
|
---|
130 | frac1 <<= 1; /* one bit space for rounding */
|
---|
131 |
|
---|
132 | frac1 = frac1 * frac2;
|
---|
133 |
|
---|
134 | /* round and return */
|
---|
135 | while ((exp < FLOAT32_MAX_EXPONENT) && (frac1 >= (1 << (FLOAT32_FRACTION_SIZE + 2)))) {
|
---|
136 | /* 23 bits of fraction + one more for hidden bit (all shifted 1 bit left) */
|
---|
137 | ++exp;
|
---|
138 | frac1 >>= 1;
|
---|
139 | }
|
---|
140 |
|
---|
141 | /* rounding */
|
---|
142 | /* ++frac1; FIXME: not works - without it is ok */
|
---|
143 | frac1 >>= 1; /* shift off rounding space */
|
---|
144 |
|
---|
145 | if ((exp < FLOAT32_MAX_EXPONENT) && (frac1 >= (1 << (FLOAT32_FRACTION_SIZE + 1)))) {
|
---|
146 | ++exp;
|
---|
147 | frac1 >>= 1;
|
---|
148 | }
|
---|
149 |
|
---|
150 | if (exp >= FLOAT32_MAX_EXPONENT) {
|
---|
151 | /* TODO: fix overflow */
|
---|
152 | /* return infinity*/
|
---|
153 | result.parts.exp = FLOAT32_MAX_EXPONENT;
|
---|
154 | result.parts.fraction = 0x0;
|
---|
155 | return result;
|
---|
156 | }
|
---|
157 |
|
---|
158 | exp -= FLOAT32_FRACTION_SIZE;
|
---|
159 |
|
---|
160 | if (exp <= FLOAT32_FRACTION_SIZE) {
|
---|
161 | /* denormalized number */
|
---|
162 | frac1 >>= 1; /* denormalize */
|
---|
163 | while ((frac1 > 0) && (exp < 0)) {
|
---|
164 | frac1 >>= 1;
|
---|
165 | ++exp;
|
---|
166 | }
|
---|
167 | if (frac1 == 0) {
|
---|
168 | /* FIXME : underflow */
|
---|
169 | result.parts.exp = 0;
|
---|
170 | result.parts.fraction = 0;
|
---|
171 | return result;
|
---|
172 | }
|
---|
173 | }
|
---|
174 | result.parts.exp = exp;
|
---|
175 | result.parts.fraction = frac1 & ((1 << FLOAT32_FRACTION_SIZE) - 1);
|
---|
176 |
|
---|
177 | return result;
|
---|
178 | }
|
---|
179 |
|
---|
180 | /**
|
---|
181 | * Multiply two double-precision floats.
|
---|
182 | *
|
---|
183 | * @param a First input operand.
|
---|
184 | * @param b Second input operand.
|
---|
185 | * @return Result of multiplication.
|
---|
186 | */
|
---|
187 | float64 mulFloat64(float64 a, float64 b)
|
---|
188 | {
|
---|
189 | float64 result;
|
---|
190 | uint64_t frac1, frac2;
|
---|
191 | int32_t exp;
|
---|
192 |
|
---|
193 | result.parts.sign = a.parts.sign ^ b.parts.sign;
|
---|
194 |
|
---|
195 | if (isFloat64NaN(a) || isFloat64NaN(b)) {
|
---|
196 | /* TODO: fix SigNaNs */
|
---|
197 | if (isFloat64SigNaN(a)) {
|
---|
198 | result.parts.fraction = a.parts.fraction;
|
---|
199 | result.parts.exp = a.parts.exp;
|
---|
200 | return result;
|
---|
201 | }
|
---|
202 | if (isFloat64SigNaN(b)) { /* TODO: fix SigNaN */
|
---|
203 | result.parts.fraction = b.parts.fraction;
|
---|
204 | result.parts.exp = b.parts.exp;
|
---|
205 | return result;
|
---|
206 | }
|
---|
207 | /* set NaN as result */
|
---|
208 | result.binary = FLOAT64_NAN;
|
---|
209 | return result;
|
---|
210 | }
|
---|
211 |
|
---|
212 | if (isFloat64Infinity(a)) {
|
---|
213 | if (isFloat64Zero(b)) {
|
---|
214 | /* FIXME: zero * infinity */
|
---|
215 | result.binary = FLOAT64_NAN;
|
---|
216 | return result;
|
---|
217 | }
|
---|
218 | result.parts.fraction = a.parts.fraction;
|
---|
219 | result.parts.exp = a.parts.exp;
|
---|
220 | return result;
|
---|
221 | }
|
---|
222 |
|
---|
223 | if (isFloat64Infinity(b)) {
|
---|
224 | if (isFloat64Zero(a)) {
|
---|
225 | /* FIXME: zero * infinity */
|
---|
226 | result.binary = FLOAT64_NAN;
|
---|
227 | return result;
|
---|
228 | }
|
---|
229 | result.parts.fraction = b.parts.fraction;
|
---|
230 | result.parts.exp = b.parts.exp;
|
---|
231 | return result;
|
---|
232 | }
|
---|
233 |
|
---|
234 | /* exp is signed so we can easy detect underflow */
|
---|
235 | exp = a.parts.exp + b.parts.exp - FLOAT64_BIAS;
|
---|
236 |
|
---|
237 | frac1 = a.parts.fraction;
|
---|
238 |
|
---|
239 | if (a.parts.exp > 0) {
|
---|
240 | frac1 |= FLOAT64_HIDDEN_BIT_MASK;
|
---|
241 | } else {
|
---|
242 | ++exp;
|
---|
243 | }
|
---|
244 |
|
---|
245 | frac2 = b.parts.fraction;
|
---|
246 |
|
---|
247 | if (b.parts.exp > 0) {
|
---|
248 | frac2 |= FLOAT64_HIDDEN_BIT_MASK;
|
---|
249 | } else {
|
---|
250 | ++exp;
|
---|
251 | }
|
---|
252 |
|
---|
253 | frac1 <<= (64 - FLOAT64_FRACTION_SIZE - 1);
|
---|
254 | frac2 <<= (64 - FLOAT64_FRACTION_SIZE - 2);
|
---|
255 |
|
---|
256 | mul64(frac1, frac2, &frac1, &frac2);
|
---|
257 |
|
---|
258 | frac1 |= (frac2 != 0);
|
---|
259 | if (frac1 & (0x1ll << 62)) {
|
---|
260 | frac1 <<= 1;
|
---|
261 | exp--;
|
---|
262 | }
|
---|
263 |
|
---|
264 | result = finishFloat64(exp, frac1, result.parts.sign);
|
---|
265 | return result;
|
---|
266 | }
|
---|
267 |
|
---|
268 | /**
|
---|
269 | * Multiply two quadruple-precision floats.
|
---|
270 | *
|
---|
271 | * @param a First input operand.
|
---|
272 | * @param b Second input operand.
|
---|
273 | * @return Result of multiplication.
|
---|
274 | */
|
---|
275 | float128 mulFloat128(float128 a, float128 b)
|
---|
276 | {
|
---|
277 | float128 result;
|
---|
278 | uint64_t frac1_hi, frac1_lo, frac2_hi, frac2_lo, tmp_hi, tmp_lo;
|
---|
279 | int32_t exp;
|
---|
280 |
|
---|
281 | result.parts.sign = a.parts.sign ^ b.parts.sign;
|
---|
282 |
|
---|
283 | if (isFloat128NaN(a) || isFloat128NaN(b)) {
|
---|
284 | /* TODO: fix SigNaNs */
|
---|
285 | if (isFloat128SigNaN(a)) {
|
---|
286 | result.parts.frac_hi = a.parts.frac_hi;
|
---|
287 | result.parts.frac_lo = a.parts.frac_lo;
|
---|
288 | result.parts.exp = a.parts.exp;
|
---|
289 | return result;
|
---|
290 | }
|
---|
291 | if (isFloat128SigNaN(b)) { /* TODO: fix SigNaN */
|
---|
292 | result.parts.frac_hi = b.parts.frac_hi;
|
---|
293 | result.parts.frac_lo = b.parts.frac_lo;
|
---|
294 | result.parts.exp = b.parts.exp;
|
---|
295 | return result;
|
---|
296 | }
|
---|
297 | /* set NaN as result */
|
---|
298 | result.binary.hi = FLOAT128_NAN_HI;
|
---|
299 | result.binary.lo = FLOAT128_NAN_LO;
|
---|
300 | return result;
|
---|
301 | }
|
---|
302 |
|
---|
303 | if (isFloat128Infinity(a)) {
|
---|
304 | if (isFloat128Zero(b)) {
|
---|
305 | /* FIXME: zero * infinity */
|
---|
306 | result.binary.hi = FLOAT128_NAN_HI;
|
---|
307 | result.binary.lo = FLOAT128_NAN_LO;
|
---|
308 | return result;
|
---|
309 | }
|
---|
310 | result.parts.frac_hi = a.parts.frac_hi;
|
---|
311 | result.parts.frac_lo = a.parts.frac_lo;
|
---|
312 | result.parts.exp = a.parts.exp;
|
---|
313 | return result;
|
---|
314 | }
|
---|
315 |
|
---|
316 | if (isFloat128Infinity(b)) {
|
---|
317 | if (isFloat128Zero(a)) {
|
---|
318 | /* FIXME: zero * infinity */
|
---|
319 | result.binary.hi = FLOAT128_NAN_HI;
|
---|
320 | result.binary.lo = FLOAT128_NAN_LO;
|
---|
321 | return result;
|
---|
322 | }
|
---|
323 | result.parts.frac_hi = b.parts.frac_hi;
|
---|
324 | result.parts.frac_lo = b.parts.frac_lo;
|
---|
325 | result.parts.exp = b.parts.exp;
|
---|
326 | return result;
|
---|
327 | }
|
---|
328 |
|
---|
329 | /* exp is signed so we can easy detect underflow */
|
---|
330 | exp = a.parts.exp + b.parts.exp - FLOAT128_BIAS - 1;
|
---|
331 |
|
---|
332 | frac1_hi = a.parts.frac_hi;
|
---|
333 | frac1_lo = a.parts.frac_lo;
|
---|
334 |
|
---|
335 | if (a.parts.exp > 0) {
|
---|
336 | or128(frac1_hi, frac1_lo,
|
---|
337 | FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
338 | &frac1_hi, &frac1_lo);
|
---|
339 | } else {
|
---|
340 | ++exp;
|
---|
341 | }
|
---|
342 |
|
---|
343 | frac2_hi = b.parts.frac_hi;
|
---|
344 | frac2_lo = b.parts.frac_lo;
|
---|
345 |
|
---|
346 | if (b.parts.exp > 0) {
|
---|
347 | or128(frac2_hi, frac2_lo,
|
---|
348 | FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
349 | &frac2_hi, &frac2_lo);
|
---|
350 | } else {
|
---|
351 | ++exp;
|
---|
352 | }
|
---|
353 |
|
---|
354 | lshift128(frac2_hi, frac2_lo,
|
---|
355 | 128 - FLOAT128_FRACTION_SIZE, &frac2_hi, &frac2_lo);
|
---|
356 |
|
---|
357 | tmp_hi = frac1_hi;
|
---|
358 | tmp_lo = frac1_lo;
|
---|
359 | mul128(frac1_hi, frac1_lo, frac2_hi, frac2_lo,
|
---|
360 | &frac1_hi, &frac1_lo, &frac2_hi, &frac2_lo);
|
---|
361 | add128(frac1_hi, frac1_lo, tmp_hi, tmp_lo, &frac1_hi, &frac1_lo);
|
---|
362 | frac2_hi |= (frac2_lo != 0x0ll);
|
---|
363 |
|
---|
364 | if ((FLOAT128_HIDDEN_BIT_MASK_HI << 1) <= frac1_hi) {
|
---|
365 | frac2_hi >>= 1;
|
---|
366 | if (frac1_lo & 0x1ll) {
|
---|
367 | frac2_hi |= (0x1ull < 64);
|
---|
368 | }
|
---|
369 | rshift128(frac1_hi, frac1_lo, 1, &frac1_hi, &frac1_lo);
|
---|
370 | ++exp;
|
---|
371 | }
|
---|
372 |
|
---|
373 | result = finishFloat128(exp, frac1_hi, frac1_lo, result.parts.sign, frac2_hi);
|
---|
374 | return result;
|
---|
375 | }
|
---|
376 |
|
---|
377 | /** @}
|
---|
378 | */
|
---|