[b5440cf] | 1 | /*
|
---|
[df4ed85] | 2 | * Copyright (c) 2005 Josef Cejka
|
---|
[c67aff2] | 3 | * Copyright (c) 2011 Petr Koupy
|
---|
[b5440cf] | 4 | * All rights reserved.
|
---|
| 5 | *
|
---|
| 6 | * Redistribution and use in source and binary forms, with or without
|
---|
| 7 | * modification, are permitted provided that the following conditions
|
---|
| 8 | * are met:
|
---|
| 9 | *
|
---|
| 10 | * - Redistributions of source code must retain the above copyright
|
---|
| 11 | * notice, this list of conditions and the following disclaimer.
|
---|
| 12 | * - Redistributions in binary form must reproduce the above copyright
|
---|
| 13 | * notice, this list of conditions and the following disclaimer in the
|
---|
| 14 | * documentation and/or other materials provided with the distribution.
|
---|
| 15 | * - The name of the author may not be used to endorse or promote products
|
---|
| 16 | * derived from this software without specific prior written permission.
|
---|
| 17 | *
|
---|
| 18 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
| 19 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
| 20 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
| 21 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
| 22 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
| 23 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
| 24 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
| 25 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
| 26 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
| 27 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
| 28 | */
|
---|
| 29 |
|
---|
[750636a] | 30 | /** @addtogroup softfloat
|
---|
[846848a6] | 31 | * @{
|
---|
| 32 | */
|
---|
[c67aff2] | 33 | /** @file Multiplication functions.
|
---|
[846848a6] | 34 | */
|
---|
| 35 |
|
---|
[750636a] | 36 | #include <sftypes.h>
|
---|
| 37 | #include <mul.h>
|
---|
| 38 | #include <comparison.h>
|
---|
| 39 | #include <common.h>
|
---|
[b5440cf] | 40 |
|
---|
[c67aff2] | 41 | /**
|
---|
| 42 | * Multiply two single-precision floats.
|
---|
[3af72dc] | 43 | *
|
---|
[c67aff2] | 44 | * @param a First input operand.
|
---|
| 45 | * @param b Second input operand.
|
---|
| 46 | * @return Result of multiplication.
|
---|
[3af72dc] | 47 | */
|
---|
| 48 | float32 mulFloat32(float32 a, float32 b)
|
---|
| 49 | {
|
---|
| 50 | float32 result;
|
---|
[aa59fa0] | 51 | uint64_t frac1, frac2;
|
---|
| 52 | int32_t exp;
|
---|
[3af72dc] | 53 |
|
---|
| 54 | result.parts.sign = a.parts.sign ^ b.parts.sign;
|
---|
| 55 |
|
---|
[c67aff2] | 56 | if (isFloat32NaN(a) || isFloat32NaN(b)) {
|
---|
[3af72dc] | 57 | /* TODO: fix SigNaNs */
|
---|
| 58 | if (isFloat32SigNaN(a)) {
|
---|
[1266543] | 59 | result.parts.fraction = a.parts.fraction;
|
---|
[3af72dc] | 60 | result.parts.exp = a.parts.exp;
|
---|
| 61 | return result;
|
---|
[c67aff2] | 62 | }
|
---|
[3af72dc] | 63 | if (isFloat32SigNaN(b)) { /* TODO: fix SigNaN */
|
---|
[1266543] | 64 | result.parts.fraction = b.parts.fraction;
|
---|
[3af72dc] | 65 | result.parts.exp = b.parts.exp;
|
---|
| 66 | return result;
|
---|
[c67aff2] | 67 | }
|
---|
[3af72dc] | 68 | /* set NaN as result */
|
---|
[bff16dd] | 69 | result.binary = FLOAT32_NAN;
|
---|
[3af72dc] | 70 | return result;
|
---|
[c67aff2] | 71 | }
|
---|
[3af72dc] | 72 |
|
---|
| 73 | if (isFloat32Infinity(a)) {
|
---|
| 74 | if (isFloat32Zero(b)) {
|
---|
| 75 | /* FIXME: zero * infinity */
|
---|
[bff16dd] | 76 | result.binary = FLOAT32_NAN;
|
---|
[3af72dc] | 77 | return result;
|
---|
| 78 | }
|
---|
[1266543] | 79 | result.parts.fraction = a.parts.fraction;
|
---|
[3af72dc] | 80 | result.parts.exp = a.parts.exp;
|
---|
| 81 | return result;
|
---|
| 82 | }
|
---|
| 83 |
|
---|
| 84 | if (isFloat32Infinity(b)) {
|
---|
| 85 | if (isFloat32Zero(a)) {
|
---|
| 86 | /* FIXME: zero * infinity */
|
---|
[bff16dd] | 87 | result.binary = FLOAT32_NAN;
|
---|
[3af72dc] | 88 | return result;
|
---|
| 89 | }
|
---|
[1266543] | 90 | result.parts.fraction = b.parts.fraction;
|
---|
[3af72dc] | 91 | result.parts.exp = b.parts.exp;
|
---|
| 92 | return result;
|
---|
| 93 | }
|
---|
| 94 |
|
---|
| 95 | /* exp is signed so we can easy detect underflow */
|
---|
| 96 | exp = a.parts.exp + b.parts.exp;
|
---|
| 97 | exp -= FLOAT32_BIAS;
|
---|
| 98 |
|
---|
[bff16dd] | 99 | if (exp >= FLOAT32_MAX_EXPONENT) {
|
---|
[3af72dc] | 100 | /* FIXME: overflow */
|
---|
| 101 | /* set infinity as result */
|
---|
[bff16dd] | 102 | result.binary = FLOAT32_INF;
|
---|
| 103 | result.parts.sign = a.parts.sign ^ b.parts.sign;
|
---|
[3af72dc] | 104 | return result;
|
---|
[c67aff2] | 105 | }
|
---|
[3af72dc] | 106 |
|
---|
| 107 | if (exp < 0) {
|
---|
| 108 | /* FIXME: underflow */
|
---|
| 109 | /* return signed zero */
|
---|
[1266543] | 110 | result.parts.fraction = 0x0;
|
---|
[3af72dc] | 111 | result.parts.exp = 0x0;
|
---|
| 112 | return result;
|
---|
[c67aff2] | 113 | }
|
---|
[3af72dc] | 114 |
|
---|
[1266543] | 115 | frac1 = a.parts.fraction;
|
---|
[bff16dd] | 116 | if (a.parts.exp > 0) {
|
---|
[1266543] | 117 | frac1 |= FLOAT32_HIDDEN_BIT_MASK;
|
---|
[3af72dc] | 118 | } else {
|
---|
| 119 | ++exp;
|
---|
[c67aff2] | 120 | }
|
---|
[3af72dc] | 121 |
|
---|
[1266543] | 122 | frac2 = b.parts.fraction;
|
---|
[bff16dd] | 123 |
|
---|
| 124 | if (b.parts.exp > 0) {
|
---|
[1266543] | 125 | frac2 |= FLOAT32_HIDDEN_BIT_MASK;
|
---|
[3af72dc] | 126 | } else {
|
---|
| 127 | ++exp;
|
---|
[c67aff2] | 128 | }
|
---|
[3af72dc] | 129 |
|
---|
[1266543] | 130 | frac1 <<= 1; /* one bit space for rounding */
|
---|
[3af72dc] | 131 |
|
---|
[1266543] | 132 | frac1 = frac1 * frac2;
|
---|
[c67aff2] | 133 |
|
---|
| 134 | /* round and return */
|
---|
| 135 | while ((exp < FLOAT32_MAX_EXPONENT) && (frac1 >= (1 << (FLOAT32_FRACTION_SIZE + 2)))) {
|
---|
| 136 | /* 23 bits of fraction + one more for hidden bit (all shifted 1 bit left) */
|
---|
[3af72dc] | 137 | ++exp;
|
---|
[1266543] | 138 | frac1 >>= 1;
|
---|
[c67aff2] | 139 | }
|
---|
[3af72dc] | 140 |
|
---|
| 141 | /* rounding */
|
---|
[1266543] | 142 | /* ++frac1; FIXME: not works - without it is ok */
|
---|
| 143 | frac1 >>= 1; /* shift off rounding space */
|
---|
[3af72dc] | 144 |
|
---|
[1266543] | 145 | if ((exp < FLOAT32_MAX_EXPONENT) && (frac1 >= (1 << (FLOAT32_FRACTION_SIZE + 1)))) {
|
---|
[3af72dc] | 146 | ++exp;
|
---|
[1266543] | 147 | frac1 >>= 1;
|
---|
[c67aff2] | 148 | }
|
---|
[3af72dc] | 149 |
|
---|
[c67aff2] | 150 | if (exp >= FLOAT32_MAX_EXPONENT) {
|
---|
[3af72dc] | 151 | /* TODO: fix overflow */
|
---|
| 152 | /* return infinity*/
|
---|
[bff16dd] | 153 | result.parts.exp = FLOAT32_MAX_EXPONENT;
|
---|
[1266543] | 154 | result.parts.fraction = 0x0;
|
---|
[3af72dc] | 155 | return result;
|
---|
| 156 | }
|
---|
| 157 |
|
---|
[1266543] | 158 | exp -= FLOAT32_FRACTION_SIZE;
|
---|
[3af72dc] | 159 |
|
---|
[1266543] | 160 | if (exp <= FLOAT32_FRACTION_SIZE) {
|
---|
[3af72dc] | 161 | /* denormalized number */
|
---|
[1266543] | 162 | frac1 >>= 1; /* denormalize */
|
---|
| 163 | while ((frac1 > 0) && (exp < 0)) {
|
---|
| 164 | frac1 >>= 1;
|
---|
[3af72dc] | 165 | ++exp;
|
---|
[c67aff2] | 166 | }
|
---|
[1266543] | 167 | if (frac1 == 0) {
|
---|
[3af72dc] | 168 | /* FIXME : underflow */
|
---|
[c67aff2] | 169 | result.parts.exp = 0;
|
---|
| 170 | result.parts.fraction = 0;
|
---|
| 171 | return result;
|
---|
| 172 | }
|
---|
| 173 | }
|
---|
[3af72dc] | 174 | result.parts.exp = exp;
|
---|
[c67aff2] | 175 | result.parts.fraction = frac1 & ((1 << FLOAT32_FRACTION_SIZE) - 1);
|
---|
[bff16dd] | 176 |
|
---|
| 177 | return result;
|
---|
| 178 | }
|
---|
| 179 |
|
---|
[c67aff2] | 180 | /**
|
---|
| 181 | * Multiply two double-precision floats.
|
---|
[bff16dd] | 182 | *
|
---|
[c67aff2] | 183 | * @param a First input operand.
|
---|
| 184 | * @param b Second input operand.
|
---|
| 185 | * @return Result of multiplication.
|
---|
[bff16dd] | 186 | */
|
---|
| 187 | float64 mulFloat64(float64 a, float64 b)
|
---|
| 188 | {
|
---|
| 189 | float64 result;
|
---|
[aa59fa0] | 190 | uint64_t frac1, frac2;
|
---|
| 191 | int32_t exp;
|
---|
[bff16dd] | 192 |
|
---|
| 193 | result.parts.sign = a.parts.sign ^ b.parts.sign;
|
---|
| 194 |
|
---|
[c67aff2] | 195 | if (isFloat64NaN(a) || isFloat64NaN(b)) {
|
---|
[bff16dd] | 196 | /* TODO: fix SigNaNs */
|
---|
| 197 | if (isFloat64SigNaN(a)) {
|
---|
[1266543] | 198 | result.parts.fraction = a.parts.fraction;
|
---|
[bff16dd] | 199 | result.parts.exp = a.parts.exp;
|
---|
| 200 | return result;
|
---|
[c67aff2] | 201 | }
|
---|
[bff16dd] | 202 | if (isFloat64SigNaN(b)) { /* TODO: fix SigNaN */
|
---|
[1266543] | 203 | result.parts.fraction = b.parts.fraction;
|
---|
[bff16dd] | 204 | result.parts.exp = b.parts.exp;
|
---|
| 205 | return result;
|
---|
[c67aff2] | 206 | }
|
---|
[bff16dd] | 207 | /* set NaN as result */
|
---|
| 208 | result.binary = FLOAT64_NAN;
|
---|
| 209 | return result;
|
---|
[c67aff2] | 210 | }
|
---|
[bff16dd] | 211 |
|
---|
| 212 | if (isFloat64Infinity(a)) {
|
---|
| 213 | if (isFloat64Zero(b)) {
|
---|
| 214 | /* FIXME: zero * infinity */
|
---|
| 215 | result.binary = FLOAT64_NAN;
|
---|
| 216 | return result;
|
---|
| 217 | }
|
---|
[1266543] | 218 | result.parts.fraction = a.parts.fraction;
|
---|
[bff16dd] | 219 | result.parts.exp = a.parts.exp;
|
---|
| 220 | return result;
|
---|
| 221 | }
|
---|
| 222 |
|
---|
| 223 | if (isFloat64Infinity(b)) {
|
---|
| 224 | if (isFloat64Zero(a)) {
|
---|
| 225 | /* FIXME: zero * infinity */
|
---|
| 226 | result.binary = FLOAT64_NAN;
|
---|
| 227 | return result;
|
---|
| 228 | }
|
---|
[1266543] | 229 | result.parts.fraction = b.parts.fraction;
|
---|
[bff16dd] | 230 | result.parts.exp = b.parts.exp;
|
---|
| 231 | return result;
|
---|
| 232 | }
|
---|
| 233 |
|
---|
| 234 | /* exp is signed so we can easy detect underflow */
|
---|
[e979fea] | 235 | exp = a.parts.exp + b.parts.exp - FLOAT64_BIAS;
|
---|
[bff16dd] | 236 |
|
---|
[1266543] | 237 | frac1 = a.parts.fraction;
|
---|
[e979fea] | 238 |
|
---|
[bff16dd] | 239 | if (a.parts.exp > 0) {
|
---|
[1266543] | 240 | frac1 |= FLOAT64_HIDDEN_BIT_MASK;
|
---|
[bff16dd] | 241 | } else {
|
---|
| 242 | ++exp;
|
---|
[c67aff2] | 243 | }
|
---|
[bff16dd] | 244 |
|
---|
[1266543] | 245 | frac2 = b.parts.fraction;
|
---|
[bff16dd] | 246 |
|
---|
| 247 | if (b.parts.exp > 0) {
|
---|
[1266543] | 248 | frac2 |= FLOAT64_HIDDEN_BIT_MASK;
|
---|
[bff16dd] | 249 | } else {
|
---|
| 250 | ++exp;
|
---|
[c67aff2] | 251 | }
|
---|
[bff16dd] | 252 |
|
---|
[e979fea] | 253 | frac1 <<= (64 - FLOAT64_FRACTION_SIZE - 1);
|
---|
| 254 | frac2 <<= (64 - FLOAT64_FRACTION_SIZE - 2);
|
---|
[bff16dd] | 255 |
|
---|
[c67aff2] | 256 | mul64(frac1, frac2, &frac1, &frac2);
|
---|
[bff16dd] | 257 |
|
---|
[c67aff2] | 258 | frac1 |= (frac2 != 0);
|
---|
| 259 | if (frac1 & (0x1ll << 62)) {
|
---|
| 260 | frac1 <<= 1;
|
---|
[e979fea] | 261 | exp--;
|
---|
[bff16dd] | 262 | }
|
---|
| 263 |
|
---|
[c67aff2] | 264 | result = finishFloat64(exp, frac1, result.parts.sign);
|
---|
[e979fea] | 265 | return result;
|
---|
[12c6f2d] | 266 | }
|
---|
| 267 |
|
---|
[c67aff2] | 268 | /**
|
---|
| 269 | * Multiply two quadruple-precision floats.
|
---|
| 270 | *
|
---|
| 271 | * @param a First input operand.
|
---|
| 272 | * @param b Second input operand.
|
---|
| 273 | * @return Result of multiplication.
|
---|
[bff16dd] | 274 | */
|
---|
[c67aff2] | 275 | float128 mulFloat128(float128 a, float128 b)
|
---|
[bff16dd] | 276 | {
|
---|
[c67aff2] | 277 | float128 result;
|
---|
| 278 | uint64_t frac1_hi, frac1_lo, frac2_hi, frac2_lo, tmp_hi, tmp_lo;
|
---|
| 279 | int32_t exp;
|
---|
[e979fea] | 280 |
|
---|
[c67aff2] | 281 | result.parts.sign = a.parts.sign ^ b.parts.sign;
|
---|
| 282 |
|
---|
| 283 | if (isFloat128NaN(a) || isFloat128NaN(b)) {
|
---|
| 284 | /* TODO: fix SigNaNs */
|
---|
| 285 | if (isFloat128SigNaN(a)) {
|
---|
| 286 | result.parts.frac_hi = a.parts.frac_hi;
|
---|
| 287 | result.parts.frac_lo = a.parts.frac_lo;
|
---|
| 288 | result.parts.exp = a.parts.exp;
|
---|
| 289 | return result;
|
---|
| 290 | }
|
---|
| 291 | if (isFloat128SigNaN(b)) { /* TODO: fix SigNaN */
|
---|
| 292 | result.parts.frac_hi = b.parts.frac_hi;
|
---|
| 293 | result.parts.frac_lo = b.parts.frac_lo;
|
---|
| 294 | result.parts.exp = b.parts.exp;
|
---|
| 295 | return result;
|
---|
| 296 | }
|
---|
| 297 | /* set NaN as result */
|
---|
| 298 | result.binary.hi = FLOAT128_NAN_HI;
|
---|
| 299 | result.binary.lo = FLOAT128_NAN_LO;
|
---|
| 300 | return result;
|
---|
| 301 | }
|
---|
| 302 |
|
---|
| 303 | if (isFloat128Infinity(a)) {
|
---|
| 304 | if (isFloat128Zero(b)) {
|
---|
| 305 | /* FIXME: zero * infinity */
|
---|
| 306 | result.binary.hi = FLOAT128_NAN_HI;
|
---|
| 307 | result.binary.lo = FLOAT128_NAN_LO;
|
---|
| 308 | return result;
|
---|
| 309 | }
|
---|
| 310 | result.parts.frac_hi = a.parts.frac_hi;
|
---|
| 311 | result.parts.frac_lo = a.parts.frac_lo;
|
---|
| 312 | result.parts.exp = a.parts.exp;
|
---|
| 313 | return result;
|
---|
| 314 | }
|
---|
| 315 |
|
---|
| 316 | if (isFloat128Infinity(b)) {
|
---|
| 317 | if (isFloat128Zero(a)) {
|
---|
| 318 | /* FIXME: zero * infinity */
|
---|
| 319 | result.binary.hi = FLOAT128_NAN_HI;
|
---|
| 320 | result.binary.lo = FLOAT128_NAN_LO;
|
---|
| 321 | return result;
|
---|
| 322 | }
|
---|
| 323 | result.parts.frac_hi = b.parts.frac_hi;
|
---|
| 324 | result.parts.frac_lo = b.parts.frac_lo;
|
---|
| 325 | result.parts.exp = b.parts.exp;
|
---|
| 326 | return result;
|
---|
| 327 | }
|
---|
| 328 |
|
---|
| 329 | /* exp is signed so we can easy detect underflow */
|
---|
| 330 | exp = a.parts.exp + b.parts.exp - FLOAT128_BIAS - 1;
|
---|
| 331 |
|
---|
| 332 | frac1_hi = a.parts.frac_hi;
|
---|
| 333 | frac1_lo = a.parts.frac_lo;
|
---|
| 334 |
|
---|
| 335 | if (a.parts.exp > 0) {
|
---|
| 336 | or128(frac1_hi, frac1_lo,
|
---|
| 337 | FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
| 338 | &frac1_hi, &frac1_lo);
|
---|
| 339 | } else {
|
---|
| 340 | ++exp;
|
---|
| 341 | }
|
---|
| 342 |
|
---|
| 343 | frac2_hi = b.parts.frac_hi;
|
---|
| 344 | frac2_lo = b.parts.frac_lo;
|
---|
| 345 |
|
---|
| 346 | if (b.parts.exp > 0) {
|
---|
| 347 | or128(frac2_hi, frac2_lo,
|
---|
| 348 | FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
| 349 | &frac2_hi, &frac2_lo);
|
---|
| 350 | } else {
|
---|
| 351 | ++exp;
|
---|
| 352 | }
|
---|
| 353 |
|
---|
| 354 | lshift128(frac2_hi, frac2_lo,
|
---|
| 355 | 128 - FLOAT128_FRACTION_SIZE, &frac2_hi, &frac2_lo);
|
---|
| 356 |
|
---|
| 357 | tmp_hi = frac1_hi;
|
---|
| 358 | tmp_lo = frac1_lo;
|
---|
| 359 | mul128(frac1_hi, frac1_lo, frac2_hi, frac2_lo,
|
---|
| 360 | &frac1_hi, &frac1_lo, &frac2_hi, &frac2_lo);
|
---|
| 361 | add128(frac1_hi, frac1_lo, tmp_hi, tmp_lo, &frac1_hi, &frac1_lo);
|
---|
| 362 | frac2_hi |= (frac2_lo != 0x0ll);
|
---|
| 363 |
|
---|
| 364 | if ((FLOAT128_HIDDEN_BIT_MASK_HI << 1) <= frac1_hi) {
|
---|
| 365 | frac2_hi >>= 1;
|
---|
| 366 | if (frac1_lo & 0x1ll) {
|
---|
| 367 | frac2_hi |= (0x1ull < 64);
|
---|
| 368 | }
|
---|
| 369 | rshift128(frac1_hi, frac1_lo, 1, &frac1_hi, &frac1_lo);
|
---|
| 370 | ++exp;
|
---|
| 371 | }
|
---|
| 372 |
|
---|
| 373 | result = finishFloat128(exp, frac1_hi, frac1_lo, result.parts.sign, frac2_hi);
|
---|
| 374 | return result;
|
---|
[bff16dd] | 375 | }
|
---|
[3af72dc] | 376 |
|
---|
[231a60a] | 377 | /** @}
|
---|
[846848a6] | 378 | */
|
---|