1 | /*
|
---|
2 | * Copyright (c) 2005 Josef Cejka
|
---|
3 | * All rights reserved.
|
---|
4 | *
|
---|
5 | * Redistribution and use in source and binary forms, with or without
|
---|
6 | * modification, are permitted provided that the following conditions
|
---|
7 | * are met:
|
---|
8 | *
|
---|
9 | * - Redistributions of source code must retain the above copyright
|
---|
10 | * notice, this list of conditions and the following disclaimer.
|
---|
11 | * - Redistributions in binary form must reproduce the above copyright
|
---|
12 | * notice, this list of conditions and the following disclaimer in the
|
---|
13 | * documentation and/or other materials provided with the distribution.
|
---|
14 | * - The name of the author may not be used to endorse or promote products
|
---|
15 | * derived from this software without specific prior written permission.
|
---|
16 | *
|
---|
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
27 | */
|
---|
28 |
|
---|
29 | /** @addtogroup softfloat
|
---|
30 | * @{
|
---|
31 | */
|
---|
32 | /** @file
|
---|
33 | */
|
---|
34 |
|
---|
35 | #include <sftypes.h>
|
---|
36 | #include <add.h>
|
---|
37 | #include <div.h>
|
---|
38 | #include <comparison.h>
|
---|
39 | #include <mul.h>
|
---|
40 | #include <common.h>
|
---|
41 |
|
---|
42 | float32 divFloat32(float32 a, float32 b)
|
---|
43 | {
|
---|
44 | float32 result;
|
---|
45 | int32_t aexp, bexp, cexp;
|
---|
46 | uint64_t afrac, bfrac, cfrac;
|
---|
47 |
|
---|
48 | result.parts.sign = a.parts.sign ^ b.parts.sign;
|
---|
49 |
|
---|
50 | if (isFloat32NaN(a)) {
|
---|
51 | if (isFloat32SigNaN(a)) {
|
---|
52 | /*FIXME: SigNaN*/
|
---|
53 | }
|
---|
54 | /*NaN*/
|
---|
55 | return a;
|
---|
56 | }
|
---|
57 |
|
---|
58 | if (isFloat32NaN(b)) {
|
---|
59 | if (isFloat32SigNaN(b)) {
|
---|
60 | /*FIXME: SigNaN*/
|
---|
61 | }
|
---|
62 | /*NaN*/
|
---|
63 | return b;
|
---|
64 | }
|
---|
65 |
|
---|
66 | if (isFloat32Infinity(a)) {
|
---|
67 | if (isFloat32Infinity(b)) {
|
---|
68 | /*FIXME: inf / inf */
|
---|
69 | result.binary = FLOAT32_NAN;
|
---|
70 | return result;
|
---|
71 | }
|
---|
72 | /* inf / num */
|
---|
73 | result.parts.exp = a.parts.exp;
|
---|
74 | result.parts.fraction = a.parts.fraction;
|
---|
75 | return result;
|
---|
76 | }
|
---|
77 |
|
---|
78 | if (isFloat32Infinity(b)) {
|
---|
79 | if (isFloat32Zero(a)) {
|
---|
80 | /* FIXME 0 / inf */
|
---|
81 | result.parts.exp = 0;
|
---|
82 | result.parts.fraction = 0;
|
---|
83 | return result;
|
---|
84 | }
|
---|
85 | /* FIXME: num / inf*/
|
---|
86 | result.parts.exp = 0;
|
---|
87 | result.parts.fraction = 0;
|
---|
88 | return result;
|
---|
89 | }
|
---|
90 |
|
---|
91 | if (isFloat32Zero(b)) {
|
---|
92 | if (isFloat32Zero(a)) {
|
---|
93 | /*FIXME: 0 / 0*/
|
---|
94 | result.binary = FLOAT32_NAN;
|
---|
95 | return result;
|
---|
96 | }
|
---|
97 | /* FIXME: division by zero */
|
---|
98 | result.parts.exp = 0;
|
---|
99 | result.parts.fraction = 0;
|
---|
100 | return result;
|
---|
101 | }
|
---|
102 |
|
---|
103 |
|
---|
104 | afrac = a.parts.fraction;
|
---|
105 | aexp = a.parts.exp;
|
---|
106 | bfrac = b.parts.fraction;
|
---|
107 | bexp = b.parts.exp;
|
---|
108 |
|
---|
109 | /* denormalized numbers */
|
---|
110 | if (aexp == 0) {
|
---|
111 | if (afrac == 0) {
|
---|
112 | result.parts.exp = 0;
|
---|
113 | result.parts.fraction = 0;
|
---|
114 | return result;
|
---|
115 | }
|
---|
116 | /* normalize it*/
|
---|
117 |
|
---|
118 | afrac <<= 1;
|
---|
119 | /* afrac is nonzero => it must stop */
|
---|
120 | while (! (afrac & FLOAT32_HIDDEN_BIT_MASK) ) {
|
---|
121 | afrac <<= 1;
|
---|
122 | aexp--;
|
---|
123 | }
|
---|
124 | }
|
---|
125 |
|
---|
126 | if (bexp == 0) {
|
---|
127 | bfrac <<= 1;
|
---|
128 | /* bfrac is nonzero => it must stop */
|
---|
129 | while (! (bfrac & FLOAT32_HIDDEN_BIT_MASK) ) {
|
---|
130 | bfrac <<= 1;
|
---|
131 | bexp--;
|
---|
132 | }
|
---|
133 | }
|
---|
134 |
|
---|
135 | afrac = (afrac | FLOAT32_HIDDEN_BIT_MASK ) << (32 - FLOAT32_FRACTION_SIZE - 1 );
|
---|
136 | bfrac = (bfrac | FLOAT32_HIDDEN_BIT_MASK ) << (32 - FLOAT32_FRACTION_SIZE );
|
---|
137 |
|
---|
138 | if ( bfrac <= (afrac << 1) ) {
|
---|
139 | afrac >>= 1;
|
---|
140 | aexp++;
|
---|
141 | }
|
---|
142 |
|
---|
143 | cexp = aexp - bexp + FLOAT32_BIAS - 2;
|
---|
144 |
|
---|
145 | cfrac = (afrac << 32) / bfrac;
|
---|
146 | if (( cfrac & 0x3F ) == 0) {
|
---|
147 | cfrac |= ( bfrac * cfrac != afrac << 32 );
|
---|
148 | }
|
---|
149 |
|
---|
150 | /* pack and round */
|
---|
151 |
|
---|
152 | /* find first nonzero digit and shift result and detect possibly underflow */
|
---|
153 | while ((cexp > 0) && (cfrac) && (!(cfrac & (FLOAT32_HIDDEN_BIT_MASK << 7 )))) {
|
---|
154 | cexp--;
|
---|
155 | cfrac <<= 1;
|
---|
156 | /* TODO: fix underflow */
|
---|
157 | };
|
---|
158 |
|
---|
159 | cfrac += (0x1 << 6); /* FIXME: 7 is not sure*/
|
---|
160 |
|
---|
161 | if (cfrac & (FLOAT32_HIDDEN_BIT_MASK << 7)) {
|
---|
162 | ++cexp;
|
---|
163 | cfrac >>= 1;
|
---|
164 | }
|
---|
165 |
|
---|
166 | /* check overflow */
|
---|
167 | if (cexp >= FLOAT32_MAX_EXPONENT ) {
|
---|
168 | /* FIXME: overflow, return infinity */
|
---|
169 | result.parts.exp = FLOAT32_MAX_EXPONENT;
|
---|
170 | result.parts.fraction = 0;
|
---|
171 | return result;
|
---|
172 | }
|
---|
173 |
|
---|
174 | if (cexp < 0) {
|
---|
175 | /* FIXME: underflow */
|
---|
176 | result.parts.exp = 0;
|
---|
177 | if ((cexp + FLOAT32_FRACTION_SIZE) < 0) {
|
---|
178 | result.parts.fraction = 0;
|
---|
179 | return result;
|
---|
180 | }
|
---|
181 | cfrac >>= 1;
|
---|
182 | while (cexp < 0) {
|
---|
183 | cexp ++;
|
---|
184 | cfrac >>= 1;
|
---|
185 | }
|
---|
186 |
|
---|
187 | } else {
|
---|
188 | result.parts.exp = (uint32_t)cexp;
|
---|
189 | }
|
---|
190 |
|
---|
191 | result.parts.fraction = ((cfrac >> 6) & (~FLOAT32_HIDDEN_BIT_MASK));
|
---|
192 |
|
---|
193 | return result;
|
---|
194 | }
|
---|
195 |
|
---|
196 | float64 divFloat64(float64 a, float64 b)
|
---|
197 | {
|
---|
198 | float64 result;
|
---|
199 | int64_t aexp, bexp, cexp;
|
---|
200 | uint64_t afrac, bfrac, cfrac;
|
---|
201 | uint64_t remlo, remhi;
|
---|
202 |
|
---|
203 | result.parts.sign = a.parts.sign ^ b.parts.sign;
|
---|
204 |
|
---|
205 | if (isFloat64NaN(a)) {
|
---|
206 |
|
---|
207 | if (isFloat64SigNaN(b)) {
|
---|
208 | /*FIXME: SigNaN*/
|
---|
209 | return b;
|
---|
210 | }
|
---|
211 |
|
---|
212 | if (isFloat64SigNaN(a)) {
|
---|
213 | /*FIXME: SigNaN*/
|
---|
214 | }
|
---|
215 | /*NaN*/
|
---|
216 | return a;
|
---|
217 | }
|
---|
218 |
|
---|
219 | if (isFloat64NaN(b)) {
|
---|
220 | if (isFloat64SigNaN(b)) {
|
---|
221 | /*FIXME: SigNaN*/
|
---|
222 | }
|
---|
223 | /*NaN*/
|
---|
224 | return b;
|
---|
225 | }
|
---|
226 |
|
---|
227 | if (isFloat64Infinity(a)) {
|
---|
228 | if (isFloat64Infinity(b) || isFloat64Zero(b)) {
|
---|
229 | /*FIXME: inf / inf */
|
---|
230 | result.binary = FLOAT64_NAN;
|
---|
231 | return result;
|
---|
232 | }
|
---|
233 | /* inf / num */
|
---|
234 | result.parts.exp = a.parts.exp;
|
---|
235 | result.parts.fraction = a.parts.fraction;
|
---|
236 | return result;
|
---|
237 | }
|
---|
238 |
|
---|
239 | if (isFloat64Infinity(b)) {
|
---|
240 | if (isFloat64Zero(a)) {
|
---|
241 | /* FIXME 0 / inf */
|
---|
242 | result.parts.exp = 0;
|
---|
243 | result.parts.fraction = 0;
|
---|
244 | return result;
|
---|
245 | }
|
---|
246 | /* FIXME: num / inf*/
|
---|
247 | result.parts.exp = 0;
|
---|
248 | result.parts.fraction = 0;
|
---|
249 | return result;
|
---|
250 | }
|
---|
251 |
|
---|
252 | if (isFloat64Zero(b)) {
|
---|
253 | if (isFloat64Zero(a)) {
|
---|
254 | /*FIXME: 0 / 0*/
|
---|
255 | result.binary = FLOAT64_NAN;
|
---|
256 | return result;
|
---|
257 | }
|
---|
258 | /* FIXME: division by zero */
|
---|
259 | result.parts.exp = 0;
|
---|
260 | result.parts.fraction = 0;
|
---|
261 | return result;
|
---|
262 | }
|
---|
263 |
|
---|
264 |
|
---|
265 | afrac = a.parts.fraction;
|
---|
266 | aexp = a.parts.exp;
|
---|
267 | bfrac = b.parts.fraction;
|
---|
268 | bexp = b.parts.exp;
|
---|
269 |
|
---|
270 | /* denormalized numbers */
|
---|
271 | if (aexp == 0) {
|
---|
272 | if (afrac == 0) {
|
---|
273 | result.parts.exp = 0;
|
---|
274 | result.parts.fraction = 0;
|
---|
275 | return result;
|
---|
276 | }
|
---|
277 | /* normalize it*/
|
---|
278 |
|
---|
279 | aexp++;
|
---|
280 | /* afrac is nonzero => it must stop */
|
---|
281 | while (! (afrac & FLOAT64_HIDDEN_BIT_MASK) ) {
|
---|
282 | afrac <<= 1;
|
---|
283 | aexp--;
|
---|
284 | }
|
---|
285 | }
|
---|
286 |
|
---|
287 | if (bexp == 0) {
|
---|
288 | bexp++;
|
---|
289 | /* bfrac is nonzero => it must stop */
|
---|
290 | while (! (bfrac & FLOAT64_HIDDEN_BIT_MASK) ) {
|
---|
291 | bfrac <<= 1;
|
---|
292 | bexp--;
|
---|
293 | }
|
---|
294 | }
|
---|
295 |
|
---|
296 | afrac = (afrac | FLOAT64_HIDDEN_BIT_MASK ) << (64 - FLOAT64_FRACTION_SIZE - 2 );
|
---|
297 | bfrac = (bfrac | FLOAT64_HIDDEN_BIT_MASK ) << (64 - FLOAT64_FRACTION_SIZE - 1);
|
---|
298 |
|
---|
299 | if ( bfrac <= (afrac << 1) ) {
|
---|
300 | afrac >>= 1;
|
---|
301 | aexp++;
|
---|
302 | }
|
---|
303 |
|
---|
304 | cexp = aexp - bexp + FLOAT64_BIAS - 2;
|
---|
305 |
|
---|
306 | cfrac = divFloat64estim(afrac, bfrac);
|
---|
307 |
|
---|
308 | if (( cfrac & 0x1FF ) <= 2) { /*FIXME:?? */
|
---|
309 | mul64integers( bfrac, cfrac, &remlo, &remhi);
|
---|
310 | /* (__u128)afrac << 64 - ( ((__u128)remhi<<64) + (__u128)remlo )*/
|
---|
311 | remhi = afrac - remhi - ( remlo > 0);
|
---|
312 | remlo = - remlo;
|
---|
313 |
|
---|
314 | while ((int64_t) remhi < 0) {
|
---|
315 | cfrac--;
|
---|
316 | remlo += bfrac;
|
---|
317 | remhi += ( remlo < bfrac );
|
---|
318 | }
|
---|
319 | cfrac |= ( remlo != 0 );
|
---|
320 | }
|
---|
321 |
|
---|
322 | /* round and shift */
|
---|
323 | result = finishFloat64(cexp, cfrac, result.parts.sign);
|
---|
324 | return result;
|
---|
325 |
|
---|
326 | }
|
---|
327 |
|
---|
328 | uint64_t divFloat64estim(uint64_t a, uint64_t b)
|
---|
329 | {
|
---|
330 | uint64_t bhi;
|
---|
331 | uint64_t remhi, remlo;
|
---|
332 | uint64_t result;
|
---|
333 |
|
---|
334 | if ( b <= a ) {
|
---|
335 | return 0xFFFFFFFFFFFFFFFFull;
|
---|
336 | }
|
---|
337 |
|
---|
338 | bhi = b >> 32;
|
---|
339 | result = ((bhi << 32) <= a) ?( 0xFFFFFFFFull << 32) : ( a / bhi) << 32;
|
---|
340 | mul64integers(b, result, &remlo, &remhi);
|
---|
341 |
|
---|
342 | remhi = a - remhi - (remlo > 0);
|
---|
343 | remlo = - remlo;
|
---|
344 |
|
---|
345 | b <<= 32;
|
---|
346 | while ( (int64_t) remhi < 0 ) {
|
---|
347 | result -= 0x1ll << 32;
|
---|
348 | remlo += b;
|
---|
349 | remhi += bhi + ( remlo < b );
|
---|
350 | }
|
---|
351 | remhi = (remhi << 32) | (remlo >> 32);
|
---|
352 | if (( bhi << 32) <= remhi) {
|
---|
353 | result |= 0xFFFFFFFF;
|
---|
354 | } else {
|
---|
355 | result |= remhi / bhi;
|
---|
356 | }
|
---|
357 |
|
---|
358 |
|
---|
359 | return result;
|
---|
360 | }
|
---|
361 |
|
---|
362 | /** @}
|
---|
363 | */
|
---|