1 | /*
|
---|
2 | * Copyright (c) 2005 Josef Cejka
|
---|
3 | * Copyright (c) 2011 Petr Koupy
|
---|
4 | * All rights reserved.
|
---|
5 | *
|
---|
6 | * Redistribution and use in source and binary forms, with or without
|
---|
7 | * modification, are permitted provided that the following conditions
|
---|
8 | * are met:
|
---|
9 | *
|
---|
10 | * - Redistributions of source code must retain the above copyright
|
---|
11 | * notice, this list of conditions and the following disclaimer.
|
---|
12 | * - Redistributions in binary form must reproduce the above copyright
|
---|
13 | * notice, this list of conditions and the following disclaimer in the
|
---|
14 | * documentation and/or other materials provided with the distribution.
|
---|
15 | * - The name of the author may not be used to endorse or promote products
|
---|
16 | * derived from this software without specific prior written permission.
|
---|
17 | *
|
---|
18 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
19 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
20 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
21 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
22 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
23 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
24 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
25 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
26 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
27 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
28 | */
|
---|
29 |
|
---|
30 | /** @addtogroup softfloat
|
---|
31 | * @{
|
---|
32 | */
|
---|
33 | /** @file Division functions.
|
---|
34 | */
|
---|
35 |
|
---|
36 | #include <sftypes.h>
|
---|
37 | #include <add.h>
|
---|
38 | #include <div.h>
|
---|
39 | #include <comparison.h>
|
---|
40 | #include <mul.h>
|
---|
41 | #include <common.h>
|
---|
42 |
|
---|
43 | /**
|
---|
44 | * Divide two single-precision floats.
|
---|
45 | *
|
---|
46 | * @param a Nominator.
|
---|
47 | * @param b Denominator.
|
---|
48 | * @return Result of division.
|
---|
49 | */
|
---|
50 | float32 divFloat32(float32 a, float32 b)
|
---|
51 | {
|
---|
52 | float32 result;
|
---|
53 | int32_t aexp, bexp, cexp;
|
---|
54 | uint64_t afrac, bfrac, cfrac;
|
---|
55 |
|
---|
56 | result.parts.sign = a.parts.sign ^ b.parts.sign;
|
---|
57 |
|
---|
58 | if (isFloat32NaN(a)) {
|
---|
59 | if (isFloat32SigNaN(a)) {
|
---|
60 | /*FIXME: SigNaN*/
|
---|
61 | }
|
---|
62 | /*NaN*/
|
---|
63 | return a;
|
---|
64 | }
|
---|
65 |
|
---|
66 | if (isFloat32NaN(b)) {
|
---|
67 | if (isFloat32SigNaN(b)) {
|
---|
68 | /*FIXME: SigNaN*/
|
---|
69 | }
|
---|
70 | /*NaN*/
|
---|
71 | return b;
|
---|
72 | }
|
---|
73 |
|
---|
74 | if (isFloat32Infinity(a)) {
|
---|
75 | if (isFloat32Infinity(b)) {
|
---|
76 | /*FIXME: inf / inf */
|
---|
77 | result.binary = FLOAT32_NAN;
|
---|
78 | return result;
|
---|
79 | }
|
---|
80 | /* inf / num */
|
---|
81 | result.parts.exp = a.parts.exp;
|
---|
82 | result.parts.fraction = a.parts.fraction;
|
---|
83 | return result;
|
---|
84 | }
|
---|
85 |
|
---|
86 | if (isFloat32Infinity(b)) {
|
---|
87 | if (isFloat32Zero(a)) {
|
---|
88 | /* FIXME 0 / inf */
|
---|
89 | result.parts.exp = 0;
|
---|
90 | result.parts.fraction = 0;
|
---|
91 | return result;
|
---|
92 | }
|
---|
93 | /* FIXME: num / inf*/
|
---|
94 | result.parts.exp = 0;
|
---|
95 | result.parts.fraction = 0;
|
---|
96 | return result;
|
---|
97 | }
|
---|
98 |
|
---|
99 | if (isFloat32Zero(b)) {
|
---|
100 | if (isFloat32Zero(a)) {
|
---|
101 | /*FIXME: 0 / 0*/
|
---|
102 | result.binary = FLOAT32_NAN;
|
---|
103 | return result;
|
---|
104 | }
|
---|
105 | /* FIXME: division by zero */
|
---|
106 | result.parts.exp = 0;
|
---|
107 | result.parts.fraction = 0;
|
---|
108 | return result;
|
---|
109 | }
|
---|
110 |
|
---|
111 | afrac = a.parts.fraction;
|
---|
112 | aexp = a.parts.exp;
|
---|
113 | bfrac = b.parts.fraction;
|
---|
114 | bexp = b.parts.exp;
|
---|
115 |
|
---|
116 | /* denormalized numbers */
|
---|
117 | if (aexp == 0) {
|
---|
118 | if (afrac == 0) {
|
---|
119 | result.parts.exp = 0;
|
---|
120 | result.parts.fraction = 0;
|
---|
121 | return result;
|
---|
122 | }
|
---|
123 |
|
---|
124 | /* normalize it*/
|
---|
125 | afrac <<= 1;
|
---|
126 | /* afrac is nonzero => it must stop */
|
---|
127 | while (!(afrac & FLOAT32_HIDDEN_BIT_MASK)) {
|
---|
128 | afrac <<= 1;
|
---|
129 | aexp--;
|
---|
130 | }
|
---|
131 | }
|
---|
132 |
|
---|
133 | if (bexp == 0) {
|
---|
134 | bfrac <<= 1;
|
---|
135 | /* bfrac is nonzero => it must stop */
|
---|
136 | while (!(bfrac & FLOAT32_HIDDEN_BIT_MASK)) {
|
---|
137 | bfrac <<= 1;
|
---|
138 | bexp--;
|
---|
139 | }
|
---|
140 | }
|
---|
141 |
|
---|
142 | afrac = (afrac | FLOAT32_HIDDEN_BIT_MASK) << (32 - FLOAT32_FRACTION_SIZE - 1);
|
---|
143 | bfrac = (bfrac | FLOAT32_HIDDEN_BIT_MASK) << (32 - FLOAT32_FRACTION_SIZE);
|
---|
144 |
|
---|
145 | if (bfrac <= (afrac << 1)) {
|
---|
146 | afrac >>= 1;
|
---|
147 | aexp++;
|
---|
148 | }
|
---|
149 |
|
---|
150 | cexp = aexp - bexp + FLOAT32_BIAS - 2;
|
---|
151 |
|
---|
152 | cfrac = (afrac << 32) / bfrac;
|
---|
153 | if ((cfrac & 0x3F) == 0) {
|
---|
154 | cfrac |= (bfrac * cfrac != afrac << 32);
|
---|
155 | }
|
---|
156 |
|
---|
157 | /* pack and round */
|
---|
158 |
|
---|
159 | /* find first nonzero digit and shift result and detect possibly underflow */
|
---|
160 | while ((cexp > 0) && (cfrac) && (!(cfrac & (FLOAT32_HIDDEN_BIT_MASK << 7)))) {
|
---|
161 | cexp--;
|
---|
162 | cfrac <<= 1;
|
---|
163 | /* TODO: fix underflow */
|
---|
164 | }
|
---|
165 |
|
---|
166 | cfrac += (0x1 << 6); /* FIXME: 7 is not sure*/
|
---|
167 |
|
---|
168 | if (cfrac & (FLOAT32_HIDDEN_BIT_MASK << 7)) {
|
---|
169 | ++cexp;
|
---|
170 | cfrac >>= 1;
|
---|
171 | }
|
---|
172 |
|
---|
173 | /* check overflow */
|
---|
174 | if (cexp >= FLOAT32_MAX_EXPONENT) {
|
---|
175 | /* FIXME: overflow, return infinity */
|
---|
176 | result.parts.exp = FLOAT32_MAX_EXPONENT;
|
---|
177 | result.parts.fraction = 0;
|
---|
178 | return result;
|
---|
179 | }
|
---|
180 |
|
---|
181 | if (cexp < 0) {
|
---|
182 | /* FIXME: underflow */
|
---|
183 | result.parts.exp = 0;
|
---|
184 | if ((cexp + FLOAT32_FRACTION_SIZE) < 0) {
|
---|
185 | result.parts.fraction = 0;
|
---|
186 | return result;
|
---|
187 | }
|
---|
188 | cfrac >>= 1;
|
---|
189 | while (cexp < 0) {
|
---|
190 | cexp++;
|
---|
191 | cfrac >>= 1;
|
---|
192 | }
|
---|
193 | } else {
|
---|
194 | result.parts.exp = (uint32_t) cexp;
|
---|
195 | }
|
---|
196 |
|
---|
197 | result.parts.fraction = ((cfrac >> 6) & (~FLOAT32_HIDDEN_BIT_MASK));
|
---|
198 |
|
---|
199 | return result;
|
---|
200 | }
|
---|
201 |
|
---|
202 | /**
|
---|
203 | * Divide two double-precision floats.
|
---|
204 | *
|
---|
205 | * @param a Nominator.
|
---|
206 | * @param b Denominator.
|
---|
207 | * @return Result of division.
|
---|
208 | */
|
---|
209 | float64 divFloat64(float64 a, float64 b)
|
---|
210 | {
|
---|
211 | float64 result;
|
---|
212 | int64_t aexp, bexp, cexp;
|
---|
213 | uint64_t afrac, bfrac, cfrac;
|
---|
214 | uint64_t remlo, remhi;
|
---|
215 | uint64_t tmplo, tmphi;
|
---|
216 |
|
---|
217 | result.parts.sign = a.parts.sign ^ b.parts.sign;
|
---|
218 |
|
---|
219 | if (isFloat64NaN(a)) {
|
---|
220 | if (isFloat64SigNaN(b)) {
|
---|
221 | /*FIXME: SigNaN*/
|
---|
222 | return b;
|
---|
223 | }
|
---|
224 |
|
---|
225 | if (isFloat64SigNaN(a)) {
|
---|
226 | /*FIXME: SigNaN*/
|
---|
227 | }
|
---|
228 | /*NaN*/
|
---|
229 | return a;
|
---|
230 | }
|
---|
231 |
|
---|
232 | if (isFloat64NaN(b)) {
|
---|
233 | if (isFloat64SigNaN(b)) {
|
---|
234 | /*FIXME: SigNaN*/
|
---|
235 | }
|
---|
236 | /*NaN*/
|
---|
237 | return b;
|
---|
238 | }
|
---|
239 |
|
---|
240 | if (isFloat64Infinity(a)) {
|
---|
241 | if (isFloat64Infinity(b) || isFloat64Zero(b)) {
|
---|
242 | /*FIXME: inf / inf */
|
---|
243 | result.binary = FLOAT64_NAN;
|
---|
244 | return result;
|
---|
245 | }
|
---|
246 | /* inf / num */
|
---|
247 | result.parts.exp = a.parts.exp;
|
---|
248 | result.parts.fraction = a.parts.fraction;
|
---|
249 | return result;
|
---|
250 | }
|
---|
251 |
|
---|
252 | if (isFloat64Infinity(b)) {
|
---|
253 | if (isFloat64Zero(a)) {
|
---|
254 | /* FIXME 0 / inf */
|
---|
255 | result.parts.exp = 0;
|
---|
256 | result.parts.fraction = 0;
|
---|
257 | return result;
|
---|
258 | }
|
---|
259 | /* FIXME: num / inf*/
|
---|
260 | result.parts.exp = 0;
|
---|
261 | result.parts.fraction = 0;
|
---|
262 | return result;
|
---|
263 | }
|
---|
264 |
|
---|
265 | if (isFloat64Zero(b)) {
|
---|
266 | if (isFloat64Zero(a)) {
|
---|
267 | /*FIXME: 0 / 0*/
|
---|
268 | result.binary = FLOAT64_NAN;
|
---|
269 | return result;
|
---|
270 | }
|
---|
271 | /* FIXME: division by zero */
|
---|
272 | result.parts.exp = 0;
|
---|
273 | result.parts.fraction = 0;
|
---|
274 | return result;
|
---|
275 | }
|
---|
276 |
|
---|
277 | afrac = a.parts.fraction;
|
---|
278 | aexp = a.parts.exp;
|
---|
279 | bfrac = b.parts.fraction;
|
---|
280 | bexp = b.parts.exp;
|
---|
281 |
|
---|
282 | /* denormalized numbers */
|
---|
283 | if (aexp == 0) {
|
---|
284 | if (afrac == 0) {
|
---|
285 | result.parts.exp = 0;
|
---|
286 | result.parts.fraction = 0;
|
---|
287 | return result;
|
---|
288 | }
|
---|
289 |
|
---|
290 | /* normalize it*/
|
---|
291 | aexp++;
|
---|
292 | /* afrac is nonzero => it must stop */
|
---|
293 | while (!(afrac & FLOAT64_HIDDEN_BIT_MASK)) {
|
---|
294 | afrac <<= 1;
|
---|
295 | aexp--;
|
---|
296 | }
|
---|
297 | }
|
---|
298 |
|
---|
299 | if (bexp == 0) {
|
---|
300 | bexp++;
|
---|
301 | /* bfrac is nonzero => it must stop */
|
---|
302 | while (!(bfrac & FLOAT64_HIDDEN_BIT_MASK)) {
|
---|
303 | bfrac <<= 1;
|
---|
304 | bexp--;
|
---|
305 | }
|
---|
306 | }
|
---|
307 |
|
---|
308 | afrac = (afrac | FLOAT64_HIDDEN_BIT_MASK) << (64 - FLOAT64_FRACTION_SIZE - 2);
|
---|
309 | bfrac = (bfrac | FLOAT64_HIDDEN_BIT_MASK) << (64 - FLOAT64_FRACTION_SIZE - 1);
|
---|
310 |
|
---|
311 | if (bfrac <= (afrac << 1)) {
|
---|
312 | afrac >>= 1;
|
---|
313 | aexp++;
|
---|
314 | }
|
---|
315 |
|
---|
316 | cexp = aexp - bexp + FLOAT64_BIAS - 2;
|
---|
317 |
|
---|
318 | cfrac = div128est(afrac, 0x0ll, bfrac);
|
---|
319 |
|
---|
320 | if ((cfrac & 0x1FF) <= 2) {
|
---|
321 | mul64(bfrac, cfrac, &tmphi, &tmplo);
|
---|
322 | sub128(afrac, 0x0ll, tmphi, tmplo, &remhi, &remlo);
|
---|
323 |
|
---|
324 | while ((int64_t) remhi < 0) {
|
---|
325 | cfrac--;
|
---|
326 | add128(remhi, remlo, 0x0ll, bfrac, &remhi, &remlo);
|
---|
327 | }
|
---|
328 | cfrac |= (remlo != 0);
|
---|
329 | }
|
---|
330 |
|
---|
331 | /* round and shift */
|
---|
332 | result = finishFloat64(cexp, cfrac, result.parts.sign);
|
---|
333 | return result;
|
---|
334 | }
|
---|
335 |
|
---|
336 | /**
|
---|
337 | * Divide two quadruple-precision floats.
|
---|
338 | *
|
---|
339 | * @param a Nominator.
|
---|
340 | * @param b Denominator.
|
---|
341 | * @return Result of division.
|
---|
342 | */
|
---|
343 | float128 divFloat128(float128 a, float128 b)
|
---|
344 | {
|
---|
345 | float128 result;
|
---|
346 | int64_t aexp, bexp, cexp;
|
---|
347 | uint64_t afrac_hi, afrac_lo, bfrac_hi, bfrac_lo, cfrac_hi, cfrac_lo;
|
---|
348 | uint64_t shift_out;
|
---|
349 | uint64_t rem_hihi, rem_hilo, rem_lohi, rem_lolo;
|
---|
350 | uint64_t tmp_hihi, tmp_hilo, tmp_lohi, tmp_lolo;
|
---|
351 |
|
---|
352 | result.parts.sign = a.parts.sign ^ b.parts.sign;
|
---|
353 |
|
---|
354 | if (isFloat128NaN(a)) {
|
---|
355 | if (isFloat128SigNaN(b)) {
|
---|
356 | /*FIXME: SigNaN*/
|
---|
357 | return b;
|
---|
358 | }
|
---|
359 |
|
---|
360 | if (isFloat128SigNaN(a)) {
|
---|
361 | /*FIXME: SigNaN*/
|
---|
362 | }
|
---|
363 | /*NaN*/
|
---|
364 | return a;
|
---|
365 | }
|
---|
366 |
|
---|
367 | if (isFloat128NaN(b)) {
|
---|
368 | if (isFloat128SigNaN(b)) {
|
---|
369 | /*FIXME: SigNaN*/
|
---|
370 | }
|
---|
371 | /*NaN*/
|
---|
372 | return b;
|
---|
373 | }
|
---|
374 |
|
---|
375 | if (isFloat128Infinity(a)) {
|
---|
376 | if (isFloat128Infinity(b) || isFloat128Zero(b)) {
|
---|
377 | /*FIXME: inf / inf */
|
---|
378 | result.binary.hi = FLOAT128_NAN_HI;
|
---|
379 | result.binary.lo = FLOAT128_NAN_LO;
|
---|
380 | return result;
|
---|
381 | }
|
---|
382 | /* inf / num */
|
---|
383 | result.parts.exp = a.parts.exp;
|
---|
384 | result.parts.frac_hi = a.parts.frac_hi;
|
---|
385 | result.parts.frac_lo = a.parts.frac_lo;
|
---|
386 | return result;
|
---|
387 | }
|
---|
388 |
|
---|
389 | if (isFloat128Infinity(b)) {
|
---|
390 | if (isFloat128Zero(a)) {
|
---|
391 | /* FIXME 0 / inf */
|
---|
392 | result.parts.exp = 0;
|
---|
393 | result.parts.frac_hi = 0;
|
---|
394 | result.parts.frac_lo = 0;
|
---|
395 | return result;
|
---|
396 | }
|
---|
397 | /* FIXME: num / inf*/
|
---|
398 | result.parts.exp = 0;
|
---|
399 | result.parts.frac_hi = 0;
|
---|
400 | result.parts.frac_lo = 0;
|
---|
401 | return result;
|
---|
402 | }
|
---|
403 |
|
---|
404 | if (isFloat128Zero(b)) {
|
---|
405 | if (isFloat128Zero(a)) {
|
---|
406 | /*FIXME: 0 / 0*/
|
---|
407 | result.binary.hi = FLOAT128_NAN_HI;
|
---|
408 | result.binary.lo = FLOAT128_NAN_LO;
|
---|
409 | return result;
|
---|
410 | }
|
---|
411 | /* FIXME: division by zero */
|
---|
412 | result.parts.exp = 0;
|
---|
413 | result.parts.frac_hi = 0;
|
---|
414 | result.parts.frac_lo = 0;
|
---|
415 | return result;
|
---|
416 | }
|
---|
417 |
|
---|
418 | afrac_hi = a.parts.frac_hi;
|
---|
419 | afrac_lo = a.parts.frac_lo;
|
---|
420 | aexp = a.parts.exp;
|
---|
421 | bfrac_hi = b.parts.frac_hi;
|
---|
422 | bfrac_lo = b.parts.frac_lo;
|
---|
423 | bexp = b.parts.exp;
|
---|
424 |
|
---|
425 | /* denormalized numbers */
|
---|
426 | if (aexp == 0) {
|
---|
427 | if (eq128(afrac_hi, afrac_lo, 0x0ll, 0x0ll)) {
|
---|
428 | result.parts.exp = 0;
|
---|
429 | result.parts.frac_hi = 0;
|
---|
430 | result.parts.frac_lo = 0;
|
---|
431 | return result;
|
---|
432 | }
|
---|
433 |
|
---|
434 | /* normalize it*/
|
---|
435 | aexp++;
|
---|
436 | /* afrac is nonzero => it must stop */
|
---|
437 | and128(afrac_hi, afrac_lo,
|
---|
438 | FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
439 | &tmp_hihi, &tmp_lolo);
|
---|
440 | while (!lt128(0x0ll, 0x0ll, tmp_hihi, tmp_lolo)) {
|
---|
441 | lshift128(afrac_hi, afrac_lo, 1, &afrac_hi, &afrac_lo);
|
---|
442 | aexp--;
|
---|
443 | }
|
---|
444 | }
|
---|
445 |
|
---|
446 | if (bexp == 0) {
|
---|
447 | bexp++;
|
---|
448 | /* bfrac is nonzero => it must stop */
|
---|
449 | and128(bfrac_hi, bfrac_lo,
|
---|
450 | FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
451 | &tmp_hihi, &tmp_lolo);
|
---|
452 | while (!lt128(0x0ll, 0x0ll, tmp_hihi, tmp_lolo)) {
|
---|
453 | lshift128(bfrac_hi, bfrac_lo, 1, &bfrac_hi, &bfrac_lo);
|
---|
454 | bexp--;
|
---|
455 | }
|
---|
456 | }
|
---|
457 |
|
---|
458 | or128(afrac_hi, afrac_lo,
|
---|
459 | FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
460 | &afrac_hi, &afrac_lo);
|
---|
461 | lshift128(afrac_hi, afrac_lo,
|
---|
462 | (128 - FLOAT128_FRACTION_SIZE - 1), &afrac_hi, &afrac_lo);
|
---|
463 | or128(bfrac_hi, bfrac_lo,
|
---|
464 | FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
465 | &bfrac_hi, &bfrac_lo);
|
---|
466 | lshift128(bfrac_hi, bfrac_lo,
|
---|
467 | (128 - FLOAT128_FRACTION_SIZE - 1), &bfrac_hi, &bfrac_lo);
|
---|
468 |
|
---|
469 | if (le128(bfrac_hi, bfrac_lo, afrac_hi, afrac_lo)) {
|
---|
470 | rshift128(afrac_hi, afrac_lo, 1, &afrac_hi, &afrac_lo);
|
---|
471 | aexp++;
|
---|
472 | }
|
---|
473 |
|
---|
474 | cexp = aexp - bexp + FLOAT128_BIAS - 2;
|
---|
475 |
|
---|
476 | cfrac_hi = div128est(afrac_hi, afrac_lo, bfrac_hi);
|
---|
477 |
|
---|
478 | mul128(bfrac_hi, bfrac_lo, 0x0ll, cfrac_hi,
|
---|
479 | &tmp_lolo /* dummy */, &tmp_hihi, &tmp_hilo, &tmp_lohi);
|
---|
480 |
|
---|
481 | /* sub192(afrac_hi, afrac_lo, 0,
|
---|
482 | * tmp_hihi, tmp_hilo, tmp_lohi
|
---|
483 | * &rem_hihi, &rem_hilo, &rem_lohi); */
|
---|
484 | sub128(afrac_hi, afrac_lo, tmp_hihi, tmp_hilo, &rem_hihi, &rem_hilo);
|
---|
485 | if (tmp_lohi > 0) {
|
---|
486 | sub128(rem_hihi, rem_hilo, 0x0ll, 0x1ll, &rem_hihi, &rem_hilo);
|
---|
487 | }
|
---|
488 | rem_lohi = -tmp_lohi;
|
---|
489 |
|
---|
490 | while ((int64_t) rem_hihi < 0) {
|
---|
491 | --cfrac_hi;
|
---|
492 | /* add192(rem_hihi, rem_hilo, rem_lohi,
|
---|
493 | * 0, bfrac_hi, bfrac_lo,
|
---|
494 | * &rem_hihi, &rem_hilo, &rem_lohi); */
|
---|
495 | add128(rem_hilo, rem_lohi, bfrac_hi, bfrac_lo, &rem_hilo, &rem_lohi);
|
---|
496 | if (lt128(rem_hilo, rem_lohi, bfrac_hi, bfrac_lo)) {
|
---|
497 | ++rem_hihi;
|
---|
498 | }
|
---|
499 | }
|
---|
500 |
|
---|
501 | cfrac_lo = div128est(rem_hilo, rem_lohi, bfrac_lo);
|
---|
502 |
|
---|
503 | if ((cfrac_lo & 0x3FFF) <= 4) {
|
---|
504 | mul128(bfrac_hi, bfrac_lo, 0x0ll, cfrac_lo,
|
---|
505 | &tmp_hihi /* dummy */, &tmp_hilo, &tmp_lohi, &tmp_lolo);
|
---|
506 |
|
---|
507 | /* sub192(rem_hilo, rem_lohi, 0,
|
---|
508 | * tmp_hilo, tmp_lohi, tmp_lolo,
|
---|
509 | * &rem_hilo, &rem_lohi, &rem_lolo); */
|
---|
510 | sub128(rem_hilo, rem_lohi, tmp_hilo, tmp_lohi, &rem_hilo, &rem_lohi);
|
---|
511 | if (tmp_lolo > 0) {
|
---|
512 | sub128(rem_hilo, rem_lohi, 0x0ll, 0x1ll, &rem_hilo, &rem_lohi);
|
---|
513 | }
|
---|
514 | rem_lolo = -tmp_lolo;
|
---|
515 |
|
---|
516 | while ((int64_t) rem_hilo < 0) {
|
---|
517 | --cfrac_lo;
|
---|
518 | /* add192(rem_hilo, rem_lohi, rem_lolo,
|
---|
519 | * 0, bfrac_hi, bfrac_lo,
|
---|
520 | * &rem_hilo, &rem_lohi, &rem_lolo); */
|
---|
521 | add128(rem_lohi, rem_lolo, bfrac_hi, bfrac_lo, &rem_lohi, &rem_lolo);
|
---|
522 | if (lt128(rem_lohi, rem_lolo, bfrac_hi, bfrac_lo)) {
|
---|
523 | ++rem_hilo;
|
---|
524 | }
|
---|
525 | }
|
---|
526 |
|
---|
527 | cfrac_lo |= ((rem_hilo | rem_lohi | rem_lolo) != 0 );
|
---|
528 | }
|
---|
529 |
|
---|
530 | shift_out = cfrac_lo << (64 - (128 - FLOAT128_FRACTION_SIZE - 1));
|
---|
531 | rshift128(cfrac_hi, cfrac_lo, (128 - FLOAT128_FRACTION_SIZE - 1),
|
---|
532 | &cfrac_hi, &cfrac_lo);
|
---|
533 |
|
---|
534 | result = finishFloat128(cexp, cfrac_hi, cfrac_lo, result.parts.sign, shift_out);
|
---|
535 | return result;
|
---|
536 | }
|
---|
537 |
|
---|
538 | /** @}
|
---|
539 | */
|
---|