1 | /*
|
---|
2 | * Copyright (c) 2005 Josef Cejka
|
---|
3 | * Copyright (c) 2011 Petr Koupy
|
---|
4 | * All rights reserved.
|
---|
5 | *
|
---|
6 | * Redistribution and use in source and binary forms, with or without
|
---|
7 | * modification, are permitted provided that the following conditions
|
---|
8 | * are met:
|
---|
9 | *
|
---|
10 | * - Redistributions of source code must retain the above copyright
|
---|
11 | * notice, this list of conditions and the following disclaimer.
|
---|
12 | * - Redistributions in binary form must reproduce the above copyright
|
---|
13 | * notice, this list of conditions and the following disclaimer in the
|
---|
14 | * documentation and/or other materials provided with the distribution.
|
---|
15 | * - The name of the author may not be used to endorse or promote products
|
---|
16 | * derived from this software without specific prior written permission.
|
---|
17 | *
|
---|
18 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
19 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
20 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
21 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
22 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
23 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
24 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
25 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
26 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
27 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
28 | */
|
---|
29 |
|
---|
30 | /** @addtogroup softfloat
|
---|
31 | * @{
|
---|
32 | */
|
---|
33 | /** @file Conversion of precision and conversion between integers and floats.
|
---|
34 | */
|
---|
35 |
|
---|
36 | #include <sftypes.h>
|
---|
37 | #include <conversion.h>
|
---|
38 | #include <comparison.h>
|
---|
39 | #include <common.h>
|
---|
40 |
|
---|
41 | float64 float32_to_float64(float32 a)
|
---|
42 | {
|
---|
43 | float64 result;
|
---|
44 | uint64_t frac;
|
---|
45 |
|
---|
46 | result.parts.sign = a.parts.sign;
|
---|
47 | result.parts.fraction = a.parts.fraction;
|
---|
48 | result.parts.fraction <<= (FLOAT64_FRACTION_SIZE - FLOAT32_FRACTION_SIZE);
|
---|
49 |
|
---|
50 | if ((is_float32_infinity(a)) || (is_float32_nan(a))) {
|
---|
51 | result.parts.exp = FLOAT64_MAX_EXPONENT;
|
---|
52 | // TODO; check if its correct for SigNaNs
|
---|
53 | return result;
|
---|
54 | }
|
---|
55 |
|
---|
56 | result.parts.exp = a.parts.exp + ((int) FLOAT64_BIAS - FLOAT32_BIAS);
|
---|
57 | if (a.parts.exp == 0) {
|
---|
58 | /* normalize denormalized numbers */
|
---|
59 |
|
---|
60 | if (result.parts.fraction == 0) { /* fix zero */
|
---|
61 | result.parts.exp = 0;
|
---|
62 | return result;
|
---|
63 | }
|
---|
64 |
|
---|
65 | frac = result.parts.fraction;
|
---|
66 |
|
---|
67 | while (!(frac & FLOAT64_HIDDEN_BIT_MASK)) {
|
---|
68 | frac <<= 1;
|
---|
69 | --result.parts.exp;
|
---|
70 | }
|
---|
71 |
|
---|
72 | ++result.parts.exp;
|
---|
73 | result.parts.fraction = frac;
|
---|
74 | }
|
---|
75 |
|
---|
76 | return result;
|
---|
77 | }
|
---|
78 |
|
---|
79 | float128 float32_to_float128(float32 a)
|
---|
80 | {
|
---|
81 | float128 result;
|
---|
82 | uint64_t frac_hi, frac_lo;
|
---|
83 | uint64_t tmp_hi, tmp_lo;
|
---|
84 |
|
---|
85 | result.parts.sign = a.parts.sign;
|
---|
86 | result.parts.frac_hi = 0;
|
---|
87 | result.parts.frac_lo = a.parts.fraction;
|
---|
88 | lshift128(result.parts.frac_hi, result.parts.frac_lo,
|
---|
89 | (FLOAT128_FRACTION_SIZE - FLOAT32_FRACTION_SIZE),
|
---|
90 | &frac_hi, &frac_lo);
|
---|
91 | result.parts.frac_hi = frac_hi;
|
---|
92 | result.parts.frac_lo = frac_lo;
|
---|
93 |
|
---|
94 | if ((is_float32_infinity(a)) || (is_float32_nan(a))) {
|
---|
95 | result.parts.exp = FLOAT128_MAX_EXPONENT;
|
---|
96 | // TODO; check if its correct for SigNaNs
|
---|
97 | return result;
|
---|
98 | }
|
---|
99 |
|
---|
100 | result.parts.exp = a.parts.exp + ((int) FLOAT128_BIAS - FLOAT32_BIAS);
|
---|
101 | if (a.parts.exp == 0) {
|
---|
102 | /* normalize denormalized numbers */
|
---|
103 |
|
---|
104 | if (eq128(result.parts.frac_hi,
|
---|
105 | result.parts.frac_lo, 0x0ll, 0x0ll)) { /* fix zero */
|
---|
106 | result.parts.exp = 0;
|
---|
107 | return result;
|
---|
108 | }
|
---|
109 |
|
---|
110 | frac_hi = result.parts.frac_hi;
|
---|
111 | frac_lo = result.parts.frac_lo;
|
---|
112 |
|
---|
113 | and128(frac_hi, frac_lo,
|
---|
114 | FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
115 | &tmp_hi, &tmp_lo);
|
---|
116 | while (!lt128(0x0ll, 0x0ll, tmp_hi, tmp_lo)) {
|
---|
117 | lshift128(frac_hi, frac_lo, 1, &frac_hi, &frac_lo);
|
---|
118 | --result.parts.exp;
|
---|
119 | }
|
---|
120 |
|
---|
121 | ++result.parts.exp;
|
---|
122 | result.parts.frac_hi = frac_hi;
|
---|
123 | result.parts.frac_lo = frac_lo;
|
---|
124 | }
|
---|
125 |
|
---|
126 | return result;
|
---|
127 | }
|
---|
128 |
|
---|
129 | float128 float64_to_float128(float64 a)
|
---|
130 | {
|
---|
131 | float128 result;
|
---|
132 | uint64_t frac_hi, frac_lo;
|
---|
133 | uint64_t tmp_hi, tmp_lo;
|
---|
134 |
|
---|
135 | result.parts.sign = a.parts.sign;
|
---|
136 | result.parts.frac_hi = 0;
|
---|
137 | result.parts.frac_lo = a.parts.fraction;
|
---|
138 | lshift128(result.parts.frac_hi, result.parts.frac_lo,
|
---|
139 | (FLOAT128_FRACTION_SIZE - FLOAT64_FRACTION_SIZE),
|
---|
140 | &frac_hi, &frac_lo);
|
---|
141 | result.parts.frac_hi = frac_hi;
|
---|
142 | result.parts.frac_lo = frac_lo;
|
---|
143 |
|
---|
144 | if ((is_float64_infinity(a)) || (is_float64_nan(a))) {
|
---|
145 | result.parts.exp = FLOAT128_MAX_EXPONENT;
|
---|
146 | // TODO; check if its correct for SigNaNs
|
---|
147 | return result;
|
---|
148 | }
|
---|
149 |
|
---|
150 | result.parts.exp = a.parts.exp + ((int) FLOAT128_BIAS - FLOAT64_BIAS);
|
---|
151 | if (a.parts.exp == 0) {
|
---|
152 | /* normalize denormalized numbers */
|
---|
153 |
|
---|
154 | if (eq128(result.parts.frac_hi,
|
---|
155 | result.parts.frac_lo, 0x0ll, 0x0ll)) { /* fix zero */
|
---|
156 | result.parts.exp = 0;
|
---|
157 | return result;
|
---|
158 | }
|
---|
159 |
|
---|
160 | frac_hi = result.parts.frac_hi;
|
---|
161 | frac_lo = result.parts.frac_lo;
|
---|
162 |
|
---|
163 | and128(frac_hi, frac_lo,
|
---|
164 | FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
165 | &tmp_hi, &tmp_lo);
|
---|
166 | while (!lt128(0x0ll, 0x0ll, tmp_hi, tmp_lo)) {
|
---|
167 | lshift128(frac_hi, frac_lo, 1, &frac_hi, &frac_lo);
|
---|
168 | --result.parts.exp;
|
---|
169 | }
|
---|
170 |
|
---|
171 | ++result.parts.exp;
|
---|
172 | result.parts.frac_hi = frac_hi;
|
---|
173 | result.parts.frac_lo = frac_lo;
|
---|
174 | }
|
---|
175 |
|
---|
176 | return result;
|
---|
177 | }
|
---|
178 |
|
---|
179 | float32 float64_to_float32(float64 a)
|
---|
180 | {
|
---|
181 | float32 result;
|
---|
182 | int32_t exp;
|
---|
183 | uint64_t frac;
|
---|
184 |
|
---|
185 | result.parts.sign = a.parts.sign;
|
---|
186 |
|
---|
187 | if (is_float64_nan(a)) {
|
---|
188 | result.parts.exp = FLOAT32_MAX_EXPONENT;
|
---|
189 |
|
---|
190 | if (is_float64_signan(a)) {
|
---|
191 | /* set first bit of fraction nonzero */
|
---|
192 | result.parts.fraction = FLOAT32_HIDDEN_BIT_MASK >> 1;
|
---|
193 | return result;
|
---|
194 | }
|
---|
195 |
|
---|
196 | /* fraction nonzero but its first bit is zero */
|
---|
197 | result.parts.fraction = 0x1;
|
---|
198 | return result;
|
---|
199 | }
|
---|
200 |
|
---|
201 | if (is_float64_infinity(a)) {
|
---|
202 | result.parts.fraction = 0;
|
---|
203 | result.parts.exp = FLOAT32_MAX_EXPONENT;
|
---|
204 | return result;
|
---|
205 | }
|
---|
206 |
|
---|
207 | exp = (int) a.parts.exp - FLOAT64_BIAS + FLOAT32_BIAS;
|
---|
208 |
|
---|
209 | if (exp >= FLOAT32_MAX_EXPONENT) {
|
---|
210 | /* FIXME: overflow */
|
---|
211 | result.parts.fraction = 0;
|
---|
212 | result.parts.exp = FLOAT32_MAX_EXPONENT;
|
---|
213 | return result;
|
---|
214 | } else if (exp <= 0) {
|
---|
215 | /* underflow or denormalized */
|
---|
216 |
|
---|
217 | result.parts.exp = 0;
|
---|
218 |
|
---|
219 | exp *= -1;
|
---|
220 | if (exp > FLOAT32_FRACTION_SIZE) {
|
---|
221 | /* FIXME: underflow */
|
---|
222 | result.parts.fraction = 0;
|
---|
223 | return result;
|
---|
224 | }
|
---|
225 |
|
---|
226 | /* denormalized */
|
---|
227 |
|
---|
228 | frac = a.parts.fraction;
|
---|
229 | frac |= FLOAT64_HIDDEN_BIT_MASK; /* denormalize and set hidden bit */
|
---|
230 |
|
---|
231 | frac >>= (FLOAT64_FRACTION_SIZE - FLOAT32_FRACTION_SIZE + 1);
|
---|
232 |
|
---|
233 | while (exp > 0) {
|
---|
234 | --exp;
|
---|
235 | frac >>= 1;
|
---|
236 | }
|
---|
237 | result.parts.fraction = frac;
|
---|
238 |
|
---|
239 | return result;
|
---|
240 | }
|
---|
241 |
|
---|
242 | result.parts.exp = exp;
|
---|
243 | result.parts.fraction =
|
---|
244 | a.parts.fraction >> (FLOAT64_FRACTION_SIZE - FLOAT32_FRACTION_SIZE);
|
---|
245 | return result;
|
---|
246 | }
|
---|
247 |
|
---|
248 | float32 float128_to_float32(float128 a)
|
---|
249 | {
|
---|
250 | float32 result;
|
---|
251 | int32_t exp;
|
---|
252 | uint64_t frac_hi, frac_lo;
|
---|
253 |
|
---|
254 | result.parts.sign = a.parts.sign;
|
---|
255 |
|
---|
256 | if (is_float128_nan(a)) {
|
---|
257 | result.parts.exp = FLOAT32_MAX_EXPONENT;
|
---|
258 |
|
---|
259 | if (is_float128_signan(a)) {
|
---|
260 | /* set first bit of fraction nonzero */
|
---|
261 | result.parts.fraction = FLOAT32_HIDDEN_BIT_MASK >> 1;
|
---|
262 | return result;
|
---|
263 | }
|
---|
264 |
|
---|
265 | /* fraction nonzero but its first bit is zero */
|
---|
266 | result.parts.fraction = 0x1;
|
---|
267 | return result;
|
---|
268 | }
|
---|
269 |
|
---|
270 | if (is_float128_infinity(a)) {
|
---|
271 | result.parts.fraction = 0;
|
---|
272 | result.parts.exp = FLOAT32_MAX_EXPONENT;
|
---|
273 | return result;
|
---|
274 | }
|
---|
275 |
|
---|
276 | exp = (int) a.parts.exp - FLOAT128_BIAS + FLOAT32_BIAS;
|
---|
277 |
|
---|
278 | if (exp >= FLOAT32_MAX_EXPONENT) {
|
---|
279 | /* FIXME: overflow */
|
---|
280 | result.parts.fraction = 0;
|
---|
281 | result.parts.exp = FLOAT32_MAX_EXPONENT;
|
---|
282 | return result;
|
---|
283 | } else if (exp <= 0) {
|
---|
284 | /* underflow or denormalized */
|
---|
285 |
|
---|
286 | result.parts.exp = 0;
|
---|
287 |
|
---|
288 | exp *= -1;
|
---|
289 | if (exp > FLOAT32_FRACTION_SIZE) {
|
---|
290 | /* FIXME: underflow */
|
---|
291 | result.parts.fraction = 0;
|
---|
292 | return result;
|
---|
293 | }
|
---|
294 |
|
---|
295 | /* denormalized */
|
---|
296 |
|
---|
297 | frac_hi = a.parts.frac_hi;
|
---|
298 | frac_lo = a.parts.frac_lo;
|
---|
299 |
|
---|
300 | /* denormalize and set hidden bit */
|
---|
301 | frac_hi |= FLOAT128_HIDDEN_BIT_MASK_HI;
|
---|
302 |
|
---|
303 | rshift128(frac_hi, frac_lo,
|
---|
304 | (FLOAT128_FRACTION_SIZE - FLOAT32_FRACTION_SIZE + 1),
|
---|
305 | &frac_hi, &frac_lo);
|
---|
306 |
|
---|
307 | while (exp > 0) {
|
---|
308 | --exp;
|
---|
309 | rshift128(frac_hi, frac_lo, 1, &frac_hi, &frac_lo);
|
---|
310 | }
|
---|
311 | result.parts.fraction = frac_lo;
|
---|
312 |
|
---|
313 | return result;
|
---|
314 | }
|
---|
315 |
|
---|
316 | result.parts.exp = exp;
|
---|
317 | frac_hi = a.parts.frac_hi;
|
---|
318 | frac_lo = a.parts.frac_lo;
|
---|
319 | rshift128(frac_hi, frac_lo,
|
---|
320 | (FLOAT128_FRACTION_SIZE - FLOAT32_FRACTION_SIZE + 1),
|
---|
321 | &frac_hi, &frac_lo);
|
---|
322 | result.parts.fraction = frac_lo;
|
---|
323 | return result;
|
---|
324 | }
|
---|
325 |
|
---|
326 | float64 float128_to_float64(float128 a)
|
---|
327 | {
|
---|
328 | float64 result;
|
---|
329 | int32_t exp;
|
---|
330 | uint64_t frac_hi, frac_lo;
|
---|
331 |
|
---|
332 | result.parts.sign = a.parts.sign;
|
---|
333 |
|
---|
334 | if (is_float128_nan(a)) {
|
---|
335 | result.parts.exp = FLOAT64_MAX_EXPONENT;
|
---|
336 |
|
---|
337 | if (is_float128_signan(a)) {
|
---|
338 | /* set first bit of fraction nonzero */
|
---|
339 | result.parts.fraction = FLOAT64_HIDDEN_BIT_MASK >> 1;
|
---|
340 | return result;
|
---|
341 | }
|
---|
342 |
|
---|
343 | /* fraction nonzero but its first bit is zero */
|
---|
344 | result.parts.fraction = 0x1;
|
---|
345 | return result;
|
---|
346 | }
|
---|
347 |
|
---|
348 | if (is_float128_infinity(a)) {
|
---|
349 | result.parts.fraction = 0;
|
---|
350 | result.parts.exp = FLOAT64_MAX_EXPONENT;
|
---|
351 | return result;
|
---|
352 | }
|
---|
353 |
|
---|
354 | exp = (int) a.parts.exp - FLOAT128_BIAS + FLOAT64_BIAS;
|
---|
355 |
|
---|
356 | if (exp >= FLOAT64_MAX_EXPONENT) {
|
---|
357 | /* FIXME: overflow */
|
---|
358 | result.parts.fraction = 0;
|
---|
359 | result.parts.exp = FLOAT64_MAX_EXPONENT;
|
---|
360 | return result;
|
---|
361 | } else if (exp <= 0) {
|
---|
362 | /* underflow or denormalized */
|
---|
363 |
|
---|
364 | result.parts.exp = 0;
|
---|
365 |
|
---|
366 | exp *= -1;
|
---|
367 | if (exp > FLOAT64_FRACTION_SIZE) {
|
---|
368 | /* FIXME: underflow */
|
---|
369 | result.parts.fraction = 0;
|
---|
370 | return result;
|
---|
371 | }
|
---|
372 |
|
---|
373 | /* denormalized */
|
---|
374 |
|
---|
375 | frac_hi = a.parts.frac_hi;
|
---|
376 | frac_lo = a.parts.frac_lo;
|
---|
377 |
|
---|
378 | /* denormalize and set hidden bit */
|
---|
379 | frac_hi |= FLOAT128_HIDDEN_BIT_MASK_HI;
|
---|
380 |
|
---|
381 | rshift128(frac_hi, frac_lo,
|
---|
382 | (FLOAT128_FRACTION_SIZE - FLOAT64_FRACTION_SIZE + 1),
|
---|
383 | &frac_hi, &frac_lo);
|
---|
384 |
|
---|
385 | while (exp > 0) {
|
---|
386 | --exp;
|
---|
387 | rshift128(frac_hi, frac_lo, 1, &frac_hi, &frac_lo);
|
---|
388 | }
|
---|
389 | result.parts.fraction = frac_lo;
|
---|
390 |
|
---|
391 | return result;
|
---|
392 | }
|
---|
393 |
|
---|
394 | result.parts.exp = exp;
|
---|
395 | frac_hi = a.parts.frac_hi;
|
---|
396 | frac_lo = a.parts.frac_lo;
|
---|
397 | rshift128(frac_hi, frac_lo,
|
---|
398 | (FLOAT128_FRACTION_SIZE - FLOAT64_FRACTION_SIZE + 1),
|
---|
399 | &frac_hi, &frac_lo);
|
---|
400 | result.parts.fraction = frac_lo;
|
---|
401 | return result;
|
---|
402 | }
|
---|
403 |
|
---|
404 | /** Helper procedure for converting float32 to uint32.
|
---|
405 | *
|
---|
406 | * @param a Floating point number in normalized form
|
---|
407 | * (NaNs or Inf are not checked).
|
---|
408 | * @return Converted unsigned integer.
|
---|
409 | */
|
---|
410 | static uint32_t _float32_to_uint32_helper(float32 a)
|
---|
411 | {
|
---|
412 | uint32_t frac;
|
---|
413 |
|
---|
414 | if (a.parts.exp < FLOAT32_BIAS) {
|
---|
415 | /* TODO: rounding */
|
---|
416 | return 0;
|
---|
417 | }
|
---|
418 |
|
---|
419 | frac = a.parts.fraction;
|
---|
420 |
|
---|
421 | frac |= FLOAT32_HIDDEN_BIT_MASK;
|
---|
422 | /* shift fraction to left so hidden bit will be the most significant bit */
|
---|
423 | frac <<= 32 - FLOAT32_FRACTION_SIZE - 1;
|
---|
424 |
|
---|
425 | frac >>= 32 - (a.parts.exp - FLOAT32_BIAS) - 1;
|
---|
426 | if ((a.parts.sign == 1) && (frac != 0)) {
|
---|
427 | frac = ~frac;
|
---|
428 | ++frac;
|
---|
429 | }
|
---|
430 |
|
---|
431 | return frac;
|
---|
432 | }
|
---|
433 |
|
---|
434 | /*
|
---|
435 | * FIXME: Im not sure what to return if overflow/underflow happens
|
---|
436 | * - now its the biggest or the smallest int
|
---|
437 | */
|
---|
438 | uint32_t float32_to_uint32(float32 a)
|
---|
439 | {
|
---|
440 | if (is_float32_nan(a))
|
---|
441 | return UINT32_MAX;
|
---|
442 |
|
---|
443 | if (is_float32_infinity(a) || (a.parts.exp >= (32 + FLOAT32_BIAS))) {
|
---|
444 | if (a.parts.sign)
|
---|
445 | return UINT32_MIN;
|
---|
446 |
|
---|
447 | return UINT32_MAX;
|
---|
448 | }
|
---|
449 |
|
---|
450 | return _float32_to_uint32_helper(a);
|
---|
451 | }
|
---|
452 |
|
---|
453 | /*
|
---|
454 | * FIXME: Im not sure what to return if overflow/underflow happens
|
---|
455 | * - now its the biggest or the smallest int
|
---|
456 | */
|
---|
457 | int32_t float32_to_int32(float32 a)
|
---|
458 | {
|
---|
459 | if (is_float32_nan(a))
|
---|
460 | return INT32_MAX;
|
---|
461 |
|
---|
462 | if (is_float32_infinity(a) || (a.parts.exp >= (32 + FLOAT32_BIAS))) {
|
---|
463 | if (a.parts.sign)
|
---|
464 | return INT32_MIN;
|
---|
465 |
|
---|
466 | return INT32_MAX;
|
---|
467 | }
|
---|
468 |
|
---|
469 | return _float32_to_uint32_helper(a);
|
---|
470 | }
|
---|
471 |
|
---|
472 | /** Helper procedure for converting float32 to uint64.
|
---|
473 | *
|
---|
474 | * @param a Floating point number in normalized form
|
---|
475 | * (NaNs or Inf are not checked).
|
---|
476 | * @return Converted unsigned integer.
|
---|
477 | */
|
---|
478 | static uint64_t _float32_to_uint64_helper(float32 a)
|
---|
479 | {
|
---|
480 | uint64_t frac;
|
---|
481 |
|
---|
482 | if (a.parts.exp < FLOAT32_BIAS) {
|
---|
483 | // TODO: rounding
|
---|
484 | return 0;
|
---|
485 | }
|
---|
486 |
|
---|
487 | frac = a.parts.fraction;
|
---|
488 |
|
---|
489 | frac |= FLOAT32_HIDDEN_BIT_MASK;
|
---|
490 | /* shift fraction to left so hidden bit will be the most significant bit */
|
---|
491 | frac <<= 64 - FLOAT32_FRACTION_SIZE - 1;
|
---|
492 |
|
---|
493 | frac >>= 64 - (a.parts.exp - FLOAT32_BIAS) - 1;
|
---|
494 | if ((a.parts.sign == 1) && (frac != 0)) {
|
---|
495 | frac = ~frac;
|
---|
496 | ++frac;
|
---|
497 | }
|
---|
498 |
|
---|
499 | return frac;
|
---|
500 | }
|
---|
501 |
|
---|
502 | /*
|
---|
503 | * FIXME: Im not sure what to return if overflow/underflow happens
|
---|
504 | * - now its the biggest or the smallest int
|
---|
505 | */
|
---|
506 | uint64_t float32_to_uint64(float32 a)
|
---|
507 | {
|
---|
508 | if (is_float32_nan(a))
|
---|
509 | return UINT64_MAX;
|
---|
510 |
|
---|
511 | if (is_float32_infinity(a) || (a.parts.exp >= (64 + FLOAT32_BIAS))) {
|
---|
512 | if (a.parts.sign)
|
---|
513 | return UINT64_MIN;
|
---|
514 |
|
---|
515 | return UINT64_MAX;
|
---|
516 | }
|
---|
517 |
|
---|
518 | return _float32_to_uint64_helper(a);
|
---|
519 | }
|
---|
520 |
|
---|
521 | /*
|
---|
522 | * FIXME: Im not sure what to return if overflow/underflow happens
|
---|
523 | * - now its the biggest or the smallest int
|
---|
524 | */
|
---|
525 | int64_t float32_to_int64(float32 a)
|
---|
526 | {
|
---|
527 | if (is_float32_nan(a))
|
---|
528 | return INT64_MAX;
|
---|
529 |
|
---|
530 | if (is_float32_infinity(a) || (a.parts.exp >= (64 + FLOAT32_BIAS))) {
|
---|
531 | if (a.parts.sign)
|
---|
532 | return INT64_MIN;
|
---|
533 |
|
---|
534 | return INT64_MAX;
|
---|
535 | }
|
---|
536 |
|
---|
537 | return _float32_to_uint64_helper(a);
|
---|
538 | }
|
---|
539 |
|
---|
540 | /** Helper procedure for converting float64 to uint64.
|
---|
541 | *
|
---|
542 | * @param a Floating point number in normalized form
|
---|
543 | * (NaNs or Inf are not checked).
|
---|
544 | * @return Converted unsigned integer.
|
---|
545 | */
|
---|
546 | static uint64_t _float64_to_uint64_helper(float64 a)
|
---|
547 | {
|
---|
548 | uint64_t frac;
|
---|
549 |
|
---|
550 | if (a.parts.exp < FLOAT64_BIAS) {
|
---|
551 | // TODO: rounding
|
---|
552 | return 0;
|
---|
553 | }
|
---|
554 |
|
---|
555 | frac = a.parts.fraction;
|
---|
556 |
|
---|
557 | frac |= FLOAT64_HIDDEN_BIT_MASK;
|
---|
558 | /* shift fraction to left so hidden bit will be the most significant bit */
|
---|
559 | frac <<= 64 - FLOAT64_FRACTION_SIZE - 1;
|
---|
560 |
|
---|
561 | frac >>= 64 - (a.parts.exp - FLOAT64_BIAS) - 1;
|
---|
562 | if ((a.parts.sign == 1) && (frac != 0)) {
|
---|
563 | frac = ~frac;
|
---|
564 | ++frac;
|
---|
565 | }
|
---|
566 |
|
---|
567 | return frac;
|
---|
568 | }
|
---|
569 |
|
---|
570 | /*
|
---|
571 | * FIXME: Im not sure what to return if overflow/underflow happens
|
---|
572 | * - now its the biggest or the smallest int
|
---|
573 | */
|
---|
574 | uint32_t float64_to_uint32(float64 a)
|
---|
575 | {
|
---|
576 | if (is_float64_nan(a))
|
---|
577 | return UINT32_MAX;
|
---|
578 |
|
---|
579 | if (is_float64_infinity(a) || (a.parts.exp >= (32 + FLOAT64_BIAS))) {
|
---|
580 | if (a.parts.sign)
|
---|
581 | return UINT32_MIN;
|
---|
582 |
|
---|
583 | return UINT32_MAX;
|
---|
584 | }
|
---|
585 |
|
---|
586 | return (uint32_t) _float64_to_uint64_helper(a);
|
---|
587 | }
|
---|
588 |
|
---|
589 | /*
|
---|
590 | * FIXME: Im not sure what to return if overflow/underflow happens
|
---|
591 | * - now its the biggest or the smallest int
|
---|
592 | */
|
---|
593 | int32_t float64_to_int32(float64 a)
|
---|
594 | {
|
---|
595 | if (is_float64_nan(a))
|
---|
596 | return INT32_MAX;
|
---|
597 |
|
---|
598 | if (is_float64_infinity(a) || (a.parts.exp >= (32 + FLOAT64_BIAS))) {
|
---|
599 | if (a.parts.sign)
|
---|
600 | return INT32_MIN;
|
---|
601 |
|
---|
602 | return INT32_MAX;
|
---|
603 | }
|
---|
604 |
|
---|
605 | return (int32_t) _float64_to_uint64_helper(a);
|
---|
606 | }
|
---|
607 |
|
---|
608 | /*
|
---|
609 | * FIXME: Im not sure what to return if overflow/underflow happens
|
---|
610 | * - now its the biggest or the smallest int
|
---|
611 | */
|
---|
612 | uint64_t float64_to_uint64(float64 a)
|
---|
613 | {
|
---|
614 | if (is_float64_nan(a))
|
---|
615 | return UINT64_MAX;
|
---|
616 |
|
---|
617 | if (is_float64_infinity(a) || (a.parts.exp >= (64 + FLOAT64_BIAS))) {
|
---|
618 | if (a.parts.sign)
|
---|
619 | return UINT64_MIN;
|
---|
620 |
|
---|
621 | return UINT64_MAX;
|
---|
622 | }
|
---|
623 |
|
---|
624 | return _float64_to_uint64_helper(a);
|
---|
625 | }
|
---|
626 |
|
---|
627 | /*
|
---|
628 | * FIXME: Im not sure what to return if overflow/underflow happens
|
---|
629 | * - now its the biggest or the smallest int
|
---|
630 | */
|
---|
631 | int64_t float64_to_int64(float64 a)
|
---|
632 | {
|
---|
633 | if (is_float64_nan(a))
|
---|
634 | return INT64_MAX;
|
---|
635 |
|
---|
636 | if (is_float64_infinity(a) || (a.parts.exp >= (64 + FLOAT64_BIAS))) {
|
---|
637 | if (a.parts.sign)
|
---|
638 | return INT64_MIN;
|
---|
639 |
|
---|
640 | return INT64_MAX;
|
---|
641 | }
|
---|
642 |
|
---|
643 | return _float64_to_uint64_helper(a);
|
---|
644 | }
|
---|
645 |
|
---|
646 | /** Helper procedure for converting float128 to uint64.
|
---|
647 | *
|
---|
648 | * @param a Floating point number in normalized form
|
---|
649 | * (NaNs or Inf are not checked).
|
---|
650 | * @return Converted unsigned integer.
|
---|
651 | */
|
---|
652 | static uint64_t _float128_to_uint64_helper(float128 a)
|
---|
653 | {
|
---|
654 | uint64_t frac_hi, frac_lo;
|
---|
655 |
|
---|
656 | if (a.parts.exp < FLOAT128_BIAS) {
|
---|
657 | // TODO: rounding
|
---|
658 | return 0;
|
---|
659 | }
|
---|
660 |
|
---|
661 | frac_hi = a.parts.frac_hi;
|
---|
662 | frac_lo = a.parts.frac_lo;
|
---|
663 |
|
---|
664 | frac_hi |= FLOAT128_HIDDEN_BIT_MASK_HI;
|
---|
665 | /* shift fraction to left so hidden bit will be the most significant bit */
|
---|
666 | lshift128(frac_hi, frac_lo,
|
---|
667 | (128 - FLOAT128_FRACTION_SIZE - 1), &frac_hi, &frac_lo);
|
---|
668 |
|
---|
669 | rshift128(frac_hi, frac_lo,
|
---|
670 | (128 - (a.parts.exp - FLOAT128_BIAS) - 1), &frac_hi, &frac_lo);
|
---|
671 | if ((a.parts.sign == 1) && !eq128(frac_hi, frac_lo, 0x0ll, 0x0ll)) {
|
---|
672 | not128(frac_hi, frac_lo, &frac_hi, &frac_lo);
|
---|
673 | add128(frac_hi, frac_lo, 0x0ll, 0x1ll, &frac_hi, &frac_lo);
|
---|
674 | }
|
---|
675 |
|
---|
676 | return frac_lo;
|
---|
677 | }
|
---|
678 |
|
---|
679 | /*
|
---|
680 | * FIXME: Im not sure what to return if overflow/underflow happens
|
---|
681 | * - now its the biggest or the smallest int
|
---|
682 | */
|
---|
683 | uint32_t float128_to_uint32(float128 a)
|
---|
684 | {
|
---|
685 | if (is_float128_nan(a))
|
---|
686 | return UINT32_MAX;
|
---|
687 |
|
---|
688 | if (is_float128_infinity(a) || (a.parts.exp >= (32 + FLOAT128_BIAS))) {
|
---|
689 | if (a.parts.sign)
|
---|
690 | return UINT32_MIN;
|
---|
691 |
|
---|
692 | return UINT32_MAX;
|
---|
693 | }
|
---|
694 |
|
---|
695 | return (uint32_t) _float128_to_uint64_helper(a);
|
---|
696 | }
|
---|
697 |
|
---|
698 | /*
|
---|
699 | * FIXME: Im not sure what to return if overflow/underflow happens
|
---|
700 | * - now its the biggest or the smallest int
|
---|
701 | */
|
---|
702 | int32_t float128_to_int32(float128 a)
|
---|
703 | {
|
---|
704 | if (is_float128_nan(a))
|
---|
705 | return INT32_MAX;
|
---|
706 |
|
---|
707 | if (is_float128_infinity(a) || (a.parts.exp >= (32 + FLOAT128_BIAS))) {
|
---|
708 | if (a.parts.sign)
|
---|
709 | return INT32_MIN;
|
---|
710 |
|
---|
711 | return INT32_MAX;
|
---|
712 | }
|
---|
713 |
|
---|
714 | return (int32_t) _float128_to_uint64_helper(a);
|
---|
715 | }
|
---|
716 |
|
---|
717 | /*
|
---|
718 | * FIXME: Im not sure what to return if overflow/underflow happens
|
---|
719 | * - now its the biggest or the smallest int
|
---|
720 | */
|
---|
721 | uint64_t float128_to_uint64(float128 a)
|
---|
722 | {
|
---|
723 | if (is_float128_nan(a))
|
---|
724 | return UINT64_MAX;
|
---|
725 |
|
---|
726 | if (is_float128_infinity(a) || (a.parts.exp >= (64 + FLOAT128_BIAS))) {
|
---|
727 | if (a.parts.sign)
|
---|
728 | return UINT64_MIN;
|
---|
729 |
|
---|
730 | return UINT64_MAX;
|
---|
731 | }
|
---|
732 |
|
---|
733 | return _float128_to_uint64_helper(a);
|
---|
734 | }
|
---|
735 |
|
---|
736 | /*
|
---|
737 | * FIXME: Im not sure what to return if overflow/underflow happens
|
---|
738 | * - now its the biggest or the smallest int
|
---|
739 | */
|
---|
740 | int64_t float128_to_int64(float128 a)
|
---|
741 | {
|
---|
742 | if (is_float128_nan(a))
|
---|
743 | return INT64_MAX;
|
---|
744 |
|
---|
745 | if (is_float128_infinity(a) || (a.parts.exp >= (64 + FLOAT128_BIAS))) {
|
---|
746 | if (a.parts.sign)
|
---|
747 | return INT64_MIN;
|
---|
748 |
|
---|
749 | return INT64_MAX;
|
---|
750 | }
|
---|
751 |
|
---|
752 | return _float128_to_uint64_helper(a);
|
---|
753 | }
|
---|
754 |
|
---|
755 | float32 uint32_to_float32(uint32_t i)
|
---|
756 | {
|
---|
757 | int counter;
|
---|
758 | int32_t exp;
|
---|
759 | float32 result;
|
---|
760 |
|
---|
761 | result.parts.sign = 0;
|
---|
762 | result.parts.fraction = 0;
|
---|
763 |
|
---|
764 | counter = count_zeroes32(i);
|
---|
765 |
|
---|
766 | exp = FLOAT32_BIAS + 32 - counter - 1;
|
---|
767 |
|
---|
768 | if (counter == 32) {
|
---|
769 | result.bin = 0;
|
---|
770 | return result;
|
---|
771 | }
|
---|
772 |
|
---|
773 | if (counter > 0) {
|
---|
774 | i <<= counter - 1;
|
---|
775 | } else {
|
---|
776 | i >>= 1;
|
---|
777 | }
|
---|
778 |
|
---|
779 | round_float32(&exp, &i);
|
---|
780 |
|
---|
781 | result.parts.fraction = i >> (32 - FLOAT32_FRACTION_SIZE - 2);
|
---|
782 | result.parts.exp = exp;
|
---|
783 |
|
---|
784 | return result;
|
---|
785 | }
|
---|
786 |
|
---|
787 | float32 int32_to_float32(int32_t i)
|
---|
788 | {
|
---|
789 | float32 result;
|
---|
790 |
|
---|
791 | if (i < 0)
|
---|
792 | result = uint32_to_float32((uint32_t) (-i));
|
---|
793 | else
|
---|
794 | result = uint32_to_float32((uint32_t) i);
|
---|
795 |
|
---|
796 | result.parts.sign = i < 0;
|
---|
797 |
|
---|
798 | return result;
|
---|
799 | }
|
---|
800 |
|
---|
801 | float32 uint64_to_float32(uint64_t i)
|
---|
802 | {
|
---|
803 | int counter;
|
---|
804 | int32_t exp;
|
---|
805 | uint32_t j;
|
---|
806 | float32 result;
|
---|
807 |
|
---|
808 | result.parts.sign = 0;
|
---|
809 | result.parts.fraction = 0;
|
---|
810 |
|
---|
811 | counter = count_zeroes64(i);
|
---|
812 |
|
---|
813 | exp = FLOAT32_BIAS + 64 - counter - 1;
|
---|
814 |
|
---|
815 | if (counter == 64) {
|
---|
816 | result.bin = 0;
|
---|
817 | return result;
|
---|
818 | }
|
---|
819 |
|
---|
820 | /* Shift all to the first 31 bits (31st will be hidden 1) */
|
---|
821 | if (counter > 33) {
|
---|
822 | i <<= counter - 1 - 32;
|
---|
823 | } else {
|
---|
824 | i >>= 1 + 32 - counter;
|
---|
825 | }
|
---|
826 |
|
---|
827 | j = (uint32_t) i;
|
---|
828 | round_float32(&exp, &j);
|
---|
829 |
|
---|
830 | result.parts.fraction = j >> (32 - FLOAT32_FRACTION_SIZE - 2);
|
---|
831 | result.parts.exp = exp;
|
---|
832 | return result;
|
---|
833 | }
|
---|
834 |
|
---|
835 | float32 int64_to_float32(int64_t i)
|
---|
836 | {
|
---|
837 | float32 result;
|
---|
838 |
|
---|
839 | if (i < 0)
|
---|
840 | result = uint64_to_float32((uint64_t) (-i));
|
---|
841 | else
|
---|
842 | result = uint64_to_float32((uint64_t) i);
|
---|
843 |
|
---|
844 | result.parts.sign = i < 0;
|
---|
845 |
|
---|
846 | return result;
|
---|
847 | }
|
---|
848 |
|
---|
849 | float64 uint32_to_float64(uint32_t i)
|
---|
850 | {
|
---|
851 | int counter;
|
---|
852 | int32_t exp;
|
---|
853 | float64 result;
|
---|
854 | uint64_t frac;
|
---|
855 |
|
---|
856 | result.parts.sign = 0;
|
---|
857 | result.parts.fraction = 0;
|
---|
858 |
|
---|
859 | counter = count_zeroes32(i);
|
---|
860 |
|
---|
861 | exp = FLOAT64_BIAS + 32 - counter - 1;
|
---|
862 |
|
---|
863 | if (counter == 32) {
|
---|
864 | result.bin = 0;
|
---|
865 | return result;
|
---|
866 | }
|
---|
867 |
|
---|
868 | frac = i;
|
---|
869 | frac <<= counter + 32 - 1;
|
---|
870 |
|
---|
871 | round_float64(&exp, &frac);
|
---|
872 |
|
---|
873 | result.parts.fraction = frac >> (64 - FLOAT64_FRACTION_SIZE - 2);
|
---|
874 | result.parts.exp = exp;
|
---|
875 |
|
---|
876 | return result;
|
---|
877 | }
|
---|
878 |
|
---|
879 | float64 int32_to_float64(int32_t i)
|
---|
880 | {
|
---|
881 | float64 result;
|
---|
882 |
|
---|
883 | if (i < 0)
|
---|
884 | result = uint32_to_float64((uint32_t) (-i));
|
---|
885 | else
|
---|
886 | result = uint32_to_float64((uint32_t) i);
|
---|
887 |
|
---|
888 | result.parts.sign = i < 0;
|
---|
889 |
|
---|
890 | return result;
|
---|
891 | }
|
---|
892 |
|
---|
893 |
|
---|
894 | float64 uint64_to_float64(uint64_t i)
|
---|
895 | {
|
---|
896 | int counter;
|
---|
897 | int32_t exp;
|
---|
898 | float64 result;
|
---|
899 |
|
---|
900 | result.parts.sign = 0;
|
---|
901 | result.parts.fraction = 0;
|
---|
902 |
|
---|
903 | counter = count_zeroes64(i);
|
---|
904 |
|
---|
905 | exp = FLOAT64_BIAS + 64 - counter - 1;
|
---|
906 |
|
---|
907 | if (counter == 64) {
|
---|
908 | result.bin = 0;
|
---|
909 | return result;
|
---|
910 | }
|
---|
911 |
|
---|
912 | if (counter > 0) {
|
---|
913 | i <<= counter - 1;
|
---|
914 | } else {
|
---|
915 | i >>= 1;
|
---|
916 | }
|
---|
917 |
|
---|
918 | round_float64(&exp, &i);
|
---|
919 |
|
---|
920 | result.parts.fraction = i >> (64 - FLOAT64_FRACTION_SIZE - 2);
|
---|
921 | result.parts.exp = exp;
|
---|
922 | return result;
|
---|
923 | }
|
---|
924 |
|
---|
925 | float64 int64_to_float64(int64_t i)
|
---|
926 | {
|
---|
927 | float64 result;
|
---|
928 |
|
---|
929 | if (i < 0)
|
---|
930 | result = uint64_to_float64((uint64_t) (-i));
|
---|
931 | else
|
---|
932 | result = uint64_to_float64((uint64_t) i);
|
---|
933 |
|
---|
934 | result.parts.sign = i < 0;
|
---|
935 |
|
---|
936 | return result;
|
---|
937 | }
|
---|
938 |
|
---|
939 | float128 uint32_to_float128(uint32_t i)
|
---|
940 | {
|
---|
941 | int counter;
|
---|
942 | int32_t exp;
|
---|
943 | float128 result;
|
---|
944 | uint64_t frac_hi, frac_lo;
|
---|
945 |
|
---|
946 | result.parts.sign = 0;
|
---|
947 | result.parts.frac_hi = 0;
|
---|
948 | result.parts.frac_lo = 0;
|
---|
949 |
|
---|
950 | counter = count_zeroes32(i);
|
---|
951 |
|
---|
952 | exp = FLOAT128_BIAS + 32 - counter - 1;
|
---|
953 |
|
---|
954 | if (counter == 32) {
|
---|
955 | result.bin.hi = 0;
|
---|
956 | result.bin.lo = 0;
|
---|
957 | return result;
|
---|
958 | }
|
---|
959 |
|
---|
960 | frac_hi = 0;
|
---|
961 | frac_lo = i;
|
---|
962 | lshift128(frac_hi, frac_lo, (counter + 96 - 1), &frac_hi, &frac_lo);
|
---|
963 |
|
---|
964 | round_float128(&exp, &frac_hi, &frac_lo);
|
---|
965 |
|
---|
966 | rshift128(frac_hi, frac_lo,
|
---|
967 | (128 - FLOAT128_FRACTION_SIZE - 2), &frac_hi, &frac_lo);
|
---|
968 | result.parts.frac_hi = frac_hi;
|
---|
969 | result.parts.frac_lo = frac_lo;
|
---|
970 | result.parts.exp = exp;
|
---|
971 |
|
---|
972 | return result;
|
---|
973 | }
|
---|
974 |
|
---|
975 | float128 int32_to_float128(int32_t i)
|
---|
976 | {
|
---|
977 | float128 result;
|
---|
978 |
|
---|
979 | if (i < 0)
|
---|
980 | result = uint32_to_float128((uint32_t) (-i));
|
---|
981 | else
|
---|
982 | result = uint32_to_float128((uint32_t) i);
|
---|
983 |
|
---|
984 | result.parts.sign = i < 0;
|
---|
985 |
|
---|
986 | return result;
|
---|
987 | }
|
---|
988 |
|
---|
989 |
|
---|
990 | float128 uint64_to_float128(uint64_t i)
|
---|
991 | {
|
---|
992 | int counter;
|
---|
993 | int32_t exp;
|
---|
994 | float128 result;
|
---|
995 | uint64_t frac_hi, frac_lo;
|
---|
996 |
|
---|
997 | result.parts.sign = 0;
|
---|
998 | result.parts.frac_hi = 0;
|
---|
999 | result.parts.frac_lo = 0;
|
---|
1000 |
|
---|
1001 | counter = count_zeroes64(i);
|
---|
1002 |
|
---|
1003 | exp = FLOAT128_BIAS + 64 - counter - 1;
|
---|
1004 |
|
---|
1005 | if (counter == 64) {
|
---|
1006 | result.bin.hi = 0;
|
---|
1007 | result.bin.lo = 0;
|
---|
1008 | return result;
|
---|
1009 | }
|
---|
1010 |
|
---|
1011 | frac_hi = 0;
|
---|
1012 | frac_lo = i;
|
---|
1013 | lshift128(frac_hi, frac_lo, (counter + 64 - 1), &frac_hi, &frac_lo);
|
---|
1014 |
|
---|
1015 | round_float128(&exp, &frac_hi, &frac_lo);
|
---|
1016 |
|
---|
1017 | rshift128(frac_hi, frac_lo,
|
---|
1018 | (128 - FLOAT128_FRACTION_SIZE - 2), &frac_hi, &frac_lo);
|
---|
1019 | result.parts.frac_hi = frac_hi;
|
---|
1020 | result.parts.frac_lo = frac_lo;
|
---|
1021 | result.parts.exp = exp;
|
---|
1022 |
|
---|
1023 | return result;
|
---|
1024 | }
|
---|
1025 |
|
---|
1026 | float128 int64_to_float128(int64_t i)
|
---|
1027 | {
|
---|
1028 | float128 result;
|
---|
1029 |
|
---|
1030 | if (i < 0)
|
---|
1031 | result = uint64_to_float128((uint64_t) (-i));
|
---|
1032 | else
|
---|
1033 | result = uint64_to_float128((uint64_t) i);
|
---|
1034 |
|
---|
1035 | result.parts.sign = i < 0;
|
---|
1036 |
|
---|
1037 | return result;
|
---|
1038 | }
|
---|
1039 |
|
---|
1040 | /** @}
|
---|
1041 | */
|
---|