[b5440cf] | 1 | /*
|
---|
[df4ed85] | 2 | * Copyright (c) 2005 Josef Cejka
|
---|
[c67aff2] | 3 | * Copyright (c) 2011 Petr Koupy
|
---|
[b5440cf] | 4 | * All rights reserved.
|
---|
| 5 | *
|
---|
| 6 | * Redistribution and use in source and binary forms, with or without
|
---|
| 7 | * modification, are permitted provided that the following conditions
|
---|
| 8 | * are met:
|
---|
| 9 | *
|
---|
| 10 | * - Redistributions of source code must retain the above copyright
|
---|
| 11 | * notice, this list of conditions and the following disclaimer.
|
---|
| 12 | * - Redistributions in binary form must reproduce the above copyright
|
---|
| 13 | * notice, this list of conditions and the following disclaimer in the
|
---|
| 14 | * documentation and/or other materials provided with the distribution.
|
---|
| 15 | * - The name of the author may not be used to endorse or promote products
|
---|
| 16 | * derived from this software without specific prior written permission.
|
---|
| 17 | *
|
---|
| 18 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
| 19 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
| 20 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
| 21 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
| 22 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
| 23 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
| 24 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
| 25 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
| 26 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
| 27 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
| 28 | */
|
---|
| 29 |
|
---|
[750636a] | 30 | /** @addtogroup softfloat
|
---|
[846848a6] | 31 | * @{
|
---|
| 32 | */
|
---|
[c67aff2] | 33 | /** @file Comparison functions.
|
---|
[846848a6] | 34 | */
|
---|
| 35 |
|
---|
[750636a] | 36 | #include <sftypes.h>
|
---|
| 37 | #include <comparison.h>
|
---|
[c67aff2] | 38 | #include <common.h>
|
---|
[b5440cf] | 39 |
|
---|
[c67aff2] | 40 | /**
|
---|
| 41 | * Determines whether the given float represents NaN (either signalling NaN or
|
---|
| 42 | * quiet NaN).
|
---|
| 43 | *
|
---|
| 44 | * @param f Single-precision float.
|
---|
| 45 | * @return 1 if float is NaN, 0 otherwise.
|
---|
| 46 | */
|
---|
[750636a] | 47 | int isFloat32NaN(float32 f)
|
---|
| 48 | {
|
---|
[c67aff2] | 49 | /* NaN : exp = 0xff and nonzero fraction */
|
---|
[750636a] | 50 | return ((f.parts.exp == 0xFF) && (f.parts.fraction));
|
---|
[e591928] | 51 | }
|
---|
[b5440cf] | 52 |
|
---|
[c67aff2] | 53 | /**
|
---|
| 54 | * Determines whether the given float represents NaN (either signalling NaN or
|
---|
| 55 | * quiet NaN).
|
---|
| 56 | *
|
---|
| 57 | * @param d Double-precision float.
|
---|
| 58 | * @return 1 if float is NaN, 0 otherwise.
|
---|
| 59 | */
|
---|
[750636a] | 60 | int isFloat64NaN(float64 d)
|
---|
| 61 | {
|
---|
[c67aff2] | 62 | /* NaN : exp = 0x7ff and nonzero fraction */
|
---|
[750636a] | 63 | return ((d.parts.exp == 0x7FF) && (d.parts.fraction));
|
---|
[e591928] | 64 | }
|
---|
[feef1cd] | 65 |
|
---|
[c67aff2] | 66 | /**
|
---|
| 67 | * Determines whether the given float represents NaN (either signalling NaN or
|
---|
| 68 | * quiet NaN).
|
---|
| 69 | *
|
---|
| 70 | * @param ld Quadruple-precision float.
|
---|
| 71 | * @return 1 if float is NaN, 0 otherwise.
|
---|
| 72 | */
|
---|
| 73 | int isFloat128NaN(float128 ld)
|
---|
| 74 | {
|
---|
| 75 | /* NaN : exp = 0x7fff and nonzero fraction */
|
---|
| 76 | return ((ld.parts.exp == 0x7FF) &&
|
---|
| 77 | !eq128(ld.parts.frac_hi, ld.parts.frac_lo, 0x0ll, 0x0ll));
|
---|
| 78 | }
|
---|
| 79 |
|
---|
| 80 | /**
|
---|
| 81 | * Determines whether the given float represents signalling NaN.
|
---|
| 82 | *
|
---|
| 83 | * @param f Single-precision float.
|
---|
| 84 | * @return 1 if float is signalling NaN, 0 otherwise.
|
---|
| 85 | */
|
---|
[750636a] | 86 | int isFloat32SigNaN(float32 f)
|
---|
| 87 | {
|
---|
[c67aff2] | 88 | /* SigNaN : exp = 0xff and fraction = 0xxxxx..x (binary),
|
---|
| 89 | * where at least one x is nonzero */
|
---|
| 90 | return ((f.parts.exp == 0xFF) &&
|
---|
| 91 | (f.parts.fraction < 0x400000) && (f.parts.fraction));
|
---|
[e591928] | 92 | }
|
---|
[b5440cf] | 93 |
|
---|
[c67aff2] | 94 | /**
|
---|
| 95 | * Determines whether the given float represents signalling NaN.
|
---|
| 96 | *
|
---|
| 97 | * @param d Double-precision float.
|
---|
| 98 | * @return 1 if float is signalling NaN, 0 otherwise.
|
---|
| 99 | */
|
---|
[750636a] | 100 | int isFloat64SigNaN(float64 d)
|
---|
| 101 | {
|
---|
[c67aff2] | 102 | /* SigNaN : exp = 0x7ff and fraction = 0xxxxx..x (binary),
|
---|
| 103 | * where at least one x is nonzero */
|
---|
| 104 | return ((d.parts.exp == 0x7FF) &&
|
---|
| 105 | (d.parts.fraction) && (d.parts.fraction < 0x8000000000000ll));
|
---|
[e591928] | 106 | }
|
---|
[feef1cd] | 107 |
|
---|
[c67aff2] | 108 | /**
|
---|
| 109 | * Determines whether the given float represents signalling NaN.
|
---|
| 110 | *
|
---|
| 111 | * @param ld Quadruple-precision float.
|
---|
| 112 | * @return 1 if float is signalling NaN, 0 otherwise.
|
---|
| 113 | */
|
---|
| 114 | int isFloat128SigNaN(float128 ld)
|
---|
| 115 | {
|
---|
| 116 | /* SigNaN : exp = 0x7fff and fraction = 0xxxxx..x (binary),
|
---|
| 117 | * where at least one x is nonzero */
|
---|
| 118 | return ((ld.parts.exp == 0x7FFF) &&
|
---|
| 119 | (ld.parts.frac_hi || ld.parts.frac_lo) &&
|
---|
| 120 | lt128(ld.parts.frac_hi, ld.parts.frac_lo, 0x800000000000ll, 0x0ll));
|
---|
| 121 |
|
---|
| 122 | }
|
---|
| 123 |
|
---|
| 124 | /**
|
---|
| 125 | * Determines whether the given float represents positive or negative infinity.
|
---|
| 126 | *
|
---|
| 127 | * @param f Single-precision float.
|
---|
| 128 | * @return 1 if float is infinite, 0 otherwise.
|
---|
| 129 | */
|
---|
[750636a] | 130 | int isFloat32Infinity(float32 f)
|
---|
[7e557805] | 131 | {
|
---|
[c67aff2] | 132 | /* NaN : exp = 0x7ff and zero fraction */
|
---|
[750636a] | 133 | return ((f.parts.exp == 0xFF) && (f.parts.fraction == 0x0));
|
---|
[e591928] | 134 | }
|
---|
[7e557805] | 135 |
|
---|
[c67aff2] | 136 | /**
|
---|
| 137 | * Determines whether the given float represents positive or negative infinity.
|
---|
| 138 | *
|
---|
| 139 | * @param d Double-precision float.
|
---|
| 140 | * @return 1 if float is infinite, 0 otherwise.
|
---|
| 141 | */
|
---|
[750636a] | 142 | int isFloat64Infinity(float64 d)
|
---|
[feef1cd] | 143 | {
|
---|
[c67aff2] | 144 | /* NaN : exp = 0x7ff and zero fraction */
|
---|
[750636a] | 145 | return ((d.parts.exp == 0x7FF) && (d.parts.fraction == 0x0));
|
---|
[e591928] | 146 | }
|
---|
[feef1cd] | 147 |
|
---|
[c67aff2] | 148 | /**
|
---|
| 149 | * Determines whether the given float represents positive or negative infinity.
|
---|
| 150 | *
|
---|
| 151 | * @param ld Quadruple-precision float.
|
---|
| 152 | * @return 1 if float is infinite, 0 otherwise.
|
---|
| 153 | */
|
---|
| 154 | int isFloat128Infinity(float128 ld)
|
---|
| 155 | {
|
---|
| 156 | /* NaN : exp = 0x7fff and zero fraction */
|
---|
| 157 | return ((ld.parts.exp == 0x7FFF) &&
|
---|
| 158 | eq128(ld.parts.frac_hi, ld.parts.frac_lo, 0x0ll, 0x0ll));
|
---|
| 159 | }
|
---|
| 160 |
|
---|
| 161 | /**
|
---|
| 162 | * Determines whether the given float represents positive or negative zero.
|
---|
| 163 | *
|
---|
| 164 | * @param f Single-precision float.
|
---|
| 165 | * @return 1 if float is zero, 0 otherwise.
|
---|
| 166 | */
|
---|
[750636a] | 167 | int isFloat32Zero(float32 f)
|
---|
[3af72dc] | 168 | {
|
---|
| 169 | return (((f.binary) & 0x7FFFFFFF) == 0);
|
---|
| 170 | }
|
---|
| 171 |
|
---|
[c67aff2] | 172 | /**
|
---|
| 173 | * Determines whether the given float represents positive or negative zero.
|
---|
| 174 | *
|
---|
| 175 | * @param d Double-precision float.
|
---|
| 176 | * @return 1 if float is zero, 0 otherwise.
|
---|
| 177 | */
|
---|
[750636a] | 178 | int isFloat64Zero(float64 d)
|
---|
[feef1cd] | 179 | {
|
---|
| 180 | return (((d.binary) & 0x7FFFFFFFFFFFFFFFll) == 0);
|
---|
| 181 | }
|
---|
| 182 |
|
---|
[7e557805] | 183 | /**
|
---|
[c67aff2] | 184 | * Determines whether the given float represents positive or negative zero.
|
---|
| 185 | *
|
---|
| 186 | * @param ld Quadruple-precision float.
|
---|
| 187 | * @return 1 if float is zero, 0 otherwise.
|
---|
| 188 | */
|
---|
| 189 | int isFloat128Zero(float128 ld)
|
---|
| 190 | {
|
---|
| 191 | uint64_t tmp_hi;
|
---|
| 192 | uint64_t tmp_lo;
|
---|
| 193 |
|
---|
| 194 | and128(ld.binary.hi, ld.binary.lo,
|
---|
| 195 | 0x7FFFFFFFFFFFFFFFll, 0xFFFFFFFFFFFFFFFFll, &tmp_hi, &tmp_lo);
|
---|
| 196 |
|
---|
| 197 | return eq128(tmp_hi, tmp_lo, 0x0ll, 0x0ll);
|
---|
| 198 | }
|
---|
| 199 |
|
---|
| 200 | /**
|
---|
| 201 | * Determine whether two floats are equal. NaNs are not recognized.
|
---|
| 202 | *
|
---|
| 203 | * @a First single-precision operand.
|
---|
| 204 | * @b Second single-precision operand.
|
---|
| 205 | * @return 1 if both floats are equal, 0 otherwise.
|
---|
[7e557805] | 206 | */
|
---|
[750636a] | 207 | int isFloat32eq(float32 a, float32 b)
|
---|
[7e557805] | 208 | {
|
---|
[750636a] | 209 | /* a equals to b or both are zeros (with any sign) */
|
---|
[c67aff2] | 210 | return ((a.binary == b.binary) ||
|
---|
| 211 | (((a.binary | b.binary) & 0x7FFFFFFF) == 0));
|
---|
| 212 | }
|
---|
| 213 |
|
---|
| 214 | /**
|
---|
| 215 | * Determine whether two floats are equal. NaNs are not recognized.
|
---|
| 216 | *
|
---|
| 217 | * @a First double-precision operand.
|
---|
| 218 | * @b Second double-precision operand.
|
---|
| 219 | * @return 1 if both floats are equal, 0 otherwise.
|
---|
| 220 | */
|
---|
| 221 | int isFloat64eq(float64 a, float64 b)
|
---|
| 222 | {
|
---|
| 223 | /* a equals to b or both are zeros (with any sign) */
|
---|
| 224 | return ((a.binary == b.binary) ||
|
---|
| 225 | (((a.binary | b.binary) & 0x7FFFFFFFFFFFFFFFll) == 0));
|
---|
| 226 | }
|
---|
| 227 |
|
---|
| 228 | /**
|
---|
| 229 | * Determine whether two floats are equal. NaNs are not recognized.
|
---|
| 230 | *
|
---|
| 231 | * @a First quadruple-precision operand.
|
---|
| 232 | * @b Second quadruple-precision operand.
|
---|
| 233 | * @return 1 if both floats are equal, 0 otherwise.
|
---|
| 234 | */
|
---|
| 235 | int isFloat128eq(float128 a, float128 b)
|
---|
| 236 | {
|
---|
| 237 | uint64_t tmp_hi;
|
---|
| 238 | uint64_t tmp_lo;
|
---|
| 239 |
|
---|
| 240 | /* both are zeros (with any sign) */
|
---|
| 241 | or128(a.binary.hi, a.binary.lo,
|
---|
| 242 | b.binary.hi, b.binary.lo, &tmp_hi, &tmp_lo);
|
---|
| 243 | and128(tmp_hi, tmp_lo,
|
---|
| 244 | 0x7FFFFFFFFFFFFFFFll, 0xFFFFFFFFFFFFFFFFll, &tmp_hi, &tmp_lo);
|
---|
| 245 | int both_zero = eq128(tmp_hi, tmp_lo, 0x0ll, 0x0ll);
|
---|
| 246 |
|
---|
| 247 | /* a equals to b */
|
---|
| 248 | int are_equal = eq128(a.binary.hi, a.binary.lo, b.binary.hi, b.binary.lo);
|
---|
| 249 |
|
---|
| 250 | return are_equal || both_zero;
|
---|
[7e557805] | 251 | }
|
---|
| 252 |
|
---|
| 253 | /**
|
---|
[c67aff2] | 254 | * Lower-than comparison between two floats. NaNs are not recognized.
|
---|
| 255 | *
|
---|
| 256 | * @a First single-precision operand.
|
---|
| 257 | * @b Second single-precision operand.
|
---|
| 258 | * @return 1 if a is lower than b, 0 otherwise.
|
---|
[7e557805] | 259 | */
|
---|
[750636a] | 260 | int isFloat32lt(float32 a, float32 b)
|
---|
[7e557805] | 261 | {
|
---|
[c67aff2] | 262 | if (((a.binary | b.binary) & 0x7FFFFFFF) == 0) {
|
---|
[cf4a823] | 263 | return 0; /* +- zeroes */
|
---|
[c67aff2] | 264 | }
|
---|
[cf4a823] | 265 |
|
---|
[c67aff2] | 266 | if ((a.parts.sign) && (b.parts.sign)) {
|
---|
[750636a] | 267 | /* if both are negative, smaller is that with greater binary value */
|
---|
| 268 | return (a.binary > b.binary);
|
---|
[c67aff2] | 269 | }
|
---|
[cf4a823] | 270 |
|
---|
[c67aff2] | 271 | /* lets negate signs - now will be positive numbers allways bigger than
|
---|
| 272 | * negative (first bit will be set for unsigned integer comparison) */
|
---|
[750636a] | 273 | a.parts.sign = !a.parts.sign;
|
---|
| 274 | b.parts.sign = !b.parts.sign;
|
---|
| 275 | return (a.binary < b.binary);
|
---|
[7e557805] | 276 | }
|
---|
| 277 |
|
---|
[e649dfa] | 278 | /**
|
---|
[c67aff2] | 279 | * Lower-than comparison between two floats. NaNs are not recognized.
|
---|
| 280 | *
|
---|
| 281 | * @a First double-precision operand.
|
---|
| 282 | * @b Second double-precision operand.
|
---|
| 283 | * @return 1 if a is lower than b, 0 otherwise.
|
---|
| 284 | */
|
---|
| 285 | int isFloat64lt(float64 a, float64 b)
|
---|
| 286 | {
|
---|
| 287 | if (((a.binary | b.binary) & 0x7FFFFFFFFFFFFFFFll) == 0) {
|
---|
| 288 | return 0; /* +- zeroes */
|
---|
| 289 | }
|
---|
| 290 |
|
---|
| 291 | if ((a.parts.sign) && (b.parts.sign)) {
|
---|
| 292 | /* if both are negative, smaller is that with greater binary value */
|
---|
| 293 | return (a.binary > b.binary);
|
---|
| 294 | }
|
---|
| 295 |
|
---|
| 296 | /* lets negate signs - now will be positive numbers allways bigger than
|
---|
| 297 | * negative (first bit will be set for unsigned integer comparison) */
|
---|
| 298 | a.parts.sign = !a.parts.sign;
|
---|
| 299 | b.parts.sign = !b.parts.sign;
|
---|
| 300 | return (a.binary < b.binary);
|
---|
| 301 | }
|
---|
| 302 |
|
---|
| 303 | /**
|
---|
| 304 | * Lower-than comparison between two floats. NaNs are not recognized.
|
---|
| 305 | *
|
---|
| 306 | * @a First quadruple-precision operand.
|
---|
| 307 | * @b Second quadruple-precision operand.
|
---|
| 308 | * @return 1 if a is lower than b, 0 otherwise.
|
---|
| 309 | */
|
---|
| 310 | int isFloat128lt(float128 a, float128 b)
|
---|
| 311 | {
|
---|
| 312 | uint64_t tmp_hi;
|
---|
| 313 | uint64_t tmp_lo;
|
---|
| 314 |
|
---|
| 315 | or128(a.binary.hi, a.binary.lo,
|
---|
| 316 | b.binary.hi, b.binary.lo, &tmp_hi, &tmp_lo);
|
---|
| 317 | and128(tmp_hi, tmp_lo,
|
---|
| 318 | 0x7FFFFFFFFFFFFFFFll, 0xFFFFFFFFFFFFFFFFll, &tmp_hi, &tmp_lo);
|
---|
| 319 | if (eq128(tmp_hi, tmp_lo, 0x0ll, 0x0ll)) {
|
---|
| 320 | return 0; /* +- zeroes */
|
---|
| 321 | }
|
---|
| 322 |
|
---|
| 323 | if ((a.parts.sign) && (b.parts.sign)) {
|
---|
| 324 | /* if both are negative, smaller is that with greater binary value */
|
---|
| 325 | return lt128(b.binary.hi, b.binary.lo, a.binary.hi, a.binary.lo);
|
---|
| 326 | }
|
---|
| 327 |
|
---|
| 328 | /* lets negate signs - now will be positive numbers allways bigger than
|
---|
| 329 | * negative (first bit will be set for unsigned integer comparison) */
|
---|
| 330 | a.parts.sign = !a.parts.sign;
|
---|
| 331 | b.parts.sign = !b.parts.sign;
|
---|
| 332 | return lt128(a.binary.hi, a.binary.lo, b.binary.hi, b.binary.lo);
|
---|
| 333 | }
|
---|
| 334 |
|
---|
| 335 | /**
|
---|
| 336 | * Greater-than comparison between two floats. NaNs are not recognized.
|
---|
| 337 | *
|
---|
| 338 | * @a First single-precision operand.
|
---|
| 339 | * @b Second single-precision operand.
|
---|
| 340 | * @return 1 if a is greater than b, 0 otherwise.
|
---|
[e649dfa] | 341 | */
|
---|
[750636a] | 342 | int isFloat32gt(float32 a, float32 b)
|
---|
[e649dfa] | 343 | {
|
---|
[c67aff2] | 344 | if (((a.binary | b.binary) & 0x7FFFFFFF) == 0) {
|
---|
[cf4a823] | 345 | return 0; /* zeroes are equal with any sign */
|
---|
[c67aff2] | 346 | }
|
---|
[cf4a823] | 347 |
|
---|
[c67aff2] | 348 | if ((a.parts.sign) && (b.parts.sign)) {
|
---|
[750636a] | 349 | /* if both are negative, greater is that with smaller binary value */
|
---|
| 350 | return (a.binary < b.binary);
|
---|
[c67aff2] | 351 | }
|
---|
[cf4a823] | 352 |
|
---|
[c67aff2] | 353 | /* lets negate signs - now will be positive numbers allways bigger than
|
---|
| 354 | * negative (first bit will be set for unsigned integer comparison) */
|
---|
[750636a] | 355 | a.parts.sign = !a.parts.sign;
|
---|
| 356 | b.parts.sign = !b.parts.sign;
|
---|
| 357 | return (a.binary > b.binary);
|
---|
[e649dfa] | 358 | }
|
---|
| 359 |
|
---|
[c67aff2] | 360 | /**
|
---|
| 361 | * Greater-than comparison between two floats. NaNs are not recognized.
|
---|
| 362 | *
|
---|
| 363 | * @a First double-precision operand.
|
---|
| 364 | * @b Second double-precision operand.
|
---|
| 365 | * @return 1 if a is greater than b, 0 otherwise.
|
---|
| 366 | */
|
---|
| 367 | int isFloat64gt(float64 a, float64 b)
|
---|
| 368 | {
|
---|
| 369 | if (((a.binary | b.binary) & 0x7FFFFFFFFFFFFFFFll) == 0) {
|
---|
| 370 | return 0; /* zeroes are equal with any sign */
|
---|
| 371 | }
|
---|
| 372 |
|
---|
| 373 | if ((a.parts.sign) && (b.parts.sign)) {
|
---|
| 374 | /* if both are negative, greater is that with smaller binary value */
|
---|
| 375 | return (a.binary < b.binary);
|
---|
| 376 | }
|
---|
| 377 |
|
---|
| 378 | /* lets negate signs - now will be positive numbers allways bigger than
|
---|
| 379 | * negative (first bit will be set for unsigned integer comparison) */
|
---|
| 380 | a.parts.sign = !a.parts.sign;
|
---|
| 381 | b.parts.sign = !b.parts.sign;
|
---|
| 382 | return (a.binary > b.binary);
|
---|
| 383 | }
|
---|
| 384 |
|
---|
| 385 | /**
|
---|
| 386 | * Greater-than comparison between two floats. NaNs are not recognized.
|
---|
| 387 | *
|
---|
| 388 | * @a First quadruple-precision operand.
|
---|
| 389 | * @b Second quadruple-precision operand.
|
---|
| 390 | * @return 1 if a is greater than b, 0 otherwise.
|
---|
| 391 | */
|
---|
| 392 | int isFloat128gt(float128 a, float128 b)
|
---|
| 393 | {
|
---|
| 394 | uint64_t tmp_hi;
|
---|
| 395 | uint64_t tmp_lo;
|
---|
| 396 |
|
---|
| 397 | or128(a.binary.hi, a.binary.lo,
|
---|
| 398 | b.binary.hi, b.binary.lo, &tmp_hi, &tmp_lo);
|
---|
| 399 | and128(tmp_hi, tmp_lo,
|
---|
| 400 | 0x7FFFFFFFFFFFFFFFll, 0xFFFFFFFFFFFFFFFFll, &tmp_hi, &tmp_lo);
|
---|
| 401 | if (eq128(tmp_hi, tmp_lo, 0x0ll, 0x0ll)) {
|
---|
| 402 | return 0; /* zeroes are equal with any sign */
|
---|
| 403 | }
|
---|
| 404 |
|
---|
| 405 | if ((a.parts.sign) && (b.parts.sign)) {
|
---|
| 406 | /* if both are negative, greater is that with smaller binary value */
|
---|
| 407 | return lt128(a.binary.hi, a.binary.lo, b.binary.hi, b.binary.lo);
|
---|
| 408 | }
|
---|
| 409 |
|
---|
| 410 | /* lets negate signs - now will be positive numbers allways bigger than
|
---|
| 411 | * negative (first bit will be set for unsigned integer comparison) */
|
---|
| 412 | a.parts.sign = !a.parts.sign;
|
---|
| 413 | b.parts.sign = !b.parts.sign;
|
---|
| 414 | return lt128(b.binary.hi, b.binary.lo, a.binary.hi, a.binary.lo);
|
---|
| 415 | }
|
---|
| 416 |
|
---|
[231a60a] | 417 | /** @}
|
---|
[846848a6] | 418 | */
|
---|