[b5440cf] | 1 | /*
|
---|
[df4ed85] | 2 | * Copyright (c) 2005 Josef Cejka
|
---|
[c67aff2] | 3 | * Copyright (c) 2011 Petr Koupy
|
---|
[b5440cf] | 4 | * All rights reserved.
|
---|
| 5 | *
|
---|
| 6 | * Redistribution and use in source and binary forms, with or without
|
---|
| 7 | * modification, are permitted provided that the following conditions
|
---|
| 8 | * are met:
|
---|
| 9 | *
|
---|
| 10 | * - Redistributions of source code must retain the above copyright
|
---|
| 11 | * notice, this list of conditions and the following disclaimer.
|
---|
| 12 | * - Redistributions in binary form must reproduce the above copyright
|
---|
| 13 | * notice, this list of conditions and the following disclaimer in the
|
---|
| 14 | * documentation and/or other materials provided with the distribution.
|
---|
| 15 | * - The name of the author may not be used to endorse or promote products
|
---|
| 16 | * derived from this software without specific prior written permission.
|
---|
| 17 | *
|
---|
| 18 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
| 19 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
| 20 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
| 21 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
| 22 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
| 23 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
| 24 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
| 25 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
| 26 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
| 27 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
| 28 | */
|
---|
| 29 |
|
---|
[750636a] | 30 | /** @addtogroup softfloat
|
---|
[846848a6] | 31 | * @{
|
---|
| 32 | */
|
---|
[c67aff2] | 33 | /** @file Comparison functions.
|
---|
[846848a6] | 34 | */
|
---|
| 35 |
|
---|
[750636a] | 36 | #include <sftypes.h>
|
---|
| 37 | #include <comparison.h>
|
---|
[c67aff2] | 38 | #include <common.h>
|
---|
[b5440cf] | 39 |
|
---|
[c67aff2] | 40 | /**
|
---|
| 41 | * Determines whether the given float represents NaN (either signalling NaN or
|
---|
| 42 | * quiet NaN).
|
---|
| 43 | *
|
---|
| 44 | * @param f Single-precision float.
|
---|
| 45 | * @return 1 if float is NaN, 0 otherwise.
|
---|
| 46 | */
|
---|
[88d5c1e] | 47 | int is_float32_nan(float32 f)
|
---|
[750636a] | 48 | {
|
---|
[c67aff2] | 49 | /* NaN : exp = 0xff and nonzero fraction */
|
---|
[750636a] | 50 | return ((f.parts.exp == 0xFF) && (f.parts.fraction));
|
---|
[e591928] | 51 | }
|
---|
[b5440cf] | 52 |
|
---|
[c67aff2] | 53 | /**
|
---|
| 54 | * Determines whether the given float represents NaN (either signalling NaN or
|
---|
| 55 | * quiet NaN).
|
---|
| 56 | *
|
---|
| 57 | * @param d Double-precision float.
|
---|
| 58 | * @return 1 if float is NaN, 0 otherwise.
|
---|
| 59 | */
|
---|
[88d5c1e] | 60 | int is_float64_nan(float64 d)
|
---|
[750636a] | 61 | {
|
---|
[c67aff2] | 62 | /* NaN : exp = 0x7ff and nonzero fraction */
|
---|
[750636a] | 63 | return ((d.parts.exp == 0x7FF) && (d.parts.fraction));
|
---|
[e591928] | 64 | }
|
---|
[feef1cd] | 65 |
|
---|
[c67aff2] | 66 | /**
|
---|
| 67 | * Determines whether the given float represents NaN (either signalling NaN or
|
---|
| 68 | * quiet NaN).
|
---|
| 69 | *
|
---|
| 70 | * @param ld Quadruple-precision float.
|
---|
| 71 | * @return 1 if float is NaN, 0 otherwise.
|
---|
| 72 | */
|
---|
[88d5c1e] | 73 | int is_float128_nan(float128 ld)
|
---|
[c67aff2] | 74 | {
|
---|
| 75 | /* NaN : exp = 0x7fff and nonzero fraction */
|
---|
| 76 | return ((ld.parts.exp == 0x7FF) &&
|
---|
| 77 | !eq128(ld.parts.frac_hi, ld.parts.frac_lo, 0x0ll, 0x0ll));
|
---|
| 78 | }
|
---|
| 79 |
|
---|
| 80 | /**
|
---|
| 81 | * Determines whether the given float represents signalling NaN.
|
---|
| 82 | *
|
---|
| 83 | * @param f Single-precision float.
|
---|
| 84 | * @return 1 if float is signalling NaN, 0 otherwise.
|
---|
| 85 | */
|
---|
[88d5c1e] | 86 | int is_float32_signan(float32 f)
|
---|
[750636a] | 87 | {
|
---|
[c67aff2] | 88 | /* SigNaN : exp = 0xff and fraction = 0xxxxx..x (binary),
|
---|
| 89 | * where at least one x is nonzero */
|
---|
| 90 | return ((f.parts.exp == 0xFF) &&
|
---|
| 91 | (f.parts.fraction < 0x400000) && (f.parts.fraction));
|
---|
[e591928] | 92 | }
|
---|
[b5440cf] | 93 |
|
---|
[c67aff2] | 94 | /**
|
---|
| 95 | * Determines whether the given float represents signalling NaN.
|
---|
| 96 | *
|
---|
| 97 | * @param d Double-precision float.
|
---|
| 98 | * @return 1 if float is signalling NaN, 0 otherwise.
|
---|
| 99 | */
|
---|
[88d5c1e] | 100 | int is_float64_signan(float64 d)
|
---|
[750636a] | 101 | {
|
---|
[c67aff2] | 102 | /* SigNaN : exp = 0x7ff and fraction = 0xxxxx..x (binary),
|
---|
| 103 | * where at least one x is nonzero */
|
---|
| 104 | return ((d.parts.exp == 0x7FF) &&
|
---|
| 105 | (d.parts.fraction) && (d.parts.fraction < 0x8000000000000ll));
|
---|
[e591928] | 106 | }
|
---|
[feef1cd] | 107 |
|
---|
[c67aff2] | 108 | /**
|
---|
| 109 | * Determines whether the given float represents signalling NaN.
|
---|
| 110 | *
|
---|
| 111 | * @param ld Quadruple-precision float.
|
---|
| 112 | * @return 1 if float is signalling NaN, 0 otherwise.
|
---|
| 113 | */
|
---|
[88d5c1e] | 114 | int is_float128_signan(float128 ld)
|
---|
[c67aff2] | 115 | {
|
---|
| 116 | /* SigNaN : exp = 0x7fff and fraction = 0xxxxx..x (binary),
|
---|
| 117 | * where at least one x is nonzero */
|
---|
| 118 | return ((ld.parts.exp == 0x7FFF) &&
|
---|
| 119 | (ld.parts.frac_hi || ld.parts.frac_lo) &&
|
---|
| 120 | lt128(ld.parts.frac_hi, ld.parts.frac_lo, 0x800000000000ll, 0x0ll));
|
---|
| 121 |
|
---|
| 122 | }
|
---|
| 123 |
|
---|
| 124 | /**
|
---|
| 125 | * Determines whether the given float represents positive or negative infinity.
|
---|
| 126 | *
|
---|
| 127 | * @param f Single-precision float.
|
---|
| 128 | * @return 1 if float is infinite, 0 otherwise.
|
---|
| 129 | */
|
---|
[88d5c1e] | 130 | int is_float32_infinity(float32 f)
|
---|
[7e557805] | 131 | {
|
---|
[c67aff2] | 132 | /* NaN : exp = 0x7ff and zero fraction */
|
---|
[750636a] | 133 | return ((f.parts.exp == 0xFF) && (f.parts.fraction == 0x0));
|
---|
[e591928] | 134 | }
|
---|
[7e557805] | 135 |
|
---|
[c67aff2] | 136 | /**
|
---|
| 137 | * Determines whether the given float represents positive or negative infinity.
|
---|
| 138 | *
|
---|
| 139 | * @param d Double-precision float.
|
---|
| 140 | * @return 1 if float is infinite, 0 otherwise.
|
---|
| 141 | */
|
---|
[88d5c1e] | 142 | int is_float64_infinity(float64 d)
|
---|
[feef1cd] | 143 | {
|
---|
[c67aff2] | 144 | /* NaN : exp = 0x7ff and zero fraction */
|
---|
[750636a] | 145 | return ((d.parts.exp == 0x7FF) && (d.parts.fraction == 0x0));
|
---|
[e591928] | 146 | }
|
---|
[feef1cd] | 147 |
|
---|
[c67aff2] | 148 | /**
|
---|
| 149 | * Determines whether the given float represents positive or negative infinity.
|
---|
| 150 | *
|
---|
| 151 | * @param ld Quadruple-precision float.
|
---|
| 152 | * @return 1 if float is infinite, 0 otherwise.
|
---|
| 153 | */
|
---|
[88d5c1e] | 154 | int is_float128_infinity(float128 ld)
|
---|
[c67aff2] | 155 | {
|
---|
| 156 | /* NaN : exp = 0x7fff and zero fraction */
|
---|
| 157 | return ((ld.parts.exp == 0x7FFF) &&
|
---|
| 158 | eq128(ld.parts.frac_hi, ld.parts.frac_lo, 0x0ll, 0x0ll));
|
---|
| 159 | }
|
---|
| 160 |
|
---|
| 161 | /**
|
---|
| 162 | * Determines whether the given float represents positive or negative zero.
|
---|
| 163 | *
|
---|
| 164 | * @param f Single-precision float.
|
---|
| 165 | * @return 1 if float is zero, 0 otherwise.
|
---|
| 166 | */
|
---|
[88d5c1e] | 167 | int is_float32_zero(float32 f)
|
---|
[3af72dc] | 168 | {
|
---|
[88d5c1e] | 169 | return (((f.bin) & 0x7FFFFFFF) == 0);
|
---|
[3af72dc] | 170 | }
|
---|
| 171 |
|
---|
[c67aff2] | 172 | /**
|
---|
| 173 | * Determines whether the given float represents positive or negative zero.
|
---|
| 174 | *
|
---|
| 175 | * @param d Double-precision float.
|
---|
| 176 | * @return 1 if float is zero, 0 otherwise.
|
---|
| 177 | */
|
---|
[88d5c1e] | 178 | int is_float64_zero(float64 d)
|
---|
[feef1cd] | 179 | {
|
---|
[88d5c1e] | 180 | return (((d.bin) & 0x7FFFFFFFFFFFFFFFll) == 0);
|
---|
[feef1cd] | 181 | }
|
---|
| 182 |
|
---|
[7e557805] | 183 | /**
|
---|
[c67aff2] | 184 | * Determines whether the given float represents positive or negative zero.
|
---|
| 185 | *
|
---|
| 186 | * @param ld Quadruple-precision float.
|
---|
| 187 | * @return 1 if float is zero, 0 otherwise.
|
---|
| 188 | */
|
---|
[88d5c1e] | 189 | int is_float128_zero(float128 ld)
|
---|
[c67aff2] | 190 | {
|
---|
| 191 | uint64_t tmp_hi;
|
---|
| 192 | uint64_t tmp_lo;
|
---|
[88d5c1e] | 193 |
|
---|
| 194 | and128(ld.bin.hi, ld.bin.lo,
|
---|
[c67aff2] | 195 | 0x7FFFFFFFFFFFFFFFll, 0xFFFFFFFFFFFFFFFFll, &tmp_hi, &tmp_lo);
|
---|
[88d5c1e] | 196 |
|
---|
[c67aff2] | 197 | return eq128(tmp_hi, tmp_lo, 0x0ll, 0x0ll);
|
---|
| 198 | }
|
---|
| 199 |
|
---|
| 200 | /**
|
---|
| 201 | * Determine whether two floats are equal. NaNs are not recognized.
|
---|
| 202 | *
|
---|
| 203 | * @a First single-precision operand.
|
---|
| 204 | * @b Second single-precision operand.
|
---|
| 205 | * @return 1 if both floats are equal, 0 otherwise.
|
---|
[7e557805] | 206 | */
|
---|
[88d5c1e] | 207 | int is_float32_eq(float32 a, float32 b)
|
---|
[7e557805] | 208 | {
|
---|
[750636a] | 209 | /* a equals to b or both are zeros (with any sign) */
|
---|
[88d5c1e] | 210 | return ((a.bin == b.bin) ||
|
---|
| 211 | (((a.bin | b.bin) & 0x7FFFFFFF) == 0));
|
---|
[c67aff2] | 212 | }
|
---|
| 213 |
|
---|
| 214 | /**
|
---|
| 215 | * Determine whether two floats are equal. NaNs are not recognized.
|
---|
| 216 | *
|
---|
| 217 | * @a First double-precision operand.
|
---|
| 218 | * @b Second double-precision operand.
|
---|
| 219 | * @return 1 if both floats are equal, 0 otherwise.
|
---|
| 220 | */
|
---|
[88d5c1e] | 221 | int is_float64_eq(float64 a, float64 b)
|
---|
[c67aff2] | 222 | {
|
---|
| 223 | /* a equals to b or both are zeros (with any sign) */
|
---|
[88d5c1e] | 224 | return ((a.bin == b.bin) ||
|
---|
| 225 | (((a.bin | b.bin) & 0x7FFFFFFFFFFFFFFFll) == 0));
|
---|
[c67aff2] | 226 | }
|
---|
| 227 |
|
---|
| 228 | /**
|
---|
| 229 | * Determine whether two floats are equal. NaNs are not recognized.
|
---|
| 230 | *
|
---|
| 231 | * @a First quadruple-precision operand.
|
---|
| 232 | * @b Second quadruple-precision operand.
|
---|
| 233 | * @return 1 if both floats are equal, 0 otherwise.
|
---|
| 234 | */
|
---|
[88d5c1e] | 235 | int is_float128_eq(float128 a, float128 b)
|
---|
[c67aff2] | 236 | {
|
---|
| 237 | uint64_t tmp_hi;
|
---|
| 238 | uint64_t tmp_lo;
|
---|
[88d5c1e] | 239 |
|
---|
[c67aff2] | 240 | /* both are zeros (with any sign) */
|
---|
[88d5c1e] | 241 | or128(a.bin.hi, a.bin.lo,
|
---|
| 242 | b.bin.hi, b.bin.lo, &tmp_hi, &tmp_lo);
|
---|
[c67aff2] | 243 | and128(tmp_hi, tmp_lo,
|
---|
| 244 | 0x7FFFFFFFFFFFFFFFll, 0xFFFFFFFFFFFFFFFFll, &tmp_hi, &tmp_lo);
|
---|
| 245 | int both_zero = eq128(tmp_hi, tmp_lo, 0x0ll, 0x0ll);
|
---|
| 246 |
|
---|
| 247 | /* a equals to b */
|
---|
[88d5c1e] | 248 | int are_equal = eq128(a.bin.hi, a.bin.lo, b.bin.hi, b.bin.lo);
|
---|
| 249 |
|
---|
[c67aff2] | 250 | return are_equal || both_zero;
|
---|
[7e557805] | 251 | }
|
---|
| 252 |
|
---|
| 253 | /**
|
---|
[c67aff2] | 254 | * Lower-than comparison between two floats. NaNs are not recognized.
|
---|
| 255 | *
|
---|
| 256 | * @a First single-precision operand.
|
---|
| 257 | * @b Second single-precision operand.
|
---|
| 258 | * @return 1 if a is lower than b, 0 otherwise.
|
---|
[7e557805] | 259 | */
|
---|
[88d5c1e] | 260 | int is_float32_lt(float32 a, float32 b)
|
---|
[7e557805] | 261 | {
|
---|
[88d5c1e] | 262 | if (((a.bin | b.bin) & 0x7FFFFFFF) == 0) {
|
---|
| 263 | /* +- zeroes */
|
---|
| 264 | return 0;
|
---|
[c67aff2] | 265 | }
|
---|
[cf4a823] | 266 |
|
---|
[c67aff2] | 267 | if ((a.parts.sign) && (b.parts.sign)) {
|
---|
[750636a] | 268 | /* if both are negative, smaller is that with greater binary value */
|
---|
[88d5c1e] | 269 | return (a.bin > b.bin);
|
---|
[c67aff2] | 270 | }
|
---|
[cf4a823] | 271 |
|
---|
[88d5c1e] | 272 | /*
|
---|
| 273 | * lets negate signs - now will be positive numbers always
|
---|
| 274 | * bigger than negative (first bit will be set for unsigned
|
---|
| 275 | * integer comparison)
|
---|
| 276 | */
|
---|
[750636a] | 277 | a.parts.sign = !a.parts.sign;
|
---|
| 278 | b.parts.sign = !b.parts.sign;
|
---|
[88d5c1e] | 279 | return (a.bin < b.bin);
|
---|
[7e557805] | 280 | }
|
---|
| 281 |
|
---|
[e649dfa] | 282 | /**
|
---|
[c67aff2] | 283 | * Lower-than comparison between two floats. NaNs are not recognized.
|
---|
| 284 | *
|
---|
| 285 | * @a First double-precision operand.
|
---|
| 286 | * @b Second double-precision operand.
|
---|
| 287 | * @return 1 if a is lower than b, 0 otherwise.
|
---|
| 288 | */
|
---|
[88d5c1e] | 289 | int is_float64_lt(float64 a, float64 b)
|
---|
[c67aff2] | 290 | {
|
---|
[88d5c1e] | 291 | if (((a.bin | b.bin) & 0x7FFFFFFFFFFFFFFFll) == 0) {
|
---|
| 292 | /* +- zeroes */
|
---|
| 293 | return 0;
|
---|
[c67aff2] | 294 | }
|
---|
[88d5c1e] | 295 |
|
---|
[c67aff2] | 296 | if ((a.parts.sign) && (b.parts.sign)) {
|
---|
| 297 | /* if both are negative, smaller is that with greater binary value */
|
---|
[88d5c1e] | 298 | return (a.bin > b.bin);
|
---|
[c67aff2] | 299 | }
|
---|
[88d5c1e] | 300 |
|
---|
| 301 | /*
|
---|
| 302 | * lets negate signs - now will be positive numbers always
|
---|
| 303 | * bigger than negative (first bit will be set for unsigned
|
---|
| 304 | * integer comparison)
|
---|
| 305 | */
|
---|
[c67aff2] | 306 | a.parts.sign = !a.parts.sign;
|
---|
| 307 | b.parts.sign = !b.parts.sign;
|
---|
[88d5c1e] | 308 | return (a.bin < b.bin);
|
---|
[c67aff2] | 309 | }
|
---|
| 310 |
|
---|
| 311 | /**
|
---|
| 312 | * Lower-than comparison between two floats. NaNs are not recognized.
|
---|
| 313 | *
|
---|
| 314 | * @a First quadruple-precision operand.
|
---|
| 315 | * @b Second quadruple-precision operand.
|
---|
| 316 | * @return 1 if a is lower than b, 0 otherwise.
|
---|
| 317 | */
|
---|
[88d5c1e] | 318 | int is_float128_lt(float128 a, float128 b)
|
---|
[c67aff2] | 319 | {
|
---|
| 320 | uint64_t tmp_hi;
|
---|
| 321 | uint64_t tmp_lo;
|
---|
[88d5c1e] | 322 |
|
---|
| 323 | or128(a.bin.hi, a.bin.lo,
|
---|
| 324 | b.bin.hi, b.bin.lo, &tmp_hi, &tmp_lo);
|
---|
[c67aff2] | 325 | and128(tmp_hi, tmp_lo,
|
---|
| 326 | 0x7FFFFFFFFFFFFFFFll, 0xFFFFFFFFFFFFFFFFll, &tmp_hi, &tmp_lo);
|
---|
| 327 | if (eq128(tmp_hi, tmp_lo, 0x0ll, 0x0ll)) {
|
---|
[88d5c1e] | 328 | /* +- zeroes */
|
---|
| 329 | return 0;
|
---|
[c67aff2] | 330 | }
|
---|
[88d5c1e] | 331 |
|
---|
[c67aff2] | 332 | if ((a.parts.sign) && (b.parts.sign)) {
|
---|
| 333 | /* if both are negative, smaller is that with greater binary value */
|
---|
[88d5c1e] | 334 | return lt128(b.bin.hi, b.bin.lo, a.bin.hi, a.bin.lo);
|
---|
[c67aff2] | 335 | }
|
---|
[88d5c1e] | 336 |
|
---|
| 337 | /*
|
---|
| 338 | * lets negate signs - now will be positive numbers always
|
---|
| 339 | * bigger than negative (first bit will be set for unsigned
|
---|
| 340 | * integer comparison)
|
---|
| 341 | */
|
---|
[c67aff2] | 342 | a.parts.sign = !a.parts.sign;
|
---|
| 343 | b.parts.sign = !b.parts.sign;
|
---|
[88d5c1e] | 344 | return lt128(a.bin.hi, a.bin.lo, b.bin.hi, b.bin.lo);
|
---|
[c67aff2] | 345 | }
|
---|
| 346 |
|
---|
| 347 | /**
|
---|
| 348 | * Greater-than comparison between two floats. NaNs are not recognized.
|
---|
| 349 | *
|
---|
| 350 | * @a First single-precision operand.
|
---|
| 351 | * @b Second single-precision operand.
|
---|
| 352 | * @return 1 if a is greater than b, 0 otherwise.
|
---|
[e649dfa] | 353 | */
|
---|
[88d5c1e] | 354 | int is_float32_gt(float32 a, float32 b)
|
---|
[e649dfa] | 355 | {
|
---|
[88d5c1e] | 356 | if (((a.bin | b.bin) & 0x7FFFFFFF) == 0) {
|
---|
| 357 | /* zeroes are equal with any sign */
|
---|
| 358 | return 0;
|
---|
[c67aff2] | 359 | }
|
---|
[cf4a823] | 360 |
|
---|
[c67aff2] | 361 | if ((a.parts.sign) && (b.parts.sign)) {
|
---|
[750636a] | 362 | /* if both are negative, greater is that with smaller binary value */
|
---|
[88d5c1e] | 363 | return (a.bin < b.bin);
|
---|
[c67aff2] | 364 | }
|
---|
[cf4a823] | 365 |
|
---|
[88d5c1e] | 366 | /*
|
---|
| 367 | * lets negate signs - now will be positive numbers always
|
---|
| 368 | * bigger than negative (first bit will be set for unsigned
|
---|
| 369 | * integer comparison)
|
---|
| 370 | */
|
---|
[750636a] | 371 | a.parts.sign = !a.parts.sign;
|
---|
| 372 | b.parts.sign = !b.parts.sign;
|
---|
[88d5c1e] | 373 | return (a.bin > b.bin);
|
---|
[e649dfa] | 374 | }
|
---|
| 375 |
|
---|
[c67aff2] | 376 | /**
|
---|
| 377 | * Greater-than comparison between two floats. NaNs are not recognized.
|
---|
| 378 | *
|
---|
| 379 | * @a First double-precision operand.
|
---|
| 380 | * @b Second double-precision operand.
|
---|
| 381 | * @return 1 if a is greater than b, 0 otherwise.
|
---|
| 382 | */
|
---|
[88d5c1e] | 383 | int is_float64_gt(float64 a, float64 b)
|
---|
[c67aff2] | 384 | {
|
---|
[88d5c1e] | 385 | if (((a.bin | b.bin) & 0x7FFFFFFFFFFFFFFFll) == 0) {
|
---|
| 386 | /* zeroes are equal with any sign */
|
---|
| 387 | return 0;
|
---|
[c67aff2] | 388 | }
|
---|
[88d5c1e] | 389 |
|
---|
[c67aff2] | 390 | if ((a.parts.sign) && (b.parts.sign)) {
|
---|
| 391 | /* if both are negative, greater is that with smaller binary value */
|
---|
[88d5c1e] | 392 | return (a.bin < b.bin);
|
---|
[c67aff2] | 393 | }
|
---|
[88d5c1e] | 394 |
|
---|
| 395 | /*
|
---|
| 396 | * lets negate signs - now will be positive numbers always
|
---|
| 397 | * bigger than negative (first bit will be set for unsigned
|
---|
| 398 | * integer comparison)
|
---|
| 399 | */
|
---|
[c67aff2] | 400 | a.parts.sign = !a.parts.sign;
|
---|
| 401 | b.parts.sign = !b.parts.sign;
|
---|
[88d5c1e] | 402 | return (a.bin > b.bin);
|
---|
[c67aff2] | 403 | }
|
---|
| 404 |
|
---|
| 405 | /**
|
---|
| 406 | * Greater-than comparison between two floats. NaNs are not recognized.
|
---|
| 407 | *
|
---|
| 408 | * @a First quadruple-precision operand.
|
---|
| 409 | * @b Second quadruple-precision operand.
|
---|
| 410 | * @return 1 if a is greater than b, 0 otherwise.
|
---|
| 411 | */
|
---|
[88d5c1e] | 412 | int is_float128_gt(float128 a, float128 b)
|
---|
[c67aff2] | 413 | {
|
---|
| 414 | uint64_t tmp_hi;
|
---|
| 415 | uint64_t tmp_lo;
|
---|
[88d5c1e] | 416 |
|
---|
| 417 | or128(a.bin.hi, a.bin.lo,
|
---|
| 418 | b.bin.hi, b.bin.lo, &tmp_hi, &tmp_lo);
|
---|
[c67aff2] | 419 | and128(tmp_hi, tmp_lo,
|
---|
| 420 | 0x7FFFFFFFFFFFFFFFll, 0xFFFFFFFFFFFFFFFFll, &tmp_hi, &tmp_lo);
|
---|
| 421 | if (eq128(tmp_hi, tmp_lo, 0x0ll, 0x0ll)) {
|
---|
[88d5c1e] | 422 | /* zeroes are equal with any sign */
|
---|
| 423 | return 0;
|
---|
[c67aff2] | 424 | }
|
---|
[88d5c1e] | 425 |
|
---|
[c67aff2] | 426 | if ((a.parts.sign) && (b.parts.sign)) {
|
---|
| 427 | /* if both are negative, greater is that with smaller binary value */
|
---|
[88d5c1e] | 428 | return lt128(a.bin.hi, a.bin.lo, b.bin.hi, b.bin.lo);
|
---|
[c67aff2] | 429 | }
|
---|
[88d5c1e] | 430 |
|
---|
| 431 | /*
|
---|
| 432 | * lets negate signs - now will be positive numbers always
|
---|
| 433 | * bigger than negative (first bit will be set for unsigned
|
---|
| 434 | * integer comparison)
|
---|
| 435 | */
|
---|
[c67aff2] | 436 | a.parts.sign = !a.parts.sign;
|
---|
| 437 | b.parts.sign = !b.parts.sign;
|
---|
[88d5c1e] | 438 | return lt128(b.bin.hi, b.bin.lo, a.bin.hi, a.bin.lo);
|
---|
[c67aff2] | 439 | }
|
---|
| 440 |
|
---|
[231a60a] | 441 | /** @}
|
---|
[846848a6] | 442 | */
|
---|