1 | /*
|
---|
2 | * Copyright (c) 2005 Josef Cejka
|
---|
3 | * Copyright (c) 2011 Petr Koupy
|
---|
4 | * All rights reserved.
|
---|
5 | *
|
---|
6 | * Redistribution and use in source and binary forms, with or without
|
---|
7 | * modification, are permitted provided that the following conditions
|
---|
8 | * are met:
|
---|
9 | *
|
---|
10 | * - Redistributions of source code must retain the above copyright
|
---|
11 | * notice, this list of conditions and the following disclaimer.
|
---|
12 | * - Redistributions in binary form must reproduce the above copyright
|
---|
13 | * notice, this list of conditions and the following disclaimer in the
|
---|
14 | * documentation and/or other materials provided with the distribution.
|
---|
15 | * - The name of the author may not be used to endorse or promote products
|
---|
16 | * derived from this software without specific prior written permission.
|
---|
17 | *
|
---|
18 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
19 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
20 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
21 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
22 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
23 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
24 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
25 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
26 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
27 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
28 | */
|
---|
29 |
|
---|
30 | /** @addtogroup softfloat
|
---|
31 | * @{
|
---|
32 | */
|
---|
33 | /** @file Addition functions.
|
---|
34 | */
|
---|
35 |
|
---|
36 | #include <sftypes.h>
|
---|
37 | #include <add.h>
|
---|
38 | #include <comparison.h>
|
---|
39 | #include <common.h>
|
---|
40 |
|
---|
41 | /**
|
---|
42 | * Add two single-precision floats with the same signs.
|
---|
43 | *
|
---|
44 | * @param a First input operand.
|
---|
45 | * @param b Second input operand.
|
---|
46 | * @return Result of addition.
|
---|
47 | */
|
---|
48 | float32 addFloat32(float32 a, float32 b)
|
---|
49 | {
|
---|
50 | int expdiff;
|
---|
51 | uint32_t exp1, exp2, frac1, frac2;
|
---|
52 |
|
---|
53 | expdiff = a.parts.exp - b.parts.exp;
|
---|
54 | if (expdiff < 0) {
|
---|
55 | if (isFloat32NaN(b)) {
|
---|
56 | /* TODO: fix SigNaN */
|
---|
57 | if (isFloat32SigNaN(b)) {
|
---|
58 | }
|
---|
59 |
|
---|
60 | return b;
|
---|
61 | }
|
---|
62 |
|
---|
63 | if (b.parts.exp == FLOAT32_MAX_EXPONENT) {
|
---|
64 | return b;
|
---|
65 | }
|
---|
66 |
|
---|
67 | frac1 = b.parts.fraction;
|
---|
68 | exp1 = b.parts.exp;
|
---|
69 | frac2 = a.parts.fraction;
|
---|
70 | exp2 = a.parts.exp;
|
---|
71 | expdiff *= -1;
|
---|
72 | } else {
|
---|
73 | if ((isFloat32NaN(a)) || (isFloat32NaN(b))) {
|
---|
74 | /* TODO: fix SigNaN */
|
---|
75 | if (isFloat32SigNaN(a) || isFloat32SigNaN(b)) {
|
---|
76 | }
|
---|
77 | return (isFloat32NaN(a) ? a : b);
|
---|
78 | }
|
---|
79 |
|
---|
80 | if (a.parts.exp == FLOAT32_MAX_EXPONENT) {
|
---|
81 | return a;
|
---|
82 | }
|
---|
83 |
|
---|
84 | frac1 = a.parts.fraction;
|
---|
85 | exp1 = a.parts.exp;
|
---|
86 | frac2 = b.parts.fraction;
|
---|
87 | exp2 = b.parts.exp;
|
---|
88 | }
|
---|
89 |
|
---|
90 | if (exp1 == 0) {
|
---|
91 | /* both are denormalized */
|
---|
92 | frac1 += frac2;
|
---|
93 | if (frac1 & FLOAT32_HIDDEN_BIT_MASK ) {
|
---|
94 | /* result is not denormalized */
|
---|
95 | a.parts.exp = 1;
|
---|
96 | }
|
---|
97 | a.parts.fraction = frac1;
|
---|
98 | return a;
|
---|
99 | }
|
---|
100 |
|
---|
101 | frac1 |= FLOAT32_HIDDEN_BIT_MASK; /* add hidden bit */
|
---|
102 |
|
---|
103 | if (exp2 == 0) {
|
---|
104 | /* second operand is denormalized */
|
---|
105 | --expdiff;
|
---|
106 | } else {
|
---|
107 | /* add hidden bit to second operand */
|
---|
108 | frac2 |= FLOAT32_HIDDEN_BIT_MASK;
|
---|
109 | }
|
---|
110 |
|
---|
111 | /* create some space for rounding */
|
---|
112 | frac1 <<= 6;
|
---|
113 | frac2 <<= 6;
|
---|
114 |
|
---|
115 | if (expdiff < (FLOAT32_FRACTION_SIZE + 2) ) {
|
---|
116 | frac2 >>= expdiff;
|
---|
117 | frac1 += frac2;
|
---|
118 | } else {
|
---|
119 | a.parts.exp = exp1;
|
---|
120 | a.parts.fraction = (frac1 >> 6) & (~(FLOAT32_HIDDEN_BIT_MASK));
|
---|
121 | return a;
|
---|
122 | }
|
---|
123 |
|
---|
124 | if (frac1 & (FLOAT32_HIDDEN_BIT_MASK << 7) ) {
|
---|
125 | ++exp1;
|
---|
126 | frac1 >>= 1;
|
---|
127 | }
|
---|
128 |
|
---|
129 | /* rounding - if first bit after fraction is set then round up */
|
---|
130 | frac1 += (0x1 << 5);
|
---|
131 |
|
---|
132 | if (frac1 & (FLOAT32_HIDDEN_BIT_MASK << 7)) {
|
---|
133 | /* rounding overflow */
|
---|
134 | ++exp1;
|
---|
135 | frac1 >>= 1;
|
---|
136 | }
|
---|
137 |
|
---|
138 | if ((exp1 == FLOAT32_MAX_EXPONENT ) || (exp2 > exp1)) {
|
---|
139 | /* overflow - set infinity as result */
|
---|
140 | a.parts.exp = FLOAT32_MAX_EXPONENT;
|
---|
141 | a.parts.fraction = 0;
|
---|
142 | return a;
|
---|
143 | }
|
---|
144 |
|
---|
145 | a.parts.exp = exp1;
|
---|
146 |
|
---|
147 | /* Clear hidden bit and shift */
|
---|
148 | a.parts.fraction = ((frac1 >> 6) & (~FLOAT32_HIDDEN_BIT_MASK));
|
---|
149 | return a;
|
---|
150 | }
|
---|
151 |
|
---|
152 | /**
|
---|
153 | * Add two double-precision floats with the same signs.
|
---|
154 | *
|
---|
155 | * @param a First input operand.
|
---|
156 | * @param b Second input operand.
|
---|
157 | * @return Result of addition.
|
---|
158 | */
|
---|
159 | float64 addFloat64(float64 a, float64 b)
|
---|
160 | {
|
---|
161 | int expdiff;
|
---|
162 | uint32_t exp1, exp2;
|
---|
163 | uint64_t frac1, frac2;
|
---|
164 |
|
---|
165 | expdiff = ((int) a.parts.exp) - b.parts.exp;
|
---|
166 | if (expdiff < 0) {
|
---|
167 | if (isFloat64NaN(b)) {
|
---|
168 | /* TODO: fix SigNaN */
|
---|
169 | if (isFloat64SigNaN(b)) {
|
---|
170 | }
|
---|
171 |
|
---|
172 | return b;
|
---|
173 | }
|
---|
174 |
|
---|
175 | /* b is infinity and a not */
|
---|
176 | if (b.parts.exp == FLOAT64_MAX_EXPONENT) {
|
---|
177 | return b;
|
---|
178 | }
|
---|
179 |
|
---|
180 | frac1 = b.parts.fraction;
|
---|
181 | exp1 = b.parts.exp;
|
---|
182 | frac2 = a.parts.fraction;
|
---|
183 | exp2 = a.parts.exp;
|
---|
184 | expdiff *= -1;
|
---|
185 | } else {
|
---|
186 | if (isFloat64NaN(a)) {
|
---|
187 | /* TODO: fix SigNaN */
|
---|
188 | if (isFloat64SigNaN(a) || isFloat64SigNaN(b)) {
|
---|
189 | }
|
---|
190 | return a;
|
---|
191 | }
|
---|
192 |
|
---|
193 | /* a is infinity and b not */
|
---|
194 | if (a.parts.exp == FLOAT64_MAX_EXPONENT) {
|
---|
195 | return a;
|
---|
196 | }
|
---|
197 |
|
---|
198 | frac1 = a.parts.fraction;
|
---|
199 | exp1 = a.parts.exp;
|
---|
200 | frac2 = b.parts.fraction;
|
---|
201 | exp2 = b.parts.exp;
|
---|
202 | }
|
---|
203 |
|
---|
204 | if (exp1 == 0) {
|
---|
205 | /* both are denormalized */
|
---|
206 | frac1 += frac2;
|
---|
207 | if (frac1 & FLOAT64_HIDDEN_BIT_MASK) {
|
---|
208 | /* result is not denormalized */
|
---|
209 | a.parts.exp = 1;
|
---|
210 | }
|
---|
211 | a.parts.fraction = frac1;
|
---|
212 | return a;
|
---|
213 | }
|
---|
214 |
|
---|
215 | /* add hidden bit - frac1 is sure not denormalized */
|
---|
216 | frac1 |= FLOAT64_HIDDEN_BIT_MASK;
|
---|
217 |
|
---|
218 | /* second operand ... */
|
---|
219 | if (exp2 == 0) {
|
---|
220 | /* ... is denormalized */
|
---|
221 | --expdiff;
|
---|
222 | } else {
|
---|
223 | /* is not denormalized */
|
---|
224 | frac2 |= FLOAT64_HIDDEN_BIT_MASK;
|
---|
225 | }
|
---|
226 |
|
---|
227 | /* create some space for rounding */
|
---|
228 | frac1 <<= 6;
|
---|
229 | frac2 <<= 6;
|
---|
230 |
|
---|
231 | if (expdiff < (FLOAT64_FRACTION_SIZE + 2)) {
|
---|
232 | frac2 >>= expdiff;
|
---|
233 | frac1 += frac2;
|
---|
234 | } else {
|
---|
235 | a.parts.exp = exp1;
|
---|
236 | a.parts.fraction = (frac1 >> 6) & (~(FLOAT64_HIDDEN_BIT_MASK));
|
---|
237 | return a;
|
---|
238 | }
|
---|
239 |
|
---|
240 | if (frac1 & (FLOAT64_HIDDEN_BIT_MASK << 7)) {
|
---|
241 | ++exp1;
|
---|
242 | frac1 >>= 1;
|
---|
243 | }
|
---|
244 |
|
---|
245 | /* rounding - if first bit after fraction is set then round up */
|
---|
246 | frac1 += (0x1 << 5);
|
---|
247 |
|
---|
248 | if (frac1 & (FLOAT64_HIDDEN_BIT_MASK << 7)) {
|
---|
249 | /* rounding overflow */
|
---|
250 | ++exp1;
|
---|
251 | frac1 >>= 1;
|
---|
252 | }
|
---|
253 |
|
---|
254 | if ((exp1 == FLOAT64_MAX_EXPONENT ) || (exp2 > exp1)) {
|
---|
255 | /* overflow - set infinity as result */
|
---|
256 | a.parts.exp = FLOAT64_MAX_EXPONENT;
|
---|
257 | a.parts.fraction = 0;
|
---|
258 | return a;
|
---|
259 | }
|
---|
260 |
|
---|
261 | a.parts.exp = exp1;
|
---|
262 | /* Clear hidden bit and shift */
|
---|
263 | a.parts.fraction = ((frac1 >> 6 ) & (~FLOAT64_HIDDEN_BIT_MASK));
|
---|
264 | return a;
|
---|
265 | }
|
---|
266 |
|
---|
267 | /**
|
---|
268 | * Add two quadruple-precision floats with the same signs.
|
---|
269 | *
|
---|
270 | * @param a First input operand.
|
---|
271 | * @param b Second input operand.
|
---|
272 | * @return Result of addition.
|
---|
273 | */
|
---|
274 | float128 addFloat128(float128 a, float128 b)
|
---|
275 | {
|
---|
276 | int expdiff;
|
---|
277 | uint32_t exp1, exp2;
|
---|
278 | uint64_t frac1_hi, frac1_lo, frac2_hi, frac2_lo, tmp_hi, tmp_lo;
|
---|
279 |
|
---|
280 | expdiff = ((int) a.parts.exp) - b.parts.exp;
|
---|
281 | if (expdiff < 0) {
|
---|
282 | if (isFloat128NaN(b)) {
|
---|
283 | /* TODO: fix SigNaN */
|
---|
284 | if (isFloat128SigNaN(b)) {
|
---|
285 | }
|
---|
286 |
|
---|
287 | return b;
|
---|
288 | }
|
---|
289 |
|
---|
290 | /* b is infinity and a not */
|
---|
291 | if (b.parts.exp == FLOAT128_MAX_EXPONENT) {
|
---|
292 | return b;
|
---|
293 | }
|
---|
294 |
|
---|
295 | frac1_hi = b.parts.frac_hi;
|
---|
296 | frac1_lo = b.parts.frac_lo;
|
---|
297 | exp1 = b.parts.exp;
|
---|
298 | frac2_hi = a.parts.frac_hi;
|
---|
299 | frac2_lo = a.parts.frac_lo;
|
---|
300 | exp2 = a.parts.exp;
|
---|
301 | expdiff *= -1;
|
---|
302 | } else {
|
---|
303 | if (isFloat128NaN(a)) {
|
---|
304 | /* TODO: fix SigNaN */
|
---|
305 | if (isFloat128SigNaN(a) || isFloat128SigNaN(b)) {
|
---|
306 | }
|
---|
307 | return a;
|
---|
308 | }
|
---|
309 |
|
---|
310 | /* a is infinity and b not */
|
---|
311 | if (a.parts.exp == FLOAT128_MAX_EXPONENT) {
|
---|
312 | return a;
|
---|
313 | }
|
---|
314 |
|
---|
315 | frac1_hi = a.parts.frac_hi;
|
---|
316 | frac1_lo = a.parts.frac_lo;
|
---|
317 | exp1 = a.parts.exp;
|
---|
318 | frac2_hi = b.parts.frac_hi;
|
---|
319 | frac2_lo = b.parts.frac_lo;
|
---|
320 | exp2 = b.parts.exp;
|
---|
321 | }
|
---|
322 |
|
---|
323 | if (exp1 == 0) {
|
---|
324 | /* both are denormalized */
|
---|
325 | add128(frac1_hi, frac1_lo, frac2_hi, frac2_lo, &frac1_hi, &frac1_lo);
|
---|
326 |
|
---|
327 | and128(frac1_hi, frac1_lo,
|
---|
328 | FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
329 | &tmp_hi, &tmp_lo);
|
---|
330 | if (lt128(0x0ll, 0x0ll, tmp_hi, tmp_lo)) {
|
---|
331 | /* result is not denormalized */
|
---|
332 | a.parts.exp = 1;
|
---|
333 | }
|
---|
334 |
|
---|
335 | a.parts.frac_hi = frac1_hi;
|
---|
336 | a.parts.frac_lo = frac1_lo;
|
---|
337 | return a;
|
---|
338 | }
|
---|
339 |
|
---|
340 | /* add hidden bit - frac1 is sure not denormalized */
|
---|
341 | or128(frac1_hi, frac1_lo,
|
---|
342 | FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
343 | &frac1_hi, &frac1_lo);
|
---|
344 |
|
---|
345 | /* second operand ... */
|
---|
346 | if (exp2 == 0) {
|
---|
347 | /* ... is denormalized */
|
---|
348 | --expdiff;
|
---|
349 | } else {
|
---|
350 | /* is not denormalized */
|
---|
351 | or128(frac2_hi, frac2_lo,
|
---|
352 | FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
353 | &frac2_hi, &frac2_lo);
|
---|
354 | }
|
---|
355 |
|
---|
356 | /* create some space for rounding */
|
---|
357 | lshift128(frac1_hi, frac1_lo, 6, &frac1_hi, &frac1_lo);
|
---|
358 | lshift128(frac2_hi, frac2_lo, 6, &frac2_hi, &frac2_lo);
|
---|
359 |
|
---|
360 | if (expdiff < (FLOAT128_FRACTION_SIZE + 2)) {
|
---|
361 | rshift128(frac2_hi, frac2_lo, expdiff, &frac2_hi, &frac2_lo);
|
---|
362 | add128(frac1_hi, frac1_lo, frac2_hi, frac2_lo, &frac1_hi, &frac1_lo);
|
---|
363 | } else {
|
---|
364 | a.parts.exp = exp1;
|
---|
365 |
|
---|
366 | rshift128(frac1_hi, frac1_lo, 6, &frac1_hi, &frac1_lo);
|
---|
367 | not128(FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
368 | &tmp_hi, &tmp_lo);
|
---|
369 | and128(frac1_hi, frac1_lo, tmp_hi, tmp_lo, &tmp_hi, &tmp_lo);
|
---|
370 |
|
---|
371 | a.parts.frac_hi = tmp_hi;
|
---|
372 | a.parts.frac_lo = tmp_lo;
|
---|
373 | return a;
|
---|
374 | }
|
---|
375 |
|
---|
376 | lshift128(FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO, 7,
|
---|
377 | &tmp_hi, &tmp_lo);
|
---|
378 | and128(frac1_hi, frac1_lo, tmp_hi, tmp_lo, &tmp_hi, &tmp_lo);
|
---|
379 | if (lt128(0x0ll, 0x0ll, tmp_hi, tmp_lo)) {
|
---|
380 | ++exp1;
|
---|
381 | rshift128(frac1_hi, frac1_lo, 1, &frac1_hi, &frac1_lo);
|
---|
382 | }
|
---|
383 |
|
---|
384 | /* rounding - if first bit after fraction is set then round up */
|
---|
385 | add128(frac1_hi, frac1_lo, 0x0ll, 0x1ll << 5, &frac1_hi, &frac1_lo);
|
---|
386 |
|
---|
387 | lshift128(FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO, 7,
|
---|
388 | &tmp_hi, &tmp_lo);
|
---|
389 | and128(frac1_hi, frac1_lo, tmp_hi, tmp_lo, &tmp_hi, &tmp_lo);
|
---|
390 | if (lt128(0x0ll, 0x0ll, tmp_hi, tmp_lo)) {
|
---|
391 | /* rounding overflow */
|
---|
392 | ++exp1;
|
---|
393 | rshift128(frac1_hi, frac1_lo, 1, &frac1_hi, &frac1_lo);
|
---|
394 | }
|
---|
395 |
|
---|
396 | if ((exp1 == FLOAT128_MAX_EXPONENT ) || (exp2 > exp1)) {
|
---|
397 | /* overflow - set infinity as result */
|
---|
398 | a.parts.exp = FLOAT64_MAX_EXPONENT;
|
---|
399 | a.parts.frac_hi = 0;
|
---|
400 | a.parts.frac_lo = 0;
|
---|
401 | return a;
|
---|
402 | }
|
---|
403 |
|
---|
404 | a.parts.exp = exp1;
|
---|
405 |
|
---|
406 | /* Clear hidden bit and shift */
|
---|
407 | rshift128(frac1_hi, frac1_lo, 6, &frac1_hi, &frac1_lo);
|
---|
408 | not128(FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
409 | &tmp_hi, &tmp_lo);
|
---|
410 | and128(frac1_hi, frac1_lo, tmp_hi, tmp_lo, &tmp_hi, &tmp_lo);
|
---|
411 |
|
---|
412 | a.parts.frac_hi = tmp_hi;
|
---|
413 | a.parts.frac_lo = tmp_lo;
|
---|
414 |
|
---|
415 | return a;
|
---|
416 | }
|
---|
417 |
|
---|
418 | /** @}
|
---|
419 | */
|
---|