| 1 | /*
|
|---|
| 2 | * Copyright (c) 2005 Josef Cejka
|
|---|
| 3 | * Copyright (c) 2011 Petr Koupy
|
|---|
| 4 | * All rights reserved.
|
|---|
| 5 | *
|
|---|
| 6 | * Redistribution and use in source and binary forms, with or without
|
|---|
| 7 | * modification, are permitted provided that the following conditions
|
|---|
| 8 | * are met:
|
|---|
| 9 | *
|
|---|
| 10 | * - Redistributions of source code must retain the above copyright
|
|---|
| 11 | * notice, this list of conditions and the following disclaimer.
|
|---|
| 12 | * - Redistributions in binary form must reproduce the above copyright
|
|---|
| 13 | * notice, this list of conditions and the following disclaimer in the
|
|---|
| 14 | * documentation and/or other materials provided with the distribution.
|
|---|
| 15 | * - The name of the author may not be used to endorse or promote products
|
|---|
| 16 | * derived from this software without specific prior written permission.
|
|---|
| 17 | *
|
|---|
| 18 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|---|
| 19 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|---|
| 20 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|---|
| 21 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|---|
| 22 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|---|
| 23 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|---|
| 24 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|---|
| 25 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|---|
| 26 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|---|
| 27 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|---|
| 28 | */
|
|---|
| 29 |
|
|---|
| 30 | /** @addtogroup softfloat
|
|---|
| 31 | * @{
|
|---|
| 32 | */
|
|---|
| 33 | /** @file Addition functions.
|
|---|
| 34 | */
|
|---|
| 35 |
|
|---|
| 36 | #include <sftypes.h>
|
|---|
| 37 | #include <add.h>
|
|---|
| 38 | #include <comparison.h>
|
|---|
| 39 | #include <common.h>
|
|---|
| 40 |
|
|---|
| 41 | /**
|
|---|
| 42 | * Add two single-precision floats with the same signs.
|
|---|
| 43 | *
|
|---|
| 44 | * @param a First input operand.
|
|---|
| 45 | * @param b Second input operand.
|
|---|
| 46 | * @return Result of addition.
|
|---|
| 47 | */
|
|---|
| 48 | float32 addFloat32(float32 a, float32 b)
|
|---|
| 49 | {
|
|---|
| 50 | int expdiff;
|
|---|
| 51 | uint32_t exp1, exp2, frac1, frac2;
|
|---|
| 52 |
|
|---|
| 53 | expdiff = a.parts.exp - b.parts.exp;
|
|---|
| 54 | if (expdiff < 0) {
|
|---|
| 55 | if (isFloat32NaN(b)) {
|
|---|
| 56 | /* TODO: fix SigNaN */
|
|---|
| 57 | if (isFloat32SigNaN(b)) {
|
|---|
| 58 | }
|
|---|
| 59 |
|
|---|
| 60 | return b;
|
|---|
| 61 | }
|
|---|
| 62 |
|
|---|
| 63 | if (b.parts.exp == FLOAT32_MAX_EXPONENT) {
|
|---|
| 64 | return b;
|
|---|
| 65 | }
|
|---|
| 66 |
|
|---|
| 67 | frac1 = b.parts.fraction;
|
|---|
| 68 | exp1 = b.parts.exp;
|
|---|
| 69 | frac2 = a.parts.fraction;
|
|---|
| 70 | exp2 = a.parts.exp;
|
|---|
| 71 | expdiff *= -1;
|
|---|
| 72 | } else {
|
|---|
| 73 | if ((isFloat32NaN(a)) || (isFloat32NaN(b))) {
|
|---|
| 74 | /* TODO: fix SigNaN */
|
|---|
| 75 | if (isFloat32SigNaN(a) || isFloat32SigNaN(b)) {
|
|---|
| 76 | }
|
|---|
| 77 | return (isFloat32NaN(a) ? a : b);
|
|---|
| 78 | }
|
|---|
| 79 |
|
|---|
| 80 | if (a.parts.exp == FLOAT32_MAX_EXPONENT) {
|
|---|
| 81 | return a;
|
|---|
| 82 | }
|
|---|
| 83 |
|
|---|
| 84 | frac1 = a.parts.fraction;
|
|---|
| 85 | exp1 = a.parts.exp;
|
|---|
| 86 | frac2 = b.parts.fraction;
|
|---|
| 87 | exp2 = b.parts.exp;
|
|---|
| 88 | }
|
|---|
| 89 |
|
|---|
| 90 | if (exp1 == 0) {
|
|---|
| 91 | /* both are denormalized */
|
|---|
| 92 | frac1 += frac2;
|
|---|
| 93 | if (frac1 & FLOAT32_HIDDEN_BIT_MASK ) {
|
|---|
| 94 | /* result is not denormalized */
|
|---|
| 95 | a.parts.exp = 1;
|
|---|
| 96 | }
|
|---|
| 97 | a.parts.fraction = frac1;
|
|---|
| 98 | return a;
|
|---|
| 99 | }
|
|---|
| 100 |
|
|---|
| 101 | frac1 |= FLOAT32_HIDDEN_BIT_MASK; /* add hidden bit */
|
|---|
| 102 |
|
|---|
| 103 | if (exp2 == 0) {
|
|---|
| 104 | /* second operand is denormalized */
|
|---|
| 105 | --expdiff;
|
|---|
| 106 | } else {
|
|---|
| 107 | /* add hidden bit to second operand */
|
|---|
| 108 | frac2 |= FLOAT32_HIDDEN_BIT_MASK;
|
|---|
| 109 | }
|
|---|
| 110 |
|
|---|
| 111 | /* create some space for rounding */
|
|---|
| 112 | frac1 <<= 6;
|
|---|
| 113 | frac2 <<= 6;
|
|---|
| 114 |
|
|---|
| 115 | if (expdiff < (FLOAT32_FRACTION_SIZE + 2) ) {
|
|---|
| 116 | frac2 >>= expdiff;
|
|---|
| 117 | frac1 += frac2;
|
|---|
| 118 | } else {
|
|---|
| 119 | a.parts.exp = exp1;
|
|---|
| 120 | a.parts.fraction = (frac1 >> 6) & (~(FLOAT32_HIDDEN_BIT_MASK));
|
|---|
| 121 | return a;
|
|---|
| 122 | }
|
|---|
| 123 |
|
|---|
| 124 | if (frac1 & (FLOAT32_HIDDEN_BIT_MASK << 7) ) {
|
|---|
| 125 | ++exp1;
|
|---|
| 126 | frac1 >>= 1;
|
|---|
| 127 | }
|
|---|
| 128 |
|
|---|
| 129 | /* rounding - if first bit after fraction is set then round up */
|
|---|
| 130 | frac1 += (0x1 << 5);
|
|---|
| 131 |
|
|---|
| 132 | if (frac1 & (FLOAT32_HIDDEN_BIT_MASK << 7)) {
|
|---|
| 133 | /* rounding overflow */
|
|---|
| 134 | ++exp1;
|
|---|
| 135 | frac1 >>= 1;
|
|---|
| 136 | }
|
|---|
| 137 |
|
|---|
| 138 | if ((exp1 == FLOAT32_MAX_EXPONENT ) || (exp2 > exp1)) {
|
|---|
| 139 | /* overflow - set infinity as result */
|
|---|
| 140 | a.parts.exp = FLOAT32_MAX_EXPONENT;
|
|---|
| 141 | a.parts.fraction = 0;
|
|---|
| 142 | return a;
|
|---|
| 143 | }
|
|---|
| 144 |
|
|---|
| 145 | a.parts.exp = exp1;
|
|---|
| 146 |
|
|---|
| 147 | /* Clear hidden bit and shift */
|
|---|
| 148 | a.parts.fraction = ((frac1 >> 6) & (~FLOAT32_HIDDEN_BIT_MASK));
|
|---|
| 149 | return a;
|
|---|
| 150 | }
|
|---|
| 151 |
|
|---|
| 152 | /**
|
|---|
| 153 | * Add two double-precision floats with the same signs.
|
|---|
| 154 | *
|
|---|
| 155 | * @param a First input operand.
|
|---|
| 156 | * @param b Second input operand.
|
|---|
| 157 | * @return Result of addition.
|
|---|
| 158 | */
|
|---|
| 159 | float64 addFloat64(float64 a, float64 b)
|
|---|
| 160 | {
|
|---|
| 161 | int expdiff;
|
|---|
| 162 | uint32_t exp1, exp2;
|
|---|
| 163 | uint64_t frac1, frac2;
|
|---|
| 164 |
|
|---|
| 165 | expdiff = ((int) a.parts.exp) - b.parts.exp;
|
|---|
| 166 | if (expdiff < 0) {
|
|---|
| 167 | if (isFloat64NaN(b)) {
|
|---|
| 168 | /* TODO: fix SigNaN */
|
|---|
| 169 | if (isFloat64SigNaN(b)) {
|
|---|
| 170 | }
|
|---|
| 171 |
|
|---|
| 172 | return b;
|
|---|
| 173 | }
|
|---|
| 174 |
|
|---|
| 175 | /* b is infinity and a not */
|
|---|
| 176 | if (b.parts.exp == FLOAT64_MAX_EXPONENT) {
|
|---|
| 177 | return b;
|
|---|
| 178 | }
|
|---|
| 179 |
|
|---|
| 180 | frac1 = b.parts.fraction;
|
|---|
| 181 | exp1 = b.parts.exp;
|
|---|
| 182 | frac2 = a.parts.fraction;
|
|---|
| 183 | exp2 = a.parts.exp;
|
|---|
| 184 | expdiff *= -1;
|
|---|
| 185 | } else {
|
|---|
| 186 | if (isFloat64NaN(a)) {
|
|---|
| 187 | /* TODO: fix SigNaN */
|
|---|
| 188 | if (isFloat64SigNaN(a) || isFloat64SigNaN(b)) {
|
|---|
| 189 | }
|
|---|
| 190 | return a;
|
|---|
| 191 | }
|
|---|
| 192 |
|
|---|
| 193 | /* a is infinity and b not */
|
|---|
| 194 | if (a.parts.exp == FLOAT64_MAX_EXPONENT) {
|
|---|
| 195 | return a;
|
|---|
| 196 | }
|
|---|
| 197 |
|
|---|
| 198 | frac1 = a.parts.fraction;
|
|---|
| 199 | exp1 = a.parts.exp;
|
|---|
| 200 | frac2 = b.parts.fraction;
|
|---|
| 201 | exp2 = b.parts.exp;
|
|---|
| 202 | }
|
|---|
| 203 |
|
|---|
| 204 | if (exp1 == 0) {
|
|---|
| 205 | /* both are denormalized */
|
|---|
| 206 | frac1 += frac2;
|
|---|
| 207 | if (frac1 & FLOAT64_HIDDEN_BIT_MASK) {
|
|---|
| 208 | /* result is not denormalized */
|
|---|
| 209 | a.parts.exp = 1;
|
|---|
| 210 | }
|
|---|
| 211 | a.parts.fraction = frac1;
|
|---|
| 212 | return a;
|
|---|
| 213 | }
|
|---|
| 214 |
|
|---|
| 215 | /* add hidden bit - frac1 is sure not denormalized */
|
|---|
| 216 | frac1 |= FLOAT64_HIDDEN_BIT_MASK;
|
|---|
| 217 |
|
|---|
| 218 | /* second operand ... */
|
|---|
| 219 | if (exp2 == 0) {
|
|---|
| 220 | /* ... is denormalized */
|
|---|
| 221 | --expdiff;
|
|---|
| 222 | } else {
|
|---|
| 223 | /* is not denormalized */
|
|---|
| 224 | frac2 |= FLOAT64_HIDDEN_BIT_MASK;
|
|---|
| 225 | }
|
|---|
| 226 |
|
|---|
| 227 | /* create some space for rounding */
|
|---|
| 228 | frac1 <<= 6;
|
|---|
| 229 | frac2 <<= 6;
|
|---|
| 230 |
|
|---|
| 231 | if (expdiff < (FLOAT64_FRACTION_SIZE + 2)) {
|
|---|
| 232 | frac2 >>= expdiff;
|
|---|
| 233 | frac1 += frac2;
|
|---|
| 234 | } else {
|
|---|
| 235 | a.parts.exp = exp1;
|
|---|
| 236 | a.parts.fraction = (frac1 >> 6) & (~(FLOAT64_HIDDEN_BIT_MASK));
|
|---|
| 237 | return a;
|
|---|
| 238 | }
|
|---|
| 239 |
|
|---|
| 240 | if (frac1 & (FLOAT64_HIDDEN_BIT_MASK << 7)) {
|
|---|
| 241 | ++exp1;
|
|---|
| 242 | frac1 >>= 1;
|
|---|
| 243 | }
|
|---|
| 244 |
|
|---|
| 245 | /* rounding - if first bit after fraction is set then round up */
|
|---|
| 246 | frac1 += (0x1 << 5);
|
|---|
| 247 |
|
|---|
| 248 | if (frac1 & (FLOAT64_HIDDEN_BIT_MASK << 7)) {
|
|---|
| 249 | /* rounding overflow */
|
|---|
| 250 | ++exp1;
|
|---|
| 251 | frac1 >>= 1;
|
|---|
| 252 | }
|
|---|
| 253 |
|
|---|
| 254 | if ((exp1 == FLOAT64_MAX_EXPONENT ) || (exp2 > exp1)) {
|
|---|
| 255 | /* overflow - set infinity as result */
|
|---|
| 256 | a.parts.exp = FLOAT64_MAX_EXPONENT;
|
|---|
| 257 | a.parts.fraction = 0;
|
|---|
| 258 | return a;
|
|---|
| 259 | }
|
|---|
| 260 |
|
|---|
| 261 | a.parts.exp = exp1;
|
|---|
| 262 | /* Clear hidden bit and shift */
|
|---|
| 263 | a.parts.fraction = ((frac1 >> 6 ) & (~FLOAT64_HIDDEN_BIT_MASK));
|
|---|
| 264 | return a;
|
|---|
| 265 | }
|
|---|
| 266 |
|
|---|
| 267 | /**
|
|---|
| 268 | * Add two quadruple-precision floats with the same signs.
|
|---|
| 269 | *
|
|---|
| 270 | * @param a First input operand.
|
|---|
| 271 | * @param b Second input operand.
|
|---|
| 272 | * @return Result of addition.
|
|---|
| 273 | */
|
|---|
| 274 | float128 addFloat128(float128 a, float128 b)
|
|---|
| 275 | {
|
|---|
| 276 | int expdiff;
|
|---|
| 277 | uint32_t exp1, exp2;
|
|---|
| 278 | uint64_t frac1_hi, frac1_lo, frac2_hi, frac2_lo, tmp_hi, tmp_lo;
|
|---|
| 279 |
|
|---|
| 280 | expdiff = ((int) a.parts.exp) - b.parts.exp;
|
|---|
| 281 | if (expdiff < 0) {
|
|---|
| 282 | if (isFloat128NaN(b)) {
|
|---|
| 283 | /* TODO: fix SigNaN */
|
|---|
| 284 | if (isFloat128SigNaN(b)) {
|
|---|
| 285 | }
|
|---|
| 286 |
|
|---|
| 287 | return b;
|
|---|
| 288 | }
|
|---|
| 289 |
|
|---|
| 290 | /* b is infinity and a not */
|
|---|
| 291 | if (b.parts.exp == FLOAT128_MAX_EXPONENT) {
|
|---|
| 292 | return b;
|
|---|
| 293 | }
|
|---|
| 294 |
|
|---|
| 295 | frac1_hi = b.parts.frac_hi;
|
|---|
| 296 | frac1_lo = b.parts.frac_lo;
|
|---|
| 297 | exp1 = b.parts.exp;
|
|---|
| 298 | frac2_hi = a.parts.frac_hi;
|
|---|
| 299 | frac2_lo = a.parts.frac_lo;
|
|---|
| 300 | exp2 = a.parts.exp;
|
|---|
| 301 | expdiff *= -1;
|
|---|
| 302 | } else {
|
|---|
| 303 | if (isFloat128NaN(a)) {
|
|---|
| 304 | /* TODO: fix SigNaN */
|
|---|
| 305 | if (isFloat128SigNaN(a) || isFloat128SigNaN(b)) {
|
|---|
| 306 | }
|
|---|
| 307 | return a;
|
|---|
| 308 | }
|
|---|
| 309 |
|
|---|
| 310 | /* a is infinity and b not */
|
|---|
| 311 | if (a.parts.exp == FLOAT128_MAX_EXPONENT) {
|
|---|
| 312 | return a;
|
|---|
| 313 | }
|
|---|
| 314 |
|
|---|
| 315 | frac1_hi = a.parts.frac_hi;
|
|---|
| 316 | frac1_lo = a.parts.frac_lo;
|
|---|
| 317 | exp1 = a.parts.exp;
|
|---|
| 318 | frac2_hi = b.parts.frac_hi;
|
|---|
| 319 | frac2_lo = b.parts.frac_lo;
|
|---|
| 320 | exp2 = b.parts.exp;
|
|---|
| 321 | }
|
|---|
| 322 |
|
|---|
| 323 | if (exp1 == 0) {
|
|---|
| 324 | /* both are denormalized */
|
|---|
| 325 | add128(frac1_hi, frac1_lo, frac2_hi, frac2_lo, &frac1_hi, &frac1_lo);
|
|---|
| 326 |
|
|---|
| 327 | and128(frac1_hi, frac1_lo,
|
|---|
| 328 | FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
|---|
| 329 | &tmp_hi, &tmp_lo);
|
|---|
| 330 | if (lt128(0x0ll, 0x0ll, tmp_hi, tmp_lo)) {
|
|---|
| 331 | /* result is not denormalized */
|
|---|
| 332 | a.parts.exp = 1;
|
|---|
| 333 | }
|
|---|
| 334 |
|
|---|
| 335 | a.parts.frac_hi = frac1_hi;
|
|---|
| 336 | a.parts.frac_lo = frac1_lo;
|
|---|
| 337 | return a;
|
|---|
| 338 | }
|
|---|
| 339 |
|
|---|
| 340 | /* add hidden bit - frac1 is sure not denormalized */
|
|---|
| 341 | or128(frac1_hi, frac1_lo,
|
|---|
| 342 | FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
|---|
| 343 | &frac1_hi, &frac1_lo);
|
|---|
| 344 |
|
|---|
| 345 | /* second operand ... */
|
|---|
| 346 | if (exp2 == 0) {
|
|---|
| 347 | /* ... is denormalized */
|
|---|
| 348 | --expdiff;
|
|---|
| 349 | } else {
|
|---|
| 350 | /* is not denormalized */
|
|---|
| 351 | or128(frac2_hi, frac2_lo,
|
|---|
| 352 | FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
|---|
| 353 | &frac2_hi, &frac2_lo);
|
|---|
| 354 | }
|
|---|
| 355 |
|
|---|
| 356 | /* create some space for rounding */
|
|---|
| 357 | lshift128(frac1_hi, frac1_lo, 6, &frac1_hi, &frac1_lo);
|
|---|
| 358 | lshift128(frac2_hi, frac2_lo, 6, &frac2_hi, &frac2_lo);
|
|---|
| 359 |
|
|---|
| 360 | if (expdiff < (FLOAT128_FRACTION_SIZE + 2)) {
|
|---|
| 361 | rshift128(frac2_hi, frac2_lo, expdiff, &frac2_hi, &frac2_lo);
|
|---|
| 362 | add128(frac1_hi, frac1_lo, frac2_hi, frac2_lo, &frac1_hi, &frac1_lo);
|
|---|
| 363 | } else {
|
|---|
| 364 | a.parts.exp = exp1;
|
|---|
| 365 |
|
|---|
| 366 | rshift128(frac1_hi, frac1_lo, 6, &frac1_hi, &frac1_lo);
|
|---|
| 367 | not128(FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
|---|
| 368 | &tmp_hi, &tmp_lo);
|
|---|
| 369 | and128(frac1_hi, frac1_lo, tmp_hi, tmp_lo, &tmp_hi, &tmp_lo);
|
|---|
| 370 |
|
|---|
| 371 | a.parts.frac_hi = tmp_hi;
|
|---|
| 372 | a.parts.frac_lo = tmp_lo;
|
|---|
| 373 | return a;
|
|---|
| 374 | }
|
|---|
| 375 |
|
|---|
| 376 | lshift128(FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO, 7,
|
|---|
| 377 | &tmp_hi, &tmp_lo);
|
|---|
| 378 | and128(frac1_hi, frac1_lo, tmp_hi, tmp_lo, &tmp_hi, &tmp_lo);
|
|---|
| 379 | if (lt128(0x0ll, 0x0ll, tmp_hi, tmp_lo)) {
|
|---|
| 380 | ++exp1;
|
|---|
| 381 | rshift128(frac1_hi, frac1_lo, 1, &frac1_hi, &frac1_lo);
|
|---|
| 382 | }
|
|---|
| 383 |
|
|---|
| 384 | /* rounding - if first bit after fraction is set then round up */
|
|---|
| 385 | add128(frac1_hi, frac1_lo, 0x0ll, 0x1ll << 5, &frac1_hi, &frac1_lo);
|
|---|
| 386 |
|
|---|
| 387 | lshift128(FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO, 7,
|
|---|
| 388 | &tmp_hi, &tmp_lo);
|
|---|
| 389 | and128(frac1_hi, frac1_lo, tmp_hi, tmp_lo, &tmp_hi, &tmp_lo);
|
|---|
| 390 | if (lt128(0x0ll, 0x0ll, tmp_hi, tmp_lo)) {
|
|---|
| 391 | /* rounding overflow */
|
|---|
| 392 | ++exp1;
|
|---|
| 393 | rshift128(frac1_hi, frac1_lo, 1, &frac1_hi, &frac1_lo);
|
|---|
| 394 | }
|
|---|
| 395 |
|
|---|
| 396 | if ((exp1 == FLOAT128_MAX_EXPONENT ) || (exp2 > exp1)) {
|
|---|
| 397 | /* overflow - set infinity as result */
|
|---|
| 398 | a.parts.exp = FLOAT64_MAX_EXPONENT;
|
|---|
| 399 | a.parts.frac_hi = 0;
|
|---|
| 400 | a.parts.frac_lo = 0;
|
|---|
| 401 | return a;
|
|---|
| 402 | }
|
|---|
| 403 |
|
|---|
| 404 | a.parts.exp = exp1;
|
|---|
| 405 |
|
|---|
| 406 | /* Clear hidden bit and shift */
|
|---|
| 407 | rshift128(frac1_hi, frac1_lo, 6, &frac1_hi, &frac1_lo);
|
|---|
| 408 | not128(FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
|---|
| 409 | &tmp_hi, &tmp_lo);
|
|---|
| 410 | and128(frac1_hi, frac1_lo, tmp_hi, tmp_lo, &tmp_hi, &tmp_lo);
|
|---|
| 411 |
|
|---|
| 412 | a.parts.frac_hi = tmp_hi;
|
|---|
| 413 | a.parts.frac_lo = tmp_lo;
|
|---|
| 414 |
|
|---|
| 415 | return a;
|
|---|
| 416 | }
|
|---|
| 417 |
|
|---|
| 418 | /** @}
|
|---|
| 419 | */
|
|---|