1 | /*
|
---|
2 | * Copyright (c) 2005 Josef Cejka
|
---|
3 | * Copyright (c) 2011 Petr Koupy
|
---|
4 | * All rights reserved.
|
---|
5 | *
|
---|
6 | * Redistribution and use in source and binary forms, with or without
|
---|
7 | * modification, are permitted provided that the following conditions
|
---|
8 | * are met:
|
---|
9 | *
|
---|
10 | * - Redistributions of source code must retain the above copyright
|
---|
11 | * notice, this list of conditions and the following disclaimer.
|
---|
12 | * - Redistributions in binary form must reproduce the above copyright
|
---|
13 | * notice, this list of conditions and the following disclaimer in the
|
---|
14 | * documentation and/or other materials provided with the distribution.
|
---|
15 | * - The name of the author may not be used to endorse or promote products
|
---|
16 | * derived from this software without specific prior written permission.
|
---|
17 | *
|
---|
18 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
19 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
20 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
21 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
22 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
23 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
24 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
25 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
26 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
27 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
28 | */
|
---|
29 |
|
---|
30 | /** @addtogroup softfloat
|
---|
31 | * @{
|
---|
32 | */
|
---|
33 | /** @file Division functions.
|
---|
34 | */
|
---|
35 |
|
---|
36 | #include "sftypes.h"
|
---|
37 | #include "add.h"
|
---|
38 | #include "div.h"
|
---|
39 | #include "comparison.h"
|
---|
40 | #include "mul.h"
|
---|
41 | #include "common.h"
|
---|
42 |
|
---|
43 | /** Divide two single-precision floats.
|
---|
44 | *
|
---|
45 | * @param a Nominator.
|
---|
46 | * @param b Denominator.
|
---|
47 | *
|
---|
48 | * @return Result of division.
|
---|
49 | *
|
---|
50 | */
|
---|
51 | float32 div_float32(float32 a, float32 b)
|
---|
52 | {
|
---|
53 | float32 result;
|
---|
54 | int32_t aexp, bexp, cexp;
|
---|
55 | uint64_t afrac, bfrac, cfrac;
|
---|
56 |
|
---|
57 | result.parts.sign = a.parts.sign ^ b.parts.sign;
|
---|
58 |
|
---|
59 | if (is_float32_nan(a)) {
|
---|
60 | if (is_float32_signan(a)) {
|
---|
61 | // FIXME: SigNaN
|
---|
62 | }
|
---|
63 | /* NaN */
|
---|
64 | return a;
|
---|
65 | }
|
---|
66 |
|
---|
67 | if (is_float32_nan(b)) {
|
---|
68 | if (is_float32_signan(b)) {
|
---|
69 | // FIXME: SigNaN
|
---|
70 | }
|
---|
71 | /* NaN */
|
---|
72 | return b;
|
---|
73 | }
|
---|
74 |
|
---|
75 | if (is_float32_infinity(a)) {
|
---|
76 | if (is_float32_infinity(b)) {
|
---|
77 | /*FIXME: inf / inf */
|
---|
78 | result.bin = FLOAT32_NAN;
|
---|
79 | return result;
|
---|
80 | }
|
---|
81 | /* inf / num */
|
---|
82 | result.parts.exp = a.parts.exp;
|
---|
83 | result.parts.fraction = a.parts.fraction;
|
---|
84 | return result;
|
---|
85 | }
|
---|
86 |
|
---|
87 | if (is_float32_infinity(b)) {
|
---|
88 | if (is_float32_zero(a)) {
|
---|
89 | /* FIXME 0 / inf */
|
---|
90 | result.parts.exp = 0;
|
---|
91 | result.parts.fraction = 0;
|
---|
92 | return result;
|
---|
93 | }
|
---|
94 | /* FIXME: num / inf*/
|
---|
95 | result.parts.exp = 0;
|
---|
96 | result.parts.fraction = 0;
|
---|
97 | return result;
|
---|
98 | }
|
---|
99 |
|
---|
100 | if (is_float32_zero(b)) {
|
---|
101 | if (is_float32_zero(a)) {
|
---|
102 | /*FIXME: 0 / 0*/
|
---|
103 | result.bin = FLOAT32_NAN;
|
---|
104 | return result;
|
---|
105 | }
|
---|
106 | /* FIXME: division by zero */
|
---|
107 | result.parts.exp = 0;
|
---|
108 | result.parts.fraction = 0;
|
---|
109 | return result;
|
---|
110 | }
|
---|
111 |
|
---|
112 | afrac = a.parts.fraction;
|
---|
113 | aexp = a.parts.exp;
|
---|
114 | bfrac = b.parts.fraction;
|
---|
115 | bexp = b.parts.exp;
|
---|
116 |
|
---|
117 | /* denormalized numbers */
|
---|
118 | if (aexp == 0) {
|
---|
119 | if (afrac == 0) {
|
---|
120 | result.parts.exp = 0;
|
---|
121 | result.parts.fraction = 0;
|
---|
122 | return result;
|
---|
123 | }
|
---|
124 |
|
---|
125 | /* normalize it*/
|
---|
126 | afrac <<= 1;
|
---|
127 | /* afrac is nonzero => it must stop */
|
---|
128 | while (!(afrac & FLOAT32_HIDDEN_BIT_MASK)) {
|
---|
129 | afrac <<= 1;
|
---|
130 | aexp--;
|
---|
131 | }
|
---|
132 | }
|
---|
133 |
|
---|
134 | if (bexp == 0) {
|
---|
135 | bfrac <<= 1;
|
---|
136 | /* bfrac is nonzero => it must stop */
|
---|
137 | while (!(bfrac & FLOAT32_HIDDEN_BIT_MASK)) {
|
---|
138 | bfrac <<= 1;
|
---|
139 | bexp--;
|
---|
140 | }
|
---|
141 | }
|
---|
142 |
|
---|
143 | afrac = (afrac | FLOAT32_HIDDEN_BIT_MASK) << (32 - FLOAT32_FRACTION_SIZE - 1);
|
---|
144 | bfrac = (bfrac | FLOAT32_HIDDEN_BIT_MASK) << (32 - FLOAT32_FRACTION_SIZE);
|
---|
145 |
|
---|
146 | if (bfrac <= (afrac << 1)) {
|
---|
147 | afrac >>= 1;
|
---|
148 | aexp++;
|
---|
149 | }
|
---|
150 |
|
---|
151 | cexp = aexp - bexp + FLOAT32_BIAS - 2;
|
---|
152 |
|
---|
153 | cfrac = (afrac << 32) / bfrac;
|
---|
154 | if ((cfrac & 0x3F) == 0) {
|
---|
155 | cfrac |= (bfrac * cfrac != afrac << 32);
|
---|
156 | }
|
---|
157 |
|
---|
158 | /* pack and round */
|
---|
159 |
|
---|
160 | /* find first nonzero digit and shift result and detect possibly underflow */
|
---|
161 | while ((cexp > 0) && (cfrac) && (!(cfrac & (FLOAT32_HIDDEN_BIT_MASK << 7)))) {
|
---|
162 | cexp--;
|
---|
163 | cfrac <<= 1;
|
---|
164 | /* TODO: fix underflow */
|
---|
165 | }
|
---|
166 |
|
---|
167 | cfrac += (0x1 << 6); /* FIXME: 7 is not sure*/
|
---|
168 |
|
---|
169 | if (cfrac & (FLOAT32_HIDDEN_BIT_MASK << 7)) {
|
---|
170 | ++cexp;
|
---|
171 | cfrac >>= 1;
|
---|
172 | }
|
---|
173 |
|
---|
174 | /* check overflow */
|
---|
175 | if (cexp >= FLOAT32_MAX_EXPONENT) {
|
---|
176 | /* FIXME: overflow, return infinity */
|
---|
177 | result.parts.exp = FLOAT32_MAX_EXPONENT;
|
---|
178 | result.parts.fraction = 0;
|
---|
179 | return result;
|
---|
180 | }
|
---|
181 |
|
---|
182 | if (cexp < 0) {
|
---|
183 | /* FIXME: underflow */
|
---|
184 | result.parts.exp = 0;
|
---|
185 | if ((cexp + FLOAT32_FRACTION_SIZE) < 0) {
|
---|
186 | result.parts.fraction = 0;
|
---|
187 | return result;
|
---|
188 | }
|
---|
189 | cfrac >>= 1;
|
---|
190 | while (cexp < 0) {
|
---|
191 | cexp++;
|
---|
192 | cfrac >>= 1;
|
---|
193 | }
|
---|
194 | } else {
|
---|
195 | result.parts.exp = (uint32_t) cexp;
|
---|
196 | }
|
---|
197 |
|
---|
198 | result.parts.fraction = ((cfrac >> 6) & (~FLOAT32_HIDDEN_BIT_MASK));
|
---|
199 |
|
---|
200 | return result;
|
---|
201 | }
|
---|
202 |
|
---|
203 | /** Divide two double-precision floats.
|
---|
204 | *
|
---|
205 | * @param a Nominator.
|
---|
206 | * @param b Denominator.
|
---|
207 | *
|
---|
208 | * @return Result of division.
|
---|
209 | *
|
---|
210 | */
|
---|
211 | float64 div_float64(float64 a, float64 b)
|
---|
212 | {
|
---|
213 | float64 result;
|
---|
214 | int64_t aexp, bexp, cexp;
|
---|
215 | uint64_t afrac, bfrac, cfrac;
|
---|
216 | uint64_t remlo, remhi;
|
---|
217 | uint64_t tmplo, tmphi;
|
---|
218 |
|
---|
219 | result.parts.sign = a.parts.sign ^ b.parts.sign;
|
---|
220 |
|
---|
221 | if (is_float64_nan(a)) {
|
---|
222 | if (is_float64_signan(b)) {
|
---|
223 | // FIXME: SigNaN
|
---|
224 | return b;
|
---|
225 | }
|
---|
226 |
|
---|
227 | if (is_float64_signan(a)) {
|
---|
228 | // FIXME: SigNaN
|
---|
229 | }
|
---|
230 | /* NaN */
|
---|
231 | return a;
|
---|
232 | }
|
---|
233 |
|
---|
234 | if (is_float64_nan(b)) {
|
---|
235 | if (is_float64_signan(b)) {
|
---|
236 | // FIXME: SigNaN
|
---|
237 | }
|
---|
238 | /* NaN */
|
---|
239 | return b;
|
---|
240 | }
|
---|
241 |
|
---|
242 | if (is_float64_infinity(a)) {
|
---|
243 | if (is_float64_infinity(b) || is_float64_zero(b)) {
|
---|
244 | // FIXME: inf / inf
|
---|
245 | result.bin = FLOAT64_NAN;
|
---|
246 | return result;
|
---|
247 | }
|
---|
248 | /* inf / num */
|
---|
249 | result.parts.exp = a.parts.exp;
|
---|
250 | result.parts.fraction = a.parts.fraction;
|
---|
251 | return result;
|
---|
252 | }
|
---|
253 |
|
---|
254 | if (is_float64_infinity(b)) {
|
---|
255 | if (is_float64_zero(a)) {
|
---|
256 | /* FIXME 0 / inf */
|
---|
257 | result.parts.exp = 0;
|
---|
258 | result.parts.fraction = 0;
|
---|
259 | return result;
|
---|
260 | }
|
---|
261 | /* FIXME: num / inf*/
|
---|
262 | result.parts.exp = 0;
|
---|
263 | result.parts.fraction = 0;
|
---|
264 | return result;
|
---|
265 | }
|
---|
266 |
|
---|
267 | if (is_float64_zero(b)) {
|
---|
268 | if (is_float64_zero(a)) {
|
---|
269 | /*FIXME: 0 / 0*/
|
---|
270 | result.bin = FLOAT64_NAN;
|
---|
271 | return result;
|
---|
272 | }
|
---|
273 | /* FIXME: division by zero */
|
---|
274 | result.parts.exp = 0;
|
---|
275 | result.parts.fraction = 0;
|
---|
276 | return result;
|
---|
277 | }
|
---|
278 |
|
---|
279 | afrac = a.parts.fraction;
|
---|
280 | aexp = a.parts.exp;
|
---|
281 | bfrac = b.parts.fraction;
|
---|
282 | bexp = b.parts.exp;
|
---|
283 |
|
---|
284 | /* denormalized numbers */
|
---|
285 | if (aexp == 0) {
|
---|
286 | if (afrac == 0) {
|
---|
287 | result.parts.exp = 0;
|
---|
288 | result.parts.fraction = 0;
|
---|
289 | return result;
|
---|
290 | }
|
---|
291 |
|
---|
292 | /* normalize it*/
|
---|
293 | aexp++;
|
---|
294 | /* afrac is nonzero => it must stop */
|
---|
295 | while (!(afrac & FLOAT64_HIDDEN_BIT_MASK)) {
|
---|
296 | afrac <<= 1;
|
---|
297 | aexp--;
|
---|
298 | }
|
---|
299 | }
|
---|
300 |
|
---|
301 | if (bexp == 0) {
|
---|
302 | bexp++;
|
---|
303 | /* bfrac is nonzero => it must stop */
|
---|
304 | while (!(bfrac & FLOAT64_HIDDEN_BIT_MASK)) {
|
---|
305 | bfrac <<= 1;
|
---|
306 | bexp--;
|
---|
307 | }
|
---|
308 | }
|
---|
309 |
|
---|
310 | afrac = (afrac | FLOAT64_HIDDEN_BIT_MASK) << (64 - FLOAT64_FRACTION_SIZE - 2);
|
---|
311 | bfrac = (bfrac | FLOAT64_HIDDEN_BIT_MASK) << (64 - FLOAT64_FRACTION_SIZE - 1);
|
---|
312 |
|
---|
313 | if (bfrac <= (afrac << 1)) {
|
---|
314 | afrac >>= 1;
|
---|
315 | aexp++;
|
---|
316 | }
|
---|
317 |
|
---|
318 | cexp = aexp - bexp + FLOAT64_BIAS - 2;
|
---|
319 |
|
---|
320 | cfrac = div128est(afrac, 0x0ll, bfrac);
|
---|
321 |
|
---|
322 | if ((cfrac & 0x1FF) <= 2) {
|
---|
323 | mul64(bfrac, cfrac, &tmphi, &tmplo);
|
---|
324 | sub128(afrac, 0x0ll, tmphi, tmplo, &remhi, &remlo);
|
---|
325 |
|
---|
326 | while ((int64_t) remhi < 0) {
|
---|
327 | cfrac--;
|
---|
328 | add128(remhi, remlo, 0x0ll, bfrac, &remhi, &remlo);
|
---|
329 | }
|
---|
330 | cfrac |= (remlo != 0);
|
---|
331 | }
|
---|
332 |
|
---|
333 | /* round and shift */
|
---|
334 | result = finish_float64(cexp, cfrac, result.parts.sign);
|
---|
335 | return result;
|
---|
336 | }
|
---|
337 |
|
---|
338 | /** Divide two quadruple-precision floats.
|
---|
339 | *
|
---|
340 | * @param a Nominator.
|
---|
341 | * @param b Denominator.
|
---|
342 | *
|
---|
343 | * @return Result of division.
|
---|
344 | *
|
---|
345 | */
|
---|
346 | float128 div_float128(float128 a, float128 b)
|
---|
347 | {
|
---|
348 | float128 result;
|
---|
349 | int64_t aexp, bexp, cexp;
|
---|
350 | uint64_t afrac_hi, afrac_lo, bfrac_hi, bfrac_lo, cfrac_hi, cfrac_lo;
|
---|
351 | uint64_t shift_out;
|
---|
352 | uint64_t rem_hihi, rem_hilo, rem_lohi, rem_lolo;
|
---|
353 | uint64_t tmp_hihi, tmp_hilo, tmp_lohi, tmp_lolo;
|
---|
354 |
|
---|
355 | result.parts.sign = a.parts.sign ^ b.parts.sign;
|
---|
356 |
|
---|
357 | if (is_float128_nan(a)) {
|
---|
358 | if (is_float128_signan(b)) {
|
---|
359 | // FIXME: SigNaN
|
---|
360 | return b;
|
---|
361 | }
|
---|
362 |
|
---|
363 | if (is_float128_signan(a)) {
|
---|
364 | // FIXME: SigNaN
|
---|
365 | }
|
---|
366 | /* NaN */
|
---|
367 | return a;
|
---|
368 | }
|
---|
369 |
|
---|
370 | if (is_float128_nan(b)) {
|
---|
371 | if (is_float128_signan(b)) {
|
---|
372 | // FIXME: SigNaN
|
---|
373 | }
|
---|
374 | /* NaN */
|
---|
375 | return b;
|
---|
376 | }
|
---|
377 |
|
---|
378 | if (is_float128_infinity(a)) {
|
---|
379 | if (is_float128_infinity(b) || is_float128_zero(b)) {
|
---|
380 | // FIXME: inf / inf
|
---|
381 | result.bin.hi = FLOAT128_NAN_HI;
|
---|
382 | result.bin.lo = FLOAT128_NAN_LO;
|
---|
383 | return result;
|
---|
384 | }
|
---|
385 | /* inf / num */
|
---|
386 | result.parts.exp = a.parts.exp;
|
---|
387 | result.parts.frac_hi = a.parts.frac_hi;
|
---|
388 | result.parts.frac_lo = a.parts.frac_lo;
|
---|
389 | return result;
|
---|
390 | }
|
---|
391 |
|
---|
392 | if (is_float128_infinity(b)) {
|
---|
393 | if (is_float128_zero(a)) {
|
---|
394 | // FIXME 0 / inf
|
---|
395 | result.parts.exp = 0;
|
---|
396 | result.parts.frac_hi = 0;
|
---|
397 | result.parts.frac_lo = 0;
|
---|
398 | return result;
|
---|
399 | }
|
---|
400 | // FIXME: num / inf
|
---|
401 | result.parts.exp = 0;
|
---|
402 | result.parts.frac_hi = 0;
|
---|
403 | result.parts.frac_lo = 0;
|
---|
404 | return result;
|
---|
405 | }
|
---|
406 |
|
---|
407 | if (is_float128_zero(b)) {
|
---|
408 | if (is_float128_zero(a)) {
|
---|
409 | // FIXME: 0 / 0
|
---|
410 | result.bin.hi = FLOAT128_NAN_HI;
|
---|
411 | result.bin.lo = FLOAT128_NAN_LO;
|
---|
412 | return result;
|
---|
413 | }
|
---|
414 | // FIXME: division by zero
|
---|
415 | result.parts.exp = 0;
|
---|
416 | result.parts.frac_hi = 0;
|
---|
417 | result.parts.frac_lo = 0;
|
---|
418 | return result;
|
---|
419 | }
|
---|
420 |
|
---|
421 | afrac_hi = a.parts.frac_hi;
|
---|
422 | afrac_lo = a.parts.frac_lo;
|
---|
423 | aexp = a.parts.exp;
|
---|
424 | bfrac_hi = b.parts.frac_hi;
|
---|
425 | bfrac_lo = b.parts.frac_lo;
|
---|
426 | bexp = b.parts.exp;
|
---|
427 |
|
---|
428 | /* denormalized numbers */
|
---|
429 | if (aexp == 0) {
|
---|
430 | if (eq128(afrac_hi, afrac_lo, 0x0ll, 0x0ll)) {
|
---|
431 | result.parts.exp = 0;
|
---|
432 | result.parts.frac_hi = 0;
|
---|
433 | result.parts.frac_lo = 0;
|
---|
434 | return result;
|
---|
435 | }
|
---|
436 |
|
---|
437 | /* normalize it*/
|
---|
438 | aexp++;
|
---|
439 | /* afrac is nonzero => it must stop */
|
---|
440 | and128(afrac_hi, afrac_lo,
|
---|
441 | FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
442 | &tmp_hihi, &tmp_lolo);
|
---|
443 | while (!lt128(0x0ll, 0x0ll, tmp_hihi, tmp_lolo)) {
|
---|
444 | lshift128(afrac_hi, afrac_lo, 1, &afrac_hi, &afrac_lo);
|
---|
445 | aexp--;
|
---|
446 | }
|
---|
447 | }
|
---|
448 |
|
---|
449 | if (bexp == 0) {
|
---|
450 | bexp++;
|
---|
451 | /* bfrac is nonzero => it must stop */
|
---|
452 | and128(bfrac_hi, bfrac_lo,
|
---|
453 | FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
454 | &tmp_hihi, &tmp_lolo);
|
---|
455 | while (!lt128(0x0ll, 0x0ll, tmp_hihi, tmp_lolo)) {
|
---|
456 | lshift128(bfrac_hi, bfrac_lo, 1, &bfrac_hi, &bfrac_lo);
|
---|
457 | bexp--;
|
---|
458 | }
|
---|
459 | }
|
---|
460 |
|
---|
461 | or128(afrac_hi, afrac_lo,
|
---|
462 | FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
463 | &afrac_hi, &afrac_lo);
|
---|
464 | lshift128(afrac_hi, afrac_lo,
|
---|
465 | (128 - FLOAT128_FRACTION_SIZE - 1), &afrac_hi, &afrac_lo);
|
---|
466 | or128(bfrac_hi, bfrac_lo,
|
---|
467 | FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
468 | &bfrac_hi, &bfrac_lo);
|
---|
469 | lshift128(bfrac_hi, bfrac_lo,
|
---|
470 | (128 - FLOAT128_FRACTION_SIZE - 1), &bfrac_hi, &bfrac_lo);
|
---|
471 |
|
---|
472 | if (le128(bfrac_hi, bfrac_lo, afrac_hi, afrac_lo)) {
|
---|
473 | rshift128(afrac_hi, afrac_lo, 1, &afrac_hi, &afrac_lo);
|
---|
474 | aexp++;
|
---|
475 | }
|
---|
476 |
|
---|
477 | cexp = aexp - bexp + FLOAT128_BIAS - 2;
|
---|
478 |
|
---|
479 | cfrac_hi = div128est(afrac_hi, afrac_lo, bfrac_hi);
|
---|
480 |
|
---|
481 | mul128(bfrac_hi, bfrac_lo, 0x0ll, cfrac_hi,
|
---|
482 | &tmp_lolo /* dummy */, &tmp_hihi, &tmp_hilo, &tmp_lohi);
|
---|
483 |
|
---|
484 | /* sub192(afrac_hi, afrac_lo, 0,
|
---|
485 | * tmp_hihi, tmp_hilo, tmp_lohi
|
---|
486 | * &rem_hihi, &rem_hilo, &rem_lohi); */
|
---|
487 | sub128(afrac_hi, afrac_lo, tmp_hihi, tmp_hilo, &rem_hihi, &rem_hilo);
|
---|
488 | if (tmp_lohi > 0) {
|
---|
489 | sub128(rem_hihi, rem_hilo, 0x0ll, 0x1ll, &rem_hihi, &rem_hilo);
|
---|
490 | }
|
---|
491 | rem_lohi = -tmp_lohi;
|
---|
492 |
|
---|
493 | while ((int64_t) rem_hihi < 0) {
|
---|
494 | --cfrac_hi;
|
---|
495 | /* add192(rem_hihi, rem_hilo, rem_lohi,
|
---|
496 | * 0, bfrac_hi, bfrac_lo,
|
---|
497 | * &rem_hihi, &rem_hilo, &rem_lohi); */
|
---|
498 | add128(rem_hilo, rem_lohi, bfrac_hi, bfrac_lo, &rem_hilo, &rem_lohi);
|
---|
499 | if (lt128(rem_hilo, rem_lohi, bfrac_hi, bfrac_lo)) {
|
---|
500 | ++rem_hihi;
|
---|
501 | }
|
---|
502 | }
|
---|
503 |
|
---|
504 | cfrac_lo = div128est(rem_hilo, rem_lohi, bfrac_lo);
|
---|
505 |
|
---|
506 | if ((cfrac_lo & 0x3FFF) <= 4) {
|
---|
507 | mul128(bfrac_hi, bfrac_lo, 0x0ll, cfrac_lo,
|
---|
508 | &tmp_hihi /* dummy */, &tmp_hilo, &tmp_lohi, &tmp_lolo);
|
---|
509 |
|
---|
510 | /* sub192(rem_hilo, rem_lohi, 0,
|
---|
511 | * tmp_hilo, tmp_lohi, tmp_lolo,
|
---|
512 | * &rem_hilo, &rem_lohi, &rem_lolo); */
|
---|
513 | sub128(rem_hilo, rem_lohi, tmp_hilo, tmp_lohi, &rem_hilo, &rem_lohi);
|
---|
514 | if (tmp_lolo > 0) {
|
---|
515 | sub128(rem_hilo, rem_lohi, 0x0ll, 0x1ll, &rem_hilo, &rem_lohi);
|
---|
516 | }
|
---|
517 | rem_lolo = -tmp_lolo;
|
---|
518 |
|
---|
519 | while ((int64_t) rem_hilo < 0) {
|
---|
520 | --cfrac_lo;
|
---|
521 | /* add192(rem_hilo, rem_lohi, rem_lolo,
|
---|
522 | * 0, bfrac_hi, bfrac_lo,
|
---|
523 | * &rem_hilo, &rem_lohi, &rem_lolo); */
|
---|
524 | add128(rem_lohi, rem_lolo, bfrac_hi, bfrac_lo, &rem_lohi, &rem_lolo);
|
---|
525 | if (lt128(rem_lohi, rem_lolo, bfrac_hi, bfrac_lo)) {
|
---|
526 | ++rem_hilo;
|
---|
527 | }
|
---|
528 | }
|
---|
529 |
|
---|
530 | cfrac_lo |= ((rem_hilo | rem_lohi | rem_lolo) != 0 );
|
---|
531 | }
|
---|
532 |
|
---|
533 | shift_out = cfrac_lo << (64 - (128 - FLOAT128_FRACTION_SIZE - 1));
|
---|
534 | rshift128(cfrac_hi, cfrac_lo, (128 - FLOAT128_FRACTION_SIZE - 1),
|
---|
535 | &cfrac_hi, &cfrac_lo);
|
---|
536 |
|
---|
537 | result = finish_float128(cexp, cfrac_hi, cfrac_lo, result.parts.sign, shift_out);
|
---|
538 | return result;
|
---|
539 | }
|
---|
540 |
|
---|
541 | /** @}
|
---|
542 | */
|
---|