1 | /*
|
---|
2 | * Copyright (c) 2005 Josef Cejka
|
---|
3 | * Copyright (c) 2011 Petr Koupy
|
---|
4 | * All rights reserved.
|
---|
5 | *
|
---|
6 | * Redistribution and use in source and binary forms, with or without
|
---|
7 | * modification, are permitted provided that the following conditions
|
---|
8 | * are met:
|
---|
9 | *
|
---|
10 | * - Redistributions of source code must retain the above copyright
|
---|
11 | * notice, this list of conditions and the following disclaimer.
|
---|
12 | * - Redistributions in binary form must reproduce the above copyright
|
---|
13 | * notice, this list of conditions and the following disclaimer in the
|
---|
14 | * documentation and/or other materials provided with the distribution.
|
---|
15 | * - The name of the author may not be used to endorse or promote products
|
---|
16 | * derived from this software without specific prior written permission.
|
---|
17 | *
|
---|
18 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
19 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
20 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
21 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
22 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
23 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
24 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
25 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
26 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
27 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
28 | */
|
---|
29 |
|
---|
30 | /** @addtogroup softfloat
|
---|
31 | * @{
|
---|
32 | */
|
---|
33 | /** @file Comparison functions.
|
---|
34 | */
|
---|
35 |
|
---|
36 | #include "sftypes.h"
|
---|
37 | #include "comparison.h"
|
---|
38 | #include "common.h"
|
---|
39 |
|
---|
40 | /**
|
---|
41 | * Determines whether the given float represents NaN (either signalling NaN or
|
---|
42 | * quiet NaN).
|
---|
43 | *
|
---|
44 | * @param f Single-precision float.
|
---|
45 | * @return 1 if float is NaN, 0 otherwise.
|
---|
46 | */
|
---|
47 | int is_float32_nan(float32 f)
|
---|
48 | {
|
---|
49 | /* NaN : exp = 0xff and nonzero fraction */
|
---|
50 | return ((f.parts.exp == 0xFF) && (f.parts.fraction));
|
---|
51 | }
|
---|
52 |
|
---|
53 | /**
|
---|
54 | * Determines whether the given float represents NaN (either signalling NaN or
|
---|
55 | * quiet NaN).
|
---|
56 | *
|
---|
57 | * @param d Double-precision float.
|
---|
58 | * @return 1 if float is NaN, 0 otherwise.
|
---|
59 | */
|
---|
60 | int is_float64_nan(float64 d)
|
---|
61 | {
|
---|
62 | /* NaN : exp = 0x7ff and nonzero fraction */
|
---|
63 | return ((d.parts.exp == 0x7FF) && (d.parts.fraction));
|
---|
64 | }
|
---|
65 |
|
---|
66 | /**
|
---|
67 | * Determines whether the given float represents NaN (either signalling NaN or
|
---|
68 | * quiet NaN).
|
---|
69 | *
|
---|
70 | * @param ld Quadruple-precision float.
|
---|
71 | * @return 1 if float is NaN, 0 otherwise.
|
---|
72 | */
|
---|
73 | int is_float128_nan(float128 ld)
|
---|
74 | {
|
---|
75 | /* NaN : exp = 0x7fff and nonzero fraction */
|
---|
76 | return ((ld.parts.exp == 0x7FF) &&
|
---|
77 | !eq128(ld.parts.frac_hi, ld.parts.frac_lo, 0x0ll, 0x0ll));
|
---|
78 | }
|
---|
79 |
|
---|
80 | /**
|
---|
81 | * Determines whether the given float represents signalling NaN.
|
---|
82 | *
|
---|
83 | * @param f Single-precision float.
|
---|
84 | * @return 1 if float is signalling NaN, 0 otherwise.
|
---|
85 | */
|
---|
86 | int is_float32_signan(float32 f)
|
---|
87 | {
|
---|
88 | /* SigNaN : exp = 0xff and fraction = 0xxxxx..x (binary),
|
---|
89 | * where at least one x is nonzero */
|
---|
90 | return ((f.parts.exp == 0xFF) &&
|
---|
91 | (f.parts.fraction < 0x400000) && (f.parts.fraction));
|
---|
92 | }
|
---|
93 |
|
---|
94 | /**
|
---|
95 | * Determines whether the given float represents signalling NaN.
|
---|
96 | *
|
---|
97 | * @param d Double-precision float.
|
---|
98 | * @return 1 if float is signalling NaN, 0 otherwise.
|
---|
99 | */
|
---|
100 | int is_float64_signan(float64 d)
|
---|
101 | {
|
---|
102 | /* SigNaN : exp = 0x7ff and fraction = 0xxxxx..x (binary),
|
---|
103 | * where at least one x is nonzero */
|
---|
104 | return ((d.parts.exp == 0x7FF) &&
|
---|
105 | (d.parts.fraction) && (d.parts.fraction < 0x8000000000000ll));
|
---|
106 | }
|
---|
107 |
|
---|
108 | /**
|
---|
109 | * Determines whether the given float represents signalling NaN.
|
---|
110 | *
|
---|
111 | * @param ld Quadruple-precision float.
|
---|
112 | * @return 1 if float is signalling NaN, 0 otherwise.
|
---|
113 | */
|
---|
114 | int is_float128_signan(float128 ld)
|
---|
115 | {
|
---|
116 | /* SigNaN : exp = 0x7fff and fraction = 0xxxxx..x (binary),
|
---|
117 | * where at least one x is nonzero */
|
---|
118 | return ((ld.parts.exp == 0x7FFF) &&
|
---|
119 | (ld.parts.frac_hi || ld.parts.frac_lo) &&
|
---|
120 | lt128(ld.parts.frac_hi, ld.parts.frac_lo, 0x800000000000ll, 0x0ll));
|
---|
121 |
|
---|
122 | }
|
---|
123 |
|
---|
124 | /**
|
---|
125 | * Determines whether the given float represents positive or negative infinity.
|
---|
126 | *
|
---|
127 | * @param f Single-precision float.
|
---|
128 | * @return 1 if float is infinite, 0 otherwise.
|
---|
129 | */
|
---|
130 | int is_float32_infinity(float32 f)
|
---|
131 | {
|
---|
132 | /* NaN : exp = 0x7ff and zero fraction */
|
---|
133 | return ((f.parts.exp == 0xFF) && (f.parts.fraction == 0x0));
|
---|
134 | }
|
---|
135 |
|
---|
136 | /**
|
---|
137 | * Determines whether the given float represents positive or negative infinity.
|
---|
138 | *
|
---|
139 | * @param d Double-precision float.
|
---|
140 | * @return 1 if float is infinite, 0 otherwise.
|
---|
141 | */
|
---|
142 | int is_float64_infinity(float64 d)
|
---|
143 | {
|
---|
144 | /* NaN : exp = 0x7ff and zero fraction */
|
---|
145 | return ((d.parts.exp == 0x7FF) && (d.parts.fraction == 0x0));
|
---|
146 | }
|
---|
147 |
|
---|
148 | /**
|
---|
149 | * Determines whether the given float represents positive or negative infinity.
|
---|
150 | *
|
---|
151 | * @param ld Quadruple-precision float.
|
---|
152 | * @return 1 if float is infinite, 0 otherwise.
|
---|
153 | */
|
---|
154 | int is_float128_infinity(float128 ld)
|
---|
155 | {
|
---|
156 | /* NaN : exp = 0x7fff and zero fraction */
|
---|
157 | return ((ld.parts.exp == 0x7FFF) &&
|
---|
158 | eq128(ld.parts.frac_hi, ld.parts.frac_lo, 0x0ll, 0x0ll));
|
---|
159 | }
|
---|
160 |
|
---|
161 | /**
|
---|
162 | * Determines whether the given float represents positive or negative zero.
|
---|
163 | *
|
---|
164 | * @param f Single-precision float.
|
---|
165 | * @return 1 if float is zero, 0 otherwise.
|
---|
166 | */
|
---|
167 | int is_float32_zero(float32 f)
|
---|
168 | {
|
---|
169 | return (((f.bin) & 0x7FFFFFFF) == 0);
|
---|
170 | }
|
---|
171 |
|
---|
172 | /**
|
---|
173 | * Determines whether the given float represents positive or negative zero.
|
---|
174 | *
|
---|
175 | * @param d Double-precision float.
|
---|
176 | * @return 1 if float is zero, 0 otherwise.
|
---|
177 | */
|
---|
178 | int is_float64_zero(float64 d)
|
---|
179 | {
|
---|
180 | return (((d.bin) & 0x7FFFFFFFFFFFFFFFll) == 0);
|
---|
181 | }
|
---|
182 |
|
---|
183 | /**
|
---|
184 | * Determines whether the given float represents positive or negative zero.
|
---|
185 | *
|
---|
186 | * @param ld Quadruple-precision float.
|
---|
187 | * @return 1 if float is zero, 0 otherwise.
|
---|
188 | */
|
---|
189 | int is_float128_zero(float128 ld)
|
---|
190 | {
|
---|
191 | uint64_t tmp_hi;
|
---|
192 | uint64_t tmp_lo;
|
---|
193 |
|
---|
194 | and128(ld.bin.hi, ld.bin.lo,
|
---|
195 | 0x7FFFFFFFFFFFFFFFll, 0xFFFFFFFFFFFFFFFFll, &tmp_hi, &tmp_lo);
|
---|
196 |
|
---|
197 | return eq128(tmp_hi, tmp_lo, 0x0ll, 0x0ll);
|
---|
198 | }
|
---|
199 |
|
---|
200 | /**
|
---|
201 | * Determine whether two floats are equal. NaNs are not recognized.
|
---|
202 | *
|
---|
203 | * @a First single-precision operand.
|
---|
204 | * @b Second single-precision operand.
|
---|
205 | * @return 1 if both floats are equal, 0 otherwise.
|
---|
206 | */
|
---|
207 | int is_float32_eq(float32 a, float32 b)
|
---|
208 | {
|
---|
209 | /* a equals to b or both are zeros (with any sign) */
|
---|
210 | return ((a.bin == b.bin) ||
|
---|
211 | (((a.bin | b.bin) & 0x7FFFFFFF) == 0));
|
---|
212 | }
|
---|
213 |
|
---|
214 | /**
|
---|
215 | * Determine whether two floats are equal. NaNs are not recognized.
|
---|
216 | *
|
---|
217 | * @a First double-precision operand.
|
---|
218 | * @b Second double-precision operand.
|
---|
219 | * @return 1 if both floats are equal, 0 otherwise.
|
---|
220 | */
|
---|
221 | int is_float64_eq(float64 a, float64 b)
|
---|
222 | {
|
---|
223 | /* a equals to b or both are zeros (with any sign) */
|
---|
224 | return ((a.bin == b.bin) ||
|
---|
225 | (((a.bin | b.bin) & 0x7FFFFFFFFFFFFFFFll) == 0));
|
---|
226 | }
|
---|
227 |
|
---|
228 | /**
|
---|
229 | * Determine whether two floats are equal. NaNs are not recognized.
|
---|
230 | *
|
---|
231 | * @a First quadruple-precision operand.
|
---|
232 | * @b Second quadruple-precision operand.
|
---|
233 | * @return 1 if both floats are equal, 0 otherwise.
|
---|
234 | */
|
---|
235 | int is_float128_eq(float128 a, float128 b)
|
---|
236 | {
|
---|
237 | uint64_t tmp_hi;
|
---|
238 | uint64_t tmp_lo;
|
---|
239 |
|
---|
240 | /* both are zeros (with any sign) */
|
---|
241 | or128(a.bin.hi, a.bin.lo,
|
---|
242 | b.bin.hi, b.bin.lo, &tmp_hi, &tmp_lo);
|
---|
243 | and128(tmp_hi, tmp_lo,
|
---|
244 | 0x7FFFFFFFFFFFFFFFll, 0xFFFFFFFFFFFFFFFFll, &tmp_hi, &tmp_lo);
|
---|
245 | int both_zero = eq128(tmp_hi, tmp_lo, 0x0ll, 0x0ll);
|
---|
246 |
|
---|
247 | /* a equals to b */
|
---|
248 | int are_equal = eq128(a.bin.hi, a.bin.lo, b.bin.hi, b.bin.lo);
|
---|
249 |
|
---|
250 | return are_equal || both_zero;
|
---|
251 | }
|
---|
252 |
|
---|
253 | /**
|
---|
254 | * Lower-than comparison between two floats. NaNs are not recognized.
|
---|
255 | *
|
---|
256 | * @a First single-precision operand.
|
---|
257 | * @b Second single-precision operand.
|
---|
258 | * @return 1 if a is lower than b, 0 otherwise.
|
---|
259 | */
|
---|
260 | int is_float32_lt(float32 a, float32 b)
|
---|
261 | {
|
---|
262 | if (((a.bin | b.bin) & 0x7FFFFFFF) == 0) {
|
---|
263 | /* +- zeroes */
|
---|
264 | return 0;
|
---|
265 | }
|
---|
266 |
|
---|
267 | if ((a.parts.sign) && (b.parts.sign)) {
|
---|
268 | /* if both are negative, smaller is that with greater binary value */
|
---|
269 | return (a.bin > b.bin);
|
---|
270 | }
|
---|
271 |
|
---|
272 | /*
|
---|
273 | * lets negate signs - now will be positive numbers always
|
---|
274 | * bigger than negative (first bit will be set for unsigned
|
---|
275 | * integer comparison)
|
---|
276 | */
|
---|
277 | a.parts.sign = !a.parts.sign;
|
---|
278 | b.parts.sign = !b.parts.sign;
|
---|
279 | return (a.bin < b.bin);
|
---|
280 | }
|
---|
281 |
|
---|
282 | /**
|
---|
283 | * Lower-than comparison between two floats. NaNs are not recognized.
|
---|
284 | *
|
---|
285 | * @a First double-precision operand.
|
---|
286 | * @b Second double-precision operand.
|
---|
287 | * @return 1 if a is lower than b, 0 otherwise.
|
---|
288 | */
|
---|
289 | int is_float64_lt(float64 a, float64 b)
|
---|
290 | {
|
---|
291 | if (((a.bin | b.bin) & 0x7FFFFFFFFFFFFFFFll) == 0) {
|
---|
292 | /* +- zeroes */
|
---|
293 | return 0;
|
---|
294 | }
|
---|
295 |
|
---|
296 | if ((a.parts.sign) && (b.parts.sign)) {
|
---|
297 | /* if both are negative, smaller is that with greater binary value */
|
---|
298 | return (a.bin > b.bin);
|
---|
299 | }
|
---|
300 |
|
---|
301 | /*
|
---|
302 | * lets negate signs - now will be positive numbers always
|
---|
303 | * bigger than negative (first bit will be set for unsigned
|
---|
304 | * integer comparison)
|
---|
305 | */
|
---|
306 | a.parts.sign = !a.parts.sign;
|
---|
307 | b.parts.sign = !b.parts.sign;
|
---|
308 | return (a.bin < b.bin);
|
---|
309 | }
|
---|
310 |
|
---|
311 | /**
|
---|
312 | * Lower-than comparison between two floats. NaNs are not recognized.
|
---|
313 | *
|
---|
314 | * @a First quadruple-precision operand.
|
---|
315 | * @b Second quadruple-precision operand.
|
---|
316 | * @return 1 if a is lower than b, 0 otherwise.
|
---|
317 | */
|
---|
318 | int is_float128_lt(float128 a, float128 b)
|
---|
319 | {
|
---|
320 | uint64_t tmp_hi;
|
---|
321 | uint64_t tmp_lo;
|
---|
322 |
|
---|
323 | or128(a.bin.hi, a.bin.lo,
|
---|
324 | b.bin.hi, b.bin.lo, &tmp_hi, &tmp_lo);
|
---|
325 | and128(tmp_hi, tmp_lo,
|
---|
326 | 0x7FFFFFFFFFFFFFFFll, 0xFFFFFFFFFFFFFFFFll, &tmp_hi, &tmp_lo);
|
---|
327 | if (eq128(tmp_hi, tmp_lo, 0x0ll, 0x0ll)) {
|
---|
328 | /* +- zeroes */
|
---|
329 | return 0;
|
---|
330 | }
|
---|
331 |
|
---|
332 | if ((a.parts.sign) && (b.parts.sign)) {
|
---|
333 | /* if both are negative, smaller is that with greater binary value */
|
---|
334 | return lt128(b.bin.hi, b.bin.lo, a.bin.hi, a.bin.lo);
|
---|
335 | }
|
---|
336 |
|
---|
337 | /*
|
---|
338 | * lets negate signs - now will be positive numbers always
|
---|
339 | * bigger than negative (first bit will be set for unsigned
|
---|
340 | * integer comparison)
|
---|
341 | */
|
---|
342 | a.parts.sign = !a.parts.sign;
|
---|
343 | b.parts.sign = !b.parts.sign;
|
---|
344 | return lt128(a.bin.hi, a.bin.lo, b.bin.hi, b.bin.lo);
|
---|
345 | }
|
---|
346 |
|
---|
347 | /**
|
---|
348 | * Greater-than comparison between two floats. NaNs are not recognized.
|
---|
349 | *
|
---|
350 | * @a First single-precision operand.
|
---|
351 | * @b Second single-precision operand.
|
---|
352 | * @return 1 if a is greater than b, 0 otherwise.
|
---|
353 | */
|
---|
354 | int is_float32_gt(float32 a, float32 b)
|
---|
355 | {
|
---|
356 | if (((a.bin | b.bin) & 0x7FFFFFFF) == 0) {
|
---|
357 | /* zeroes are equal with any sign */
|
---|
358 | return 0;
|
---|
359 | }
|
---|
360 |
|
---|
361 | if ((a.parts.sign) && (b.parts.sign)) {
|
---|
362 | /* if both are negative, greater is that with smaller binary value */
|
---|
363 | return (a.bin < b.bin);
|
---|
364 | }
|
---|
365 |
|
---|
366 | /*
|
---|
367 | * lets negate signs - now will be positive numbers always
|
---|
368 | * bigger than negative (first bit will be set for unsigned
|
---|
369 | * integer comparison)
|
---|
370 | */
|
---|
371 | a.parts.sign = !a.parts.sign;
|
---|
372 | b.parts.sign = !b.parts.sign;
|
---|
373 | return (a.bin > b.bin);
|
---|
374 | }
|
---|
375 |
|
---|
376 | /**
|
---|
377 | * Greater-than comparison between two floats. NaNs are not recognized.
|
---|
378 | *
|
---|
379 | * @a First double-precision operand.
|
---|
380 | * @b Second double-precision operand.
|
---|
381 | * @return 1 if a is greater than b, 0 otherwise.
|
---|
382 | */
|
---|
383 | int is_float64_gt(float64 a, float64 b)
|
---|
384 | {
|
---|
385 | if (((a.bin | b.bin) & 0x7FFFFFFFFFFFFFFFll) == 0) {
|
---|
386 | /* zeroes are equal with any sign */
|
---|
387 | return 0;
|
---|
388 | }
|
---|
389 |
|
---|
390 | if ((a.parts.sign) && (b.parts.sign)) {
|
---|
391 | /* if both are negative, greater is that with smaller binary value */
|
---|
392 | return (a.bin < b.bin);
|
---|
393 | }
|
---|
394 |
|
---|
395 | /*
|
---|
396 | * lets negate signs - now will be positive numbers always
|
---|
397 | * bigger than negative (first bit will be set for unsigned
|
---|
398 | * integer comparison)
|
---|
399 | */
|
---|
400 | a.parts.sign = !a.parts.sign;
|
---|
401 | b.parts.sign = !b.parts.sign;
|
---|
402 | return (a.bin > b.bin);
|
---|
403 | }
|
---|
404 |
|
---|
405 | /**
|
---|
406 | * Greater-than comparison between two floats. NaNs are not recognized.
|
---|
407 | *
|
---|
408 | * @a First quadruple-precision operand.
|
---|
409 | * @b Second quadruple-precision operand.
|
---|
410 | * @return 1 if a is greater than b, 0 otherwise.
|
---|
411 | */
|
---|
412 | int is_float128_gt(float128 a, float128 b)
|
---|
413 | {
|
---|
414 | uint64_t tmp_hi;
|
---|
415 | uint64_t tmp_lo;
|
---|
416 |
|
---|
417 | or128(a.bin.hi, a.bin.lo,
|
---|
418 | b.bin.hi, b.bin.lo, &tmp_hi, &tmp_lo);
|
---|
419 | and128(tmp_hi, tmp_lo,
|
---|
420 | 0x7FFFFFFFFFFFFFFFll, 0xFFFFFFFFFFFFFFFFll, &tmp_hi, &tmp_lo);
|
---|
421 | if (eq128(tmp_hi, tmp_lo, 0x0ll, 0x0ll)) {
|
---|
422 | /* zeroes are equal with any sign */
|
---|
423 | return 0;
|
---|
424 | }
|
---|
425 |
|
---|
426 | if ((a.parts.sign) && (b.parts.sign)) {
|
---|
427 | /* if both are negative, greater is that with smaller binary value */
|
---|
428 | return lt128(a.bin.hi, a.bin.lo, b.bin.hi, b.bin.lo);
|
---|
429 | }
|
---|
430 |
|
---|
431 | /*
|
---|
432 | * lets negate signs - now will be positive numbers always
|
---|
433 | * bigger than negative (first bit will be set for unsigned
|
---|
434 | * integer comparison)
|
---|
435 | */
|
---|
436 | a.parts.sign = !a.parts.sign;
|
---|
437 | b.parts.sign = !b.parts.sign;
|
---|
438 | return lt128(b.bin.hi, b.bin.lo, a.bin.hi, a.bin.lo);
|
---|
439 | }
|
---|
440 |
|
---|
441 | /** @}
|
---|
442 | */
|
---|