1 | /*
|
---|
2 | * Copyright (c) 2005 Josef Cejka
|
---|
3 | * Copyright (c) 2011 Petr Koupy
|
---|
4 | * All rights reserved.
|
---|
5 | *
|
---|
6 | * Redistribution and use in source and binary forms, with or without
|
---|
7 | * modification, are permitted provided that the following conditions
|
---|
8 | * are met:
|
---|
9 | *
|
---|
10 | * - Redistributions of source code must retain the above copyright
|
---|
11 | * notice, this list of conditions and the following disclaimer.
|
---|
12 | * - Redistributions in binary form must reproduce the above copyright
|
---|
13 | * notice, this list of conditions and the following disclaimer in the
|
---|
14 | * documentation and/or other materials provided with the distribution.
|
---|
15 | * - The name of the author may not be used to endorse or promote products
|
---|
16 | * derived from this software without specific prior written permission.
|
---|
17 | *
|
---|
18 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
19 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
20 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
21 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
22 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
23 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
24 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
25 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
26 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
27 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
28 | */
|
---|
29 |
|
---|
30 | /** @addtogroup softfloat
|
---|
31 | * @{
|
---|
32 | */
|
---|
33 | /** @file Common helper operations.
|
---|
34 | */
|
---|
35 |
|
---|
36 | #include "sftypes.h"
|
---|
37 | #include "common.h"
|
---|
38 |
|
---|
39 | /* Table for fast leading zeroes counting. */
|
---|
40 | char zeroTable[256] = {
|
---|
41 | 8, 7, 6, 6, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, \
|
---|
42 | 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, \
|
---|
43 | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, \
|
---|
44 | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, \
|
---|
45 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
---|
46 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
---|
47 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
---|
48 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
---|
49 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
---|
50 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
---|
51 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
---|
52 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
---|
53 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
---|
54 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
---|
55 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
---|
56 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
---|
57 | };
|
---|
58 |
|
---|
59 | /**
|
---|
60 | * Take fraction shifted by 10 bits to the left, round it, normalize it
|
---|
61 | * and detect exceptions
|
---|
62 | *
|
---|
63 | * @param cexp Exponent with bias.
|
---|
64 | * @param cfrac Fraction shifted 10 bits to the left with added hidden bit.
|
---|
65 | * @param sign Resulting sign.
|
---|
66 | * @return Finished double-precision float.
|
---|
67 | */
|
---|
68 | float64 finish_float64(int32_t cexp, uint64_t cfrac, char sign)
|
---|
69 | {
|
---|
70 | float64 result;
|
---|
71 |
|
---|
72 | result.parts.sign = sign;
|
---|
73 |
|
---|
74 | /* find first nonzero digit and shift result and detect possibly underflow */
|
---|
75 | while ((cexp > 0) && (cfrac) &&
|
---|
76 | (!(cfrac & (FLOAT64_HIDDEN_BIT_MASK << (64 - FLOAT64_FRACTION_SIZE - 1))))) {
|
---|
77 | cexp--;
|
---|
78 | cfrac <<= 1;
|
---|
79 | /* TODO: fix underflow */
|
---|
80 | }
|
---|
81 |
|
---|
82 | if ((cexp < 0) || (cexp == 0 &&
|
---|
83 | (!(cfrac & (FLOAT64_HIDDEN_BIT_MASK << (64 - FLOAT64_FRACTION_SIZE - 1)))))) {
|
---|
84 | /* FIXME: underflow */
|
---|
85 | result.parts.exp = 0;
|
---|
86 | if ((cexp + FLOAT64_FRACTION_SIZE + 1) < 0) { /* +1 is place for rounding */
|
---|
87 | result.parts.fraction = 0;
|
---|
88 | return result;
|
---|
89 | }
|
---|
90 |
|
---|
91 | while (cexp < 0) {
|
---|
92 | cexp++;
|
---|
93 | cfrac >>= 1;
|
---|
94 | }
|
---|
95 |
|
---|
96 | cfrac += (0x1 << (64 - FLOAT64_FRACTION_SIZE - 3));
|
---|
97 |
|
---|
98 | if (!(cfrac & (FLOAT64_HIDDEN_BIT_MASK << (64 - FLOAT64_FRACTION_SIZE - 1)))) {
|
---|
99 | result.parts.fraction =
|
---|
100 | ((cfrac >> (64 - FLOAT64_FRACTION_SIZE - 2)) & (~FLOAT64_HIDDEN_BIT_MASK));
|
---|
101 | return result;
|
---|
102 | }
|
---|
103 | } else {
|
---|
104 | cfrac += (0x1 << (64 - FLOAT64_FRACTION_SIZE - 3));
|
---|
105 | }
|
---|
106 |
|
---|
107 | ++cexp;
|
---|
108 |
|
---|
109 | if (cfrac & (FLOAT64_HIDDEN_BIT_MASK << (64 - FLOAT64_FRACTION_SIZE - 1))) {
|
---|
110 | ++cexp;
|
---|
111 | cfrac >>= 1;
|
---|
112 | }
|
---|
113 |
|
---|
114 | /* check overflow */
|
---|
115 | if (cexp >= FLOAT64_MAX_EXPONENT) {
|
---|
116 | /* FIXME: overflow, return infinity */
|
---|
117 | result.parts.exp = FLOAT64_MAX_EXPONENT;
|
---|
118 | result.parts.fraction = 0;
|
---|
119 | return result;
|
---|
120 | }
|
---|
121 |
|
---|
122 | result.parts.exp = (uint32_t) cexp;
|
---|
123 |
|
---|
124 | result.parts.fraction =
|
---|
125 | ((cfrac >> (64 - FLOAT64_FRACTION_SIZE - 2)) & (~FLOAT64_HIDDEN_BIT_MASK));
|
---|
126 |
|
---|
127 | return result;
|
---|
128 | }
|
---|
129 |
|
---|
130 | /**
|
---|
131 | * Take fraction, round it, normalize it and detect exceptions
|
---|
132 | *
|
---|
133 | * @param cexp Exponent with bias.
|
---|
134 | * @param cfrac_hi High part of the fraction shifted 14 bits to the left
|
---|
135 | * with added hidden bit.
|
---|
136 | * @param cfrac_lo Low part of the fraction shifted 14 bits to the left
|
---|
137 | * with added hidden bit.
|
---|
138 | * @param sign Resulting sign.
|
---|
139 | * @param shift_out Bits right-shifted out from fraction by the caller.
|
---|
140 | * @return Finished quadruple-precision float.
|
---|
141 | */
|
---|
142 | float128 finish_float128(int32_t cexp, uint64_t cfrac_hi, uint64_t cfrac_lo,
|
---|
143 | char sign, uint64_t shift_out)
|
---|
144 | {
|
---|
145 | float128 result;
|
---|
146 | uint64_t tmp_hi, tmp_lo;
|
---|
147 |
|
---|
148 | result.parts.sign = sign;
|
---|
149 |
|
---|
150 | /* find first nonzero digit and shift result and detect possibly underflow */
|
---|
151 | lshift128(FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
152 | 1, &tmp_hi, &tmp_lo);
|
---|
153 | and128(cfrac_hi, cfrac_lo, tmp_hi, tmp_lo, &tmp_hi, &tmp_lo);
|
---|
154 | while ((cexp > 0) && (lt128(0x0ll, 0x0ll, cfrac_hi, cfrac_lo)) &&
|
---|
155 | (!lt128(0x0ll, 0x0ll, tmp_hi, tmp_lo))) {
|
---|
156 | cexp--;
|
---|
157 | lshift128(cfrac_hi, cfrac_lo, 1, &cfrac_hi, &cfrac_lo);
|
---|
158 | /* TODO: fix underflow */
|
---|
159 |
|
---|
160 | lshift128(FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
161 | 1, &tmp_hi, &tmp_lo);
|
---|
162 | and128(cfrac_hi, cfrac_lo, tmp_hi, tmp_lo, &tmp_hi, &tmp_lo);
|
---|
163 | }
|
---|
164 |
|
---|
165 | lshift128(FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
166 | 1, &tmp_hi, &tmp_lo);
|
---|
167 | and128(cfrac_hi, cfrac_lo, tmp_hi, tmp_lo, &tmp_hi, &tmp_lo);
|
---|
168 | if ((cexp < 0) || (cexp == 0 &&
|
---|
169 | (!lt128(0x0ll, 0x0ll, tmp_hi, tmp_lo)))) {
|
---|
170 | /* FIXME: underflow */
|
---|
171 | result.parts.exp = 0;
|
---|
172 | if ((cexp + FLOAT128_FRACTION_SIZE + 1) < 0) { /* +1 is place for rounding */
|
---|
173 | result.parts.frac_hi = 0x0ll;
|
---|
174 | result.parts.frac_lo = 0x0ll;
|
---|
175 | return result;
|
---|
176 | }
|
---|
177 |
|
---|
178 | while (cexp < 0) {
|
---|
179 | cexp++;
|
---|
180 | rshift128(cfrac_hi, cfrac_lo, 1, &cfrac_hi, &cfrac_lo);
|
---|
181 | }
|
---|
182 |
|
---|
183 | if (shift_out & (0x1ull < 64)) {
|
---|
184 | add128(cfrac_hi, cfrac_lo, 0x0ll, 0x1ll, &cfrac_hi, &cfrac_lo);
|
---|
185 | }
|
---|
186 |
|
---|
187 | lshift128(FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
188 | 1, &tmp_hi, &tmp_lo);
|
---|
189 | and128(cfrac_hi, cfrac_lo, tmp_hi, tmp_lo, &tmp_hi, &tmp_lo);
|
---|
190 | if (!lt128(0x0ll, 0x0ll, tmp_hi, tmp_lo)) {
|
---|
191 | not128(FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
192 | &tmp_hi, &tmp_lo);
|
---|
193 | and128(cfrac_hi, cfrac_lo, tmp_hi, tmp_lo, &tmp_hi, &tmp_lo);
|
---|
194 | result.parts.frac_hi = tmp_hi;
|
---|
195 | result.parts.frac_lo = tmp_lo;
|
---|
196 | return result;
|
---|
197 | }
|
---|
198 | } else {
|
---|
199 | if (shift_out & (0x1ull < 64)) {
|
---|
200 | add128(cfrac_hi, cfrac_lo, 0x0ll, 0x1ll, &cfrac_hi, &cfrac_lo);
|
---|
201 | }
|
---|
202 | }
|
---|
203 |
|
---|
204 | ++cexp;
|
---|
205 |
|
---|
206 | lshift128(FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
207 | 1, &tmp_hi, &tmp_lo);
|
---|
208 | and128(cfrac_hi, cfrac_lo, tmp_hi, tmp_lo, &tmp_hi, &tmp_lo);
|
---|
209 | if (lt128(0x0ll, 0x0ll, tmp_hi, tmp_lo)) {
|
---|
210 | ++cexp;
|
---|
211 | rshift128(cfrac_hi, cfrac_lo, 1, &cfrac_hi, &cfrac_lo);
|
---|
212 | }
|
---|
213 |
|
---|
214 | /* check overflow */
|
---|
215 | if (cexp >= FLOAT128_MAX_EXPONENT) {
|
---|
216 | /* FIXME: overflow, return infinity */
|
---|
217 | result.parts.exp = FLOAT128_MAX_EXPONENT;
|
---|
218 | result.parts.frac_hi = 0x0ll;
|
---|
219 | result.parts.frac_lo = 0x0ll;
|
---|
220 | return result;
|
---|
221 | }
|
---|
222 |
|
---|
223 | result.parts.exp = (uint32_t) cexp;
|
---|
224 |
|
---|
225 | not128(FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
226 | &tmp_hi, &tmp_lo);
|
---|
227 | and128(cfrac_hi, cfrac_lo, tmp_hi, tmp_lo, &tmp_hi, &tmp_lo);
|
---|
228 | result.parts.frac_hi = tmp_hi;
|
---|
229 | result.parts.frac_lo = tmp_lo;
|
---|
230 |
|
---|
231 | return result;
|
---|
232 | }
|
---|
233 |
|
---|
234 | /**
|
---|
235 | * Counts leading zeroes in byte.
|
---|
236 | *
|
---|
237 | * @param i Byte for which to count leading zeroes.
|
---|
238 | * @return Number of detected leading zeroes.
|
---|
239 | */
|
---|
240 | int count_zeroes8(uint8_t i)
|
---|
241 | {
|
---|
242 | return zeroTable[i];
|
---|
243 | }
|
---|
244 |
|
---|
245 | /**
|
---|
246 | * Counts leading zeroes in 32bit unsigned integer.
|
---|
247 | *
|
---|
248 | * @param i Integer for which to count leading zeroes.
|
---|
249 | * @return Number of detected leading zeroes.
|
---|
250 | */
|
---|
251 | int count_zeroes32(uint32_t i)
|
---|
252 | {
|
---|
253 | int j;
|
---|
254 | for (j = 0; j < 32; j += 8) {
|
---|
255 | if (i & (0xFF << (24 - j))) {
|
---|
256 | return (j + count_zeroes8(i >> (24 - j)));
|
---|
257 | }
|
---|
258 | }
|
---|
259 |
|
---|
260 | return 32;
|
---|
261 | }
|
---|
262 |
|
---|
263 | /**
|
---|
264 | * Counts leading zeroes in 64bit unsigned integer.
|
---|
265 | *
|
---|
266 | * @param i Integer for which to count leading zeroes.
|
---|
267 | * @return Number of detected leading zeroes.
|
---|
268 | */
|
---|
269 | int count_zeroes64(uint64_t i)
|
---|
270 | {
|
---|
271 | int j;
|
---|
272 | for (j = 0; j < 64; j += 8) {
|
---|
273 | if (i & (0xFFll << (56 - j))) {
|
---|
274 | return (j + count_zeroes8(i >> (56 - j)));
|
---|
275 | }
|
---|
276 | }
|
---|
277 |
|
---|
278 | return 64;
|
---|
279 | }
|
---|
280 |
|
---|
281 | /**
|
---|
282 | * Round and normalize number expressed by exponent and fraction with
|
---|
283 | * first bit (equal to hidden bit) at 30th bit.
|
---|
284 | *
|
---|
285 | * @param exp Exponent part.
|
---|
286 | * @param fraction Fraction with hidden bit shifted to 30th bit.
|
---|
287 | */
|
---|
288 | void round_float32(int32_t *exp, uint32_t *fraction)
|
---|
289 | {
|
---|
290 | /* rounding - if first bit after fraction is set then round up */
|
---|
291 | (*fraction) += (0x1 << (32 - FLOAT32_FRACTION_SIZE - 3));
|
---|
292 |
|
---|
293 | if ((*fraction) &
|
---|
294 | (FLOAT32_HIDDEN_BIT_MASK << (32 - FLOAT32_FRACTION_SIZE - 1))) {
|
---|
295 | /* rounding overflow */
|
---|
296 | ++(*exp);
|
---|
297 | (*fraction) >>= 1;
|
---|
298 | }
|
---|
299 |
|
---|
300 | if (((*exp) >= FLOAT32_MAX_EXPONENT) || ((*exp) < 0)) {
|
---|
301 | /* overflow - set infinity as result */
|
---|
302 | (*exp) = FLOAT32_MAX_EXPONENT;
|
---|
303 | (*fraction) = 0;
|
---|
304 | }
|
---|
305 | }
|
---|
306 |
|
---|
307 | /**
|
---|
308 | * Round and normalize number expressed by exponent and fraction with
|
---|
309 | * first bit (equal to hidden bit) at bit 62.
|
---|
310 | *
|
---|
311 | * @param exp Exponent part.
|
---|
312 | * @param fraction Fraction with hidden bit shifted to bit 62.
|
---|
313 | */
|
---|
314 | void round_float64(int32_t *exp, uint64_t *fraction)
|
---|
315 | {
|
---|
316 | /*
|
---|
317 | * Rounding - if first bit after fraction is set then round up.
|
---|
318 | */
|
---|
319 |
|
---|
320 | /*
|
---|
321 | * Add 1 to the least significant bit of the fraction respecting the
|
---|
322 | * current shift to bit 62 and see if there will be a carry to bit 63.
|
---|
323 | */
|
---|
324 | (*fraction) += (0x1 << (64 - FLOAT64_FRACTION_SIZE - 3));
|
---|
325 |
|
---|
326 | /* See if there was a carry to bit 63. */
|
---|
327 | if ((*fraction) &
|
---|
328 | (FLOAT64_HIDDEN_BIT_MASK << (64 - FLOAT64_FRACTION_SIZE - 1))) {
|
---|
329 | /* rounding overflow */
|
---|
330 | ++(*exp);
|
---|
331 | (*fraction) >>= 1;
|
---|
332 | }
|
---|
333 |
|
---|
334 | if (((*exp) >= FLOAT64_MAX_EXPONENT) || ((*exp) < 0)) {
|
---|
335 | /* overflow - set infinity as result */
|
---|
336 | (*exp) = FLOAT64_MAX_EXPONENT;
|
---|
337 | (*fraction) = 0;
|
---|
338 | }
|
---|
339 | }
|
---|
340 |
|
---|
341 | /**
|
---|
342 | * Round and normalize number expressed by exponent and fraction with
|
---|
343 | * first bit (equal to hidden bit) at 126th bit.
|
---|
344 | *
|
---|
345 | * @param exp Exponent part.
|
---|
346 | * @param frac_hi High part of fraction part with hidden bit shifted to 126th bit.
|
---|
347 | * @param frac_lo Low part of fraction part with hidden bit shifted to 126th bit.
|
---|
348 | */
|
---|
349 | void round_float128(int32_t *exp, uint64_t *frac_hi, uint64_t *frac_lo)
|
---|
350 | {
|
---|
351 | uint64_t tmp_hi, tmp_lo;
|
---|
352 |
|
---|
353 | /* rounding - if first bit after fraction is set then round up */
|
---|
354 | lshift128(0x0ll, 0x1ll, (128 - FLOAT128_FRACTION_SIZE - 3), &tmp_hi, &tmp_lo);
|
---|
355 | add128(*frac_hi, *frac_lo, tmp_hi, tmp_lo, frac_hi, frac_lo);
|
---|
356 |
|
---|
357 | lshift128(FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
358 | (128 - FLOAT128_FRACTION_SIZE - 3), &tmp_hi, &tmp_lo);
|
---|
359 | and128(*frac_hi, *frac_lo, tmp_hi, tmp_lo, &tmp_hi, &tmp_lo);
|
---|
360 | if (lt128(0x0ll, 0x0ll, tmp_hi, tmp_lo)) {
|
---|
361 | /* rounding overflow */
|
---|
362 | ++(*exp);
|
---|
363 | rshift128(*frac_hi, *frac_lo, 1, frac_hi, frac_lo);
|
---|
364 | }
|
---|
365 |
|
---|
366 | if (((*exp) >= FLOAT128_MAX_EXPONENT) || ((*exp) < 0)) {
|
---|
367 | /* overflow - set infinity as result */
|
---|
368 | (*exp) = FLOAT128_MAX_EXPONENT;
|
---|
369 | (*frac_hi) = 0;
|
---|
370 | (*frac_lo) = 0;
|
---|
371 | }
|
---|
372 | }
|
---|
373 |
|
---|
374 | /**
|
---|
375 | * Logical shift left on the 128-bit operand.
|
---|
376 | *
|
---|
377 | * @param a_hi High part of the input operand.
|
---|
378 | * @param a_lo Low part of the input operand.
|
---|
379 | * @param shift Number of bits by witch to shift.
|
---|
380 | * @param r_hi Address to store high part of the result.
|
---|
381 | * @param r_lo Address to store low part of the result.
|
---|
382 | */
|
---|
383 | void lshift128(
|
---|
384 | uint64_t a_hi, uint64_t a_lo, int shift,
|
---|
385 | uint64_t *r_hi, uint64_t *r_lo)
|
---|
386 | {
|
---|
387 | if (shift <= 0) {
|
---|
388 | /* do nothing */
|
---|
389 | } else if (shift >= 128) {
|
---|
390 | a_hi = 0;
|
---|
391 | a_lo = 0;
|
---|
392 | } else if (shift >= 64) {
|
---|
393 | a_hi = a_lo << (shift - 64);
|
---|
394 | a_lo = 0;
|
---|
395 | } else {
|
---|
396 | a_hi <<= shift;
|
---|
397 | a_hi |= a_lo >> (64 - shift);
|
---|
398 | a_lo <<= shift;
|
---|
399 | }
|
---|
400 |
|
---|
401 | *r_hi = a_hi;
|
---|
402 | *r_lo = a_lo;
|
---|
403 | }
|
---|
404 |
|
---|
405 | /**
|
---|
406 | * Logical shift right on the 128-bit operand.
|
---|
407 | *
|
---|
408 | * @param a_hi High part of the input operand.
|
---|
409 | * @param a_lo Low part of the input operand.
|
---|
410 | * @param shift Number of bits by witch to shift.
|
---|
411 | * @param r_hi Address to store high part of the result.
|
---|
412 | * @param r_lo Address to store low part of the result.
|
---|
413 | */
|
---|
414 | void rshift128(
|
---|
415 | uint64_t a_hi, uint64_t a_lo, int shift,
|
---|
416 | uint64_t *r_hi, uint64_t *r_lo)
|
---|
417 | {
|
---|
418 | if (shift <= 0) {
|
---|
419 | /* do nothing */
|
---|
420 | } else if (shift >= 128) {
|
---|
421 | a_hi = 0;
|
---|
422 | a_lo = 0;
|
---|
423 | } else if (shift >= 64) {
|
---|
424 | a_lo = a_hi >> (shift - 64);
|
---|
425 | a_hi = 0;
|
---|
426 | } else {
|
---|
427 | a_lo >>= shift;
|
---|
428 | a_lo |= a_hi << (64 - shift);
|
---|
429 | a_hi >>= shift;
|
---|
430 | }
|
---|
431 |
|
---|
432 | *r_hi = a_hi;
|
---|
433 | *r_lo = a_lo;
|
---|
434 | }
|
---|
435 |
|
---|
436 | /**
|
---|
437 | * Bitwise AND on 128-bit operands.
|
---|
438 | *
|
---|
439 | * @param a_hi High part of the first input operand.
|
---|
440 | * @param a_lo Low part of the first input operand.
|
---|
441 | * @param b_hi High part of the second input operand.
|
---|
442 | * @param b_lo Low part of the second input operand.
|
---|
443 | * @param r_hi Address to store high part of the result.
|
---|
444 | * @param r_lo Address to store low part of the result.
|
---|
445 | */
|
---|
446 | void and128(
|
---|
447 | uint64_t a_hi, uint64_t a_lo,
|
---|
448 | uint64_t b_hi, uint64_t b_lo,
|
---|
449 | uint64_t *r_hi, uint64_t *r_lo)
|
---|
450 | {
|
---|
451 | *r_hi = a_hi & b_hi;
|
---|
452 | *r_lo = a_lo & b_lo;
|
---|
453 | }
|
---|
454 |
|
---|
455 | /**
|
---|
456 | * Bitwise inclusive OR on 128-bit operands.
|
---|
457 | *
|
---|
458 | * @param a_hi High part of the first input operand.
|
---|
459 | * @param a_lo Low part of the first input operand.
|
---|
460 | * @param b_hi High part of the second input operand.
|
---|
461 | * @param b_lo Low part of the second input operand.
|
---|
462 | * @param r_hi Address to store high part of the result.
|
---|
463 | * @param r_lo Address to store low part of the result.
|
---|
464 | */
|
---|
465 | void or128(
|
---|
466 | uint64_t a_hi, uint64_t a_lo,
|
---|
467 | uint64_t b_hi, uint64_t b_lo,
|
---|
468 | uint64_t *r_hi, uint64_t *r_lo)
|
---|
469 | {
|
---|
470 | *r_hi = a_hi | b_hi;
|
---|
471 | *r_lo = a_lo | b_lo;
|
---|
472 | }
|
---|
473 |
|
---|
474 | /**
|
---|
475 | * Bitwise exclusive OR on 128-bit operands.
|
---|
476 | *
|
---|
477 | * @param a_hi High part of the first input operand.
|
---|
478 | * @param a_lo Low part of the first input operand.
|
---|
479 | * @param b_hi High part of the second input operand.
|
---|
480 | * @param b_lo Low part of the second input operand.
|
---|
481 | * @param r_hi Address to store high part of the result.
|
---|
482 | * @param r_lo Address to store low part of the result.
|
---|
483 | */
|
---|
484 | void xor128(
|
---|
485 | uint64_t a_hi, uint64_t a_lo,
|
---|
486 | uint64_t b_hi, uint64_t b_lo,
|
---|
487 | uint64_t *r_hi, uint64_t *r_lo)
|
---|
488 | {
|
---|
489 | *r_hi = a_hi ^ b_hi;
|
---|
490 | *r_lo = a_lo ^ b_lo;
|
---|
491 | }
|
---|
492 |
|
---|
493 | /**
|
---|
494 | * Bitwise NOT on the 128-bit operand.
|
---|
495 | *
|
---|
496 | * @param a_hi High part of the input operand.
|
---|
497 | * @param a_lo Low part of the input operand.
|
---|
498 | * @param r_hi Address to store high part of the result.
|
---|
499 | * @param r_lo Address to store low part of the result.
|
---|
500 | */
|
---|
501 | void not128(
|
---|
502 | uint64_t a_hi, uint64_t a_lo,
|
---|
503 | uint64_t *r_hi, uint64_t *r_lo)
|
---|
504 | {
|
---|
505 | *r_hi = ~a_hi;
|
---|
506 | *r_lo = ~a_lo;
|
---|
507 | }
|
---|
508 |
|
---|
509 | /**
|
---|
510 | * Equality comparison of 128-bit operands.
|
---|
511 | *
|
---|
512 | * @param a_hi High part of the first input operand.
|
---|
513 | * @param a_lo Low part of the first input operand.
|
---|
514 | * @param b_hi High part of the second input operand.
|
---|
515 | * @param b_lo Low part of the second input operand.
|
---|
516 | * @return 1 if operands are equal, 0 otherwise.
|
---|
517 | */
|
---|
518 | int eq128(uint64_t a_hi, uint64_t a_lo, uint64_t b_hi, uint64_t b_lo)
|
---|
519 | {
|
---|
520 | return (a_hi == b_hi) && (a_lo == b_lo);
|
---|
521 | }
|
---|
522 |
|
---|
523 | /**
|
---|
524 | * Lower-or-equal comparison of 128-bit operands.
|
---|
525 | *
|
---|
526 | * @param a_hi High part of the first input operand.
|
---|
527 | * @param a_lo Low part of the first input operand.
|
---|
528 | * @param b_hi High part of the second input operand.
|
---|
529 | * @param b_lo Low part of the second input operand.
|
---|
530 | * @return 1 if a is lower or equal to b, 0 otherwise.
|
---|
531 | */
|
---|
532 | int le128(uint64_t a_hi, uint64_t a_lo, uint64_t b_hi, uint64_t b_lo)
|
---|
533 | {
|
---|
534 | return (a_hi < b_hi) || ((a_hi == b_hi) && (a_lo <= b_lo));
|
---|
535 | }
|
---|
536 |
|
---|
537 | /**
|
---|
538 | * Lower-than comparison of 128-bit operands.
|
---|
539 | *
|
---|
540 | * @param a_hi High part of the first input operand.
|
---|
541 | * @param a_lo Low part of the first input operand.
|
---|
542 | * @param b_hi High part of the second input operand.
|
---|
543 | * @param b_lo Low part of the second input operand.
|
---|
544 | * @return 1 if a is lower than b, 0 otherwise.
|
---|
545 | */
|
---|
546 | int lt128(uint64_t a_hi, uint64_t a_lo, uint64_t b_hi, uint64_t b_lo)
|
---|
547 | {
|
---|
548 | return (a_hi < b_hi) || ((a_hi == b_hi) && (a_lo < b_lo));
|
---|
549 | }
|
---|
550 |
|
---|
551 | /**
|
---|
552 | * Addition of two 128-bit unsigned integers.
|
---|
553 | *
|
---|
554 | * @param a_hi High part of the first input operand.
|
---|
555 | * @param a_lo Low part of the first input operand.
|
---|
556 | * @param b_hi High part of the second input operand.
|
---|
557 | * @param b_lo Low part of the second input operand.
|
---|
558 | * @param r_hi Address to store high part of the result.
|
---|
559 | * @param r_lo Address to store low part of the result.
|
---|
560 | */
|
---|
561 | void add128(uint64_t a_hi, uint64_t a_lo,
|
---|
562 | uint64_t b_hi, uint64_t b_lo,
|
---|
563 | uint64_t *r_hi, uint64_t *r_lo)
|
---|
564 | {
|
---|
565 | uint64_t low = a_lo + b_lo;
|
---|
566 | *r_lo = low;
|
---|
567 | /* detect overflow to add a carry */
|
---|
568 | *r_hi = a_hi + b_hi + (low < a_lo);
|
---|
569 | }
|
---|
570 |
|
---|
571 | /**
|
---|
572 | * Substraction of two 128-bit unsigned integers.
|
---|
573 | *
|
---|
574 | * @param a_hi High part of the first input operand.
|
---|
575 | * @param a_lo Low part of the first input operand.
|
---|
576 | * @param b_hi High part of the second input operand.
|
---|
577 | * @param b_lo Low part of the second input operand.
|
---|
578 | * @param r_hi Address to store high part of the result.
|
---|
579 | * @param r_lo Address to store low part of the result.
|
---|
580 | */
|
---|
581 | void sub128(uint64_t a_hi, uint64_t a_lo,
|
---|
582 | uint64_t b_hi, uint64_t b_lo,
|
---|
583 | uint64_t *r_hi, uint64_t *r_lo)
|
---|
584 | {
|
---|
585 | *r_lo = a_lo - b_lo;
|
---|
586 | /* detect underflow to substract a carry */
|
---|
587 | *r_hi = a_hi - b_hi - (a_lo < b_lo);
|
---|
588 | }
|
---|
589 |
|
---|
590 | /**
|
---|
591 | * Multiplication of two 64-bit unsigned integers.
|
---|
592 | *
|
---|
593 | * @param a First input operand.
|
---|
594 | * @param b Second input operand.
|
---|
595 | * @param r_hi Address to store high part of the result.
|
---|
596 | * @param r_lo Address to store low part of the result.
|
---|
597 | */
|
---|
598 | void mul64(uint64_t a, uint64_t b, uint64_t *r_hi, uint64_t *r_lo)
|
---|
599 | {
|
---|
600 | uint64_t low, high, middle1, middle2;
|
---|
601 | uint32_t alow, blow;
|
---|
602 |
|
---|
603 | alow = a & 0xFFFFFFFF;
|
---|
604 | blow = b & 0xFFFFFFFF;
|
---|
605 |
|
---|
606 | a >>= 32;
|
---|
607 | b >>= 32;
|
---|
608 |
|
---|
609 | low = ((uint64_t) alow) * blow;
|
---|
610 | middle1 = a * blow;
|
---|
611 | middle2 = alow * b;
|
---|
612 | high = a * b;
|
---|
613 |
|
---|
614 | middle1 += middle2;
|
---|
615 | high += (((uint64_t) (middle1 < middle2)) << 32) + (middle1 >> 32);
|
---|
616 | middle1 <<= 32;
|
---|
617 | low += middle1;
|
---|
618 | high += (low < middle1);
|
---|
619 | *r_lo = low;
|
---|
620 | *r_hi = high;
|
---|
621 | }
|
---|
622 |
|
---|
623 | /**
|
---|
624 | * Multiplication of two 128-bit unsigned integers.
|
---|
625 | *
|
---|
626 | * @param a_hi High part of the first input operand.
|
---|
627 | * @param a_lo Low part of the first input operand.
|
---|
628 | * @param b_hi High part of the second input operand.
|
---|
629 | * @param b_lo Low part of the second input operand.
|
---|
630 | * @param r_hihi Address to store first (highest) quarter of the result.
|
---|
631 | * @param r_hilo Address to store second quarter of the result.
|
---|
632 | * @param r_lohi Address to store third quarter of the result.
|
---|
633 | * @param r_lolo Address to store fourth (lowest) quarter of the result.
|
---|
634 | */
|
---|
635 | void mul128(uint64_t a_hi, uint64_t a_lo, uint64_t b_hi, uint64_t b_lo,
|
---|
636 | uint64_t *r_hihi, uint64_t *r_hilo, uint64_t *r_lohi, uint64_t *r_lolo)
|
---|
637 | {
|
---|
638 | uint64_t hihi, hilo, lohi, lolo;
|
---|
639 | uint64_t tmp1, tmp2;
|
---|
640 |
|
---|
641 | mul64(a_lo, b_lo, &lohi, &lolo);
|
---|
642 | mul64(a_lo, b_hi, &hilo, &tmp2);
|
---|
643 | add128(hilo, tmp2, 0x0ll, lohi, &hilo, &lohi);
|
---|
644 | mul64(a_hi, b_hi, &hihi, &tmp1);
|
---|
645 | add128(hihi, tmp1, 0x0ll, hilo, &hihi, &hilo);
|
---|
646 | mul64(a_hi, b_lo, &tmp1, &tmp2);
|
---|
647 | add128(tmp1, tmp2, 0x0ll, lohi, &tmp1, &lohi);
|
---|
648 | add128(hihi, hilo, 0x0ll, tmp1, &hihi, &hilo);
|
---|
649 |
|
---|
650 | *r_hihi = hihi;
|
---|
651 | *r_hilo = hilo;
|
---|
652 | *r_lohi = lohi;
|
---|
653 | *r_lolo = lolo;
|
---|
654 | }
|
---|
655 |
|
---|
656 | /**
|
---|
657 | * Estimate the quotient of 128-bit unsigned divident and 64-bit unsigned
|
---|
658 | * divisor.
|
---|
659 | *
|
---|
660 | * @param a_hi High part of the divident.
|
---|
661 | * @param a_lo Low part of the divident.
|
---|
662 | * @param b Divisor.
|
---|
663 | * @return Quotient approximation.
|
---|
664 | */
|
---|
665 | uint64_t div128est(uint64_t a_hi, uint64_t a_lo, uint64_t b)
|
---|
666 | {
|
---|
667 | uint64_t b_hi, b_lo;
|
---|
668 | uint64_t rem_hi, rem_lo;
|
---|
669 | uint64_t tmp_hi, tmp_lo;
|
---|
670 | uint64_t result;
|
---|
671 |
|
---|
672 | if (b <= a_hi) {
|
---|
673 | return 0xFFFFFFFFFFFFFFFFull;
|
---|
674 | }
|
---|
675 |
|
---|
676 | b_hi = b >> 32;
|
---|
677 | result = ((b_hi << 32) <= a_hi) ? (0xFFFFFFFFull << 32) : (a_hi / b_hi) << 32;
|
---|
678 | mul64(b, result, &tmp_hi, &tmp_lo);
|
---|
679 | sub128(a_hi, a_lo, tmp_hi, tmp_lo, &rem_hi, &rem_lo);
|
---|
680 |
|
---|
681 | while ((int64_t) rem_hi < 0) {
|
---|
682 | result -= 0x1ll << 32;
|
---|
683 | b_lo = b << 32;
|
---|
684 | add128(rem_hi, rem_lo, b_hi, b_lo, &rem_hi, &rem_lo);
|
---|
685 | }
|
---|
686 |
|
---|
687 | rem_hi = (rem_hi << 32) | (rem_lo >> 32);
|
---|
688 | if ((b_hi << 32) <= rem_hi) {
|
---|
689 | result |= 0xFFFFFFFF;
|
---|
690 | } else {
|
---|
691 | result |= rem_hi / b_hi;
|
---|
692 | }
|
---|
693 |
|
---|
694 | return result;
|
---|
695 | }
|
---|
696 |
|
---|
697 | /** @}
|
---|
698 | */
|
---|