[e979fea] | 1 | /*
|
---|
[df4ed85] | 2 | * Copyright (c) 2005 Josef Cejka
|
---|
[c67aff2] | 3 | * Copyright (c) 2011 Petr Koupy
|
---|
[e979fea] | 4 | * All rights reserved.
|
---|
| 5 | *
|
---|
| 6 | * Redistribution and use in source and binary forms, with or without
|
---|
| 7 | * modification, are permitted provided that the following conditions
|
---|
| 8 | * are met:
|
---|
| 9 | *
|
---|
| 10 | * - Redistributions of source code must retain the above copyright
|
---|
| 11 | * notice, this list of conditions and the following disclaimer.
|
---|
| 12 | * - Redistributions in binary form must reproduce the above copyright
|
---|
| 13 | * notice, this list of conditions and the following disclaimer in the
|
---|
| 14 | * documentation and/or other materials provided with the distribution.
|
---|
| 15 | * - The name of the author may not be used to endorse or promote products
|
---|
| 16 | * derived from this software without specific prior written permission.
|
---|
| 17 | *
|
---|
| 18 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
| 19 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
| 20 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
| 21 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
| 22 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
| 23 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
| 24 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
| 25 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
| 26 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
| 27 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
| 28 | */
|
---|
| 29 |
|
---|
[750636a] | 30 | /** @addtogroup softfloat
|
---|
[846848a6] | 31 | * @{
|
---|
| 32 | */
|
---|
[c67aff2] | 33 | /** @file Common helper operations.
|
---|
[846848a6] | 34 | */
|
---|
| 35 |
|
---|
[2416085] | 36 | #include "sftypes.h"
|
---|
| 37 | #include "common.h"
|
---|
[e979fea] | 38 |
|
---|
[c67aff2] | 39 | /* Table for fast leading zeroes counting. */
|
---|
[1d83419] | 40 | char zeroTable[256] = {
|
---|
[7462674] | 41 | 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, \
|
---|
[1d83419] | 42 | 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, \
|
---|
| 43 | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, \
|
---|
| 44 | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, \
|
---|
| 45 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
---|
| 46 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
---|
| 47 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
---|
| 48 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
---|
| 49 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
---|
| 50 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
---|
| 51 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
---|
| 52 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
---|
| 53 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
---|
| 54 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
---|
| 55 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
---|
| 56 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
---|
| 57 | };
|
---|
| 58 |
|
---|
[2416085] | 59 | /**
|
---|
[c67aff2] | 60 | * Take fraction shifted by 10 bits to the left, round it, normalize it
|
---|
| 61 | * and detect exceptions
|
---|
| 62 | *
|
---|
| 63 | * @param cexp Exponent with bias.
|
---|
| 64 | * @param cfrac Fraction shifted 10 bits to the left with added hidden bit.
|
---|
| 65 | * @param sign Resulting sign.
|
---|
| 66 | * @return Finished double-precision float.
|
---|
[e979fea] | 67 | */
|
---|
[88d5c1e] | 68 | float64 finish_float64(int32_t cexp, uint64_t cfrac, char sign)
|
---|
[e979fea] | 69 | {
|
---|
| 70 | float64 result;
|
---|
| 71 |
|
---|
| 72 | result.parts.sign = sign;
|
---|
| 73 |
|
---|
| 74 | /* find first nonzero digit and shift result and detect possibly underflow */
|
---|
[c67aff2] | 75 | while ((cexp > 0) && (cfrac) &&
|
---|
| 76 | (!(cfrac & (FLOAT64_HIDDEN_BIT_MASK << (64 - FLOAT64_FRACTION_SIZE - 1))))) {
|
---|
[2416085] | 77 | cexp--;
|
---|
[e979fea] | 78 | cfrac <<= 1;
|
---|
[c67aff2] | 79 | /* TODO: fix underflow */
|
---|
| 80 | }
|
---|
[e979fea] | 81 |
|
---|
[c67aff2] | 82 | if ((cexp < 0) || (cexp == 0 &&
|
---|
| 83 | (!(cfrac & (FLOAT64_HIDDEN_BIT_MASK << (64 - FLOAT64_FRACTION_SIZE - 1)))))) {
|
---|
[d3ca210] | 84 | /* FIXME: underflow */
|
---|
| 85 | result.parts.exp = 0;
|
---|
[f1f95f2] | 86 | if ((cexp + FLOAT64_FRACTION_SIZE + 1) < 0) { /* +1 is place for rounding */
|
---|
[d3ca210] | 87 | result.parts.fraction = 0;
|
---|
| 88 | return result;
|
---|
| 89 | }
|
---|
[f1f95f2] | 90 |
|
---|
[d3ca210] | 91 | while (cexp < 0) {
|
---|
| 92 | cexp++;
|
---|
| 93 | cfrac >>= 1;
|
---|
| 94 | }
|
---|
[f1f95f2] | 95 |
|
---|
| 96 | cfrac += (0x1 << (64 - FLOAT64_FRACTION_SIZE - 3));
|
---|
| 97 |
|
---|
[1d83419] | 98 | if (!(cfrac & (FLOAT64_HIDDEN_BIT_MASK << (64 - FLOAT64_FRACTION_SIZE - 1)))) {
|
---|
[c67aff2] | 99 | result.parts.fraction =
|
---|
| 100 | ((cfrac >> (64 - FLOAT64_FRACTION_SIZE - 2)) & (~FLOAT64_HIDDEN_BIT_MASK));
|
---|
[f1f95f2] | 101 | return result;
|
---|
| 102 | }
|
---|
| 103 | } else {
|
---|
| 104 | cfrac += (0x1 << (64 - FLOAT64_FRACTION_SIZE - 3));
|
---|
[d3ca210] | 105 | }
|
---|
| 106 |
|
---|
| 107 | ++cexp;
|
---|
[e979fea] | 108 |
|
---|
[c67aff2] | 109 | if (cfrac & (FLOAT64_HIDDEN_BIT_MASK << (64 - FLOAT64_FRACTION_SIZE - 1))) {
|
---|
[e979fea] | 110 | ++cexp;
|
---|
| 111 | cfrac >>= 1;
|
---|
[2416085] | 112 | }
|
---|
[e979fea] | 113 |
|
---|
| 114 | /* check overflow */
|
---|
[c67aff2] | 115 | if (cexp >= FLOAT64_MAX_EXPONENT) {
|
---|
[e979fea] | 116 | /* FIXME: overflow, return infinity */
|
---|
| 117 | result.parts.exp = FLOAT64_MAX_EXPONENT;
|
---|
| 118 | result.parts.fraction = 0;
|
---|
| 119 | return result;
|
---|
| 120 | }
|
---|
| 121 |
|
---|
[c67aff2] | 122 | result.parts.exp = (uint32_t) cexp;
|
---|
[e979fea] | 123 |
|
---|
[c67aff2] | 124 | result.parts.fraction =
|
---|
| 125 | ((cfrac >> (64 - FLOAT64_FRACTION_SIZE - 2)) & (~FLOAT64_HIDDEN_BIT_MASK));
|
---|
[e979fea] | 126 |
|
---|
| 127 | return result;
|
---|
| 128 | }
|
---|
[d3ca210] | 129 |
|
---|
[c67aff2] | 130 | /**
|
---|
| 131 | * Take fraction, round it, normalize it and detect exceptions
|
---|
| 132 | *
|
---|
| 133 | * @param cexp Exponent with bias.
|
---|
| 134 | * @param cfrac_hi High part of the fraction shifted 14 bits to the left
|
---|
| 135 | * with added hidden bit.
|
---|
| 136 | * @param cfrac_lo Low part of the fraction shifted 14 bits to the left
|
---|
| 137 | * with added hidden bit.
|
---|
| 138 | * @param sign Resulting sign.
|
---|
| 139 | * @param shift_out Bits right-shifted out from fraction by the caller.
|
---|
| 140 | * @return Finished quadruple-precision float.
|
---|
[1d83419] | 141 | */
|
---|
[88d5c1e] | 142 | float128 finish_float128(int32_t cexp, uint64_t cfrac_hi, uint64_t cfrac_lo,
|
---|
[c67aff2] | 143 | char sign, uint64_t shift_out)
|
---|
[1d83419] | 144 | {
|
---|
[c67aff2] | 145 | float128 result;
|
---|
| 146 | uint64_t tmp_hi, tmp_lo;
|
---|
| 147 |
|
---|
| 148 | result.parts.sign = sign;
|
---|
| 149 |
|
---|
| 150 | /* find first nonzero digit and shift result and detect possibly underflow */
|
---|
| 151 | lshift128(FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
| 152 | 1, &tmp_hi, &tmp_lo);
|
---|
| 153 | and128(cfrac_hi, cfrac_lo, tmp_hi, tmp_lo, &tmp_hi, &tmp_lo);
|
---|
| 154 | while ((cexp > 0) && (lt128(0x0ll, 0x0ll, cfrac_hi, cfrac_lo)) &&
|
---|
| 155 | (!lt128(0x0ll, 0x0ll, tmp_hi, tmp_lo))) {
|
---|
| 156 | cexp--;
|
---|
| 157 | lshift128(cfrac_hi, cfrac_lo, 1, &cfrac_hi, &cfrac_lo);
|
---|
| 158 | /* TODO: fix underflow */
|
---|
| 159 |
|
---|
| 160 | lshift128(FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
| 161 | 1, &tmp_hi, &tmp_lo);
|
---|
| 162 | and128(cfrac_hi, cfrac_lo, tmp_hi, tmp_lo, &tmp_hi, &tmp_lo);
|
---|
| 163 | }
|
---|
| 164 |
|
---|
| 165 | lshift128(FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
| 166 | 1, &tmp_hi, &tmp_lo);
|
---|
| 167 | and128(cfrac_hi, cfrac_lo, tmp_hi, tmp_lo, &tmp_hi, &tmp_lo);
|
---|
| 168 | if ((cexp < 0) || (cexp == 0 &&
|
---|
| 169 | (!lt128(0x0ll, 0x0ll, tmp_hi, tmp_lo)))) {
|
---|
| 170 | /* FIXME: underflow */
|
---|
| 171 | result.parts.exp = 0;
|
---|
| 172 | if ((cexp + FLOAT128_FRACTION_SIZE + 1) < 0) { /* +1 is place for rounding */
|
---|
| 173 | result.parts.frac_hi = 0x0ll;
|
---|
| 174 | result.parts.frac_lo = 0x0ll;
|
---|
| 175 | return result;
|
---|
| 176 | }
|
---|
| 177 |
|
---|
| 178 | while (cexp < 0) {
|
---|
| 179 | cexp++;
|
---|
| 180 | rshift128(cfrac_hi, cfrac_lo, 1, &cfrac_hi, &cfrac_lo);
|
---|
| 181 | }
|
---|
| 182 |
|
---|
| 183 | if (shift_out & (0x1ull < 64)) {
|
---|
| 184 | add128(cfrac_hi, cfrac_lo, 0x0ll, 0x1ll, &cfrac_hi, &cfrac_lo);
|
---|
| 185 | }
|
---|
| 186 |
|
---|
| 187 | lshift128(FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
| 188 | 1, &tmp_hi, &tmp_lo);
|
---|
| 189 | and128(cfrac_hi, cfrac_lo, tmp_hi, tmp_lo, &tmp_hi, &tmp_lo);
|
---|
| 190 | if (!lt128(0x0ll, 0x0ll, tmp_hi, tmp_lo)) {
|
---|
| 191 | not128(FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
| 192 | &tmp_hi, &tmp_lo);
|
---|
| 193 | and128(cfrac_hi, cfrac_lo, tmp_hi, tmp_lo, &tmp_hi, &tmp_lo);
|
---|
| 194 | result.parts.frac_hi = tmp_hi;
|
---|
| 195 | result.parts.frac_lo = tmp_lo;
|
---|
| 196 | return result;
|
---|
| 197 | }
|
---|
| 198 | } else {
|
---|
| 199 | if (shift_out & (0x1ull < 64)) {
|
---|
| 200 | add128(cfrac_hi, cfrac_lo, 0x0ll, 0x1ll, &cfrac_hi, &cfrac_lo);
|
---|
[1d83419] | 201 | }
|
---|
| 202 | }
|
---|
| 203 |
|
---|
[c67aff2] | 204 | ++cexp;
|
---|
| 205 |
|
---|
| 206 | lshift128(FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
| 207 | 1, &tmp_hi, &tmp_lo);
|
---|
| 208 | and128(cfrac_hi, cfrac_lo, tmp_hi, tmp_lo, &tmp_hi, &tmp_lo);
|
---|
| 209 | if (lt128(0x0ll, 0x0ll, tmp_hi, tmp_lo)) {
|
---|
| 210 | ++cexp;
|
---|
| 211 | rshift128(cfrac_hi, cfrac_lo, 1, &cfrac_hi, &cfrac_lo);
|
---|
| 212 | }
|
---|
| 213 |
|
---|
| 214 | /* check overflow */
|
---|
| 215 | if (cexp >= FLOAT128_MAX_EXPONENT) {
|
---|
| 216 | /* FIXME: overflow, return infinity */
|
---|
| 217 | result.parts.exp = FLOAT128_MAX_EXPONENT;
|
---|
| 218 | result.parts.frac_hi = 0x0ll;
|
---|
| 219 | result.parts.frac_lo = 0x0ll;
|
---|
| 220 | return result;
|
---|
| 221 | }
|
---|
| 222 |
|
---|
| 223 | result.parts.exp = (uint32_t) cexp;
|
---|
| 224 |
|
---|
| 225 | not128(FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
| 226 | &tmp_hi, &tmp_lo);
|
---|
| 227 | and128(cfrac_hi, cfrac_lo, tmp_hi, tmp_lo, &tmp_hi, &tmp_lo);
|
---|
| 228 | result.parts.frac_hi = tmp_hi;
|
---|
| 229 | result.parts.frac_lo = tmp_lo;
|
---|
| 230 |
|
---|
| 231 | return result;
|
---|
[1d83419] | 232 | }
|
---|
| 233 |
|
---|
[c67aff2] | 234 | /**
|
---|
| 235 | * Counts leading zeroes in byte.
|
---|
| 236 | *
|
---|
| 237 | * @param i Byte for which to count leading zeroes.
|
---|
| 238 | * @return Number of detected leading zeroes.
|
---|
| 239 | */
|
---|
[88d5c1e] | 240 | int count_zeroes8(uint8_t i)
|
---|
[c67aff2] | 241 | {
|
---|
| 242 | return zeroTable[i];
|
---|
| 243 | }
|
---|
| 244 |
|
---|
| 245 | /**
|
---|
| 246 | * Counts leading zeroes in 32bit unsigned integer.
|
---|
| 247 | *
|
---|
| 248 | * @param i Integer for which to count leading zeroes.
|
---|
| 249 | * @return Number of detected leading zeroes.
|
---|
[1d83419] | 250 | */
|
---|
[88d5c1e] | 251 | int count_zeroes32(uint32_t i)
|
---|
[1d83419] | 252 | {
|
---|
| 253 | int j;
|
---|
[c67aff2] | 254 | for (j = 0; j < 32; j += 8) {
|
---|
| 255 | if (i & (0xFF << (24 - j))) {
|
---|
[88d5c1e] | 256 | return (j + count_zeroes8(i >> (24 - j)));
|
---|
[1d83419] | 257 | }
|
---|
| 258 | }
|
---|
| 259 |
|
---|
| 260 | return 32;
|
---|
| 261 | }
|
---|
| 262 |
|
---|
[c67aff2] | 263 | /**
|
---|
| 264 | * Counts leading zeroes in 64bit unsigned integer.
|
---|
| 265 | *
|
---|
| 266 | * @param i Integer for which to count leading zeroes.
|
---|
| 267 | * @return Number of detected leading zeroes.
|
---|
[1d83419] | 268 | */
|
---|
[88d5c1e] | 269 | int count_zeroes64(uint64_t i)
|
---|
[1d83419] | 270 | {
|
---|
[c67aff2] | 271 | int j;
|
---|
| 272 | for (j = 0; j < 64; j += 8) {
|
---|
| 273 | if (i & (0xFFll << (56 - j))) {
|
---|
[88d5c1e] | 274 | return (j + count_zeroes8(i >> (56 - j)));
|
---|
[c67aff2] | 275 | }
|
---|
| 276 | }
|
---|
| 277 |
|
---|
| 278 | return 64;
|
---|
[1d83419] | 279 | }
|
---|
| 280 |
|
---|
[c67aff2] | 281 | /**
|
---|
| 282 | * Round and normalize number expressed by exponent and fraction with
|
---|
| 283 | * first bit (equal to hidden bit) at 30th bit.
|
---|
| 284 | *
|
---|
| 285 | * @param exp Exponent part.
|
---|
| 286 | * @param fraction Fraction with hidden bit shifted to 30th bit.
|
---|
[1d83419] | 287 | */
|
---|
[88d5c1e] | 288 | void round_float32(int32_t *exp, uint32_t *fraction)
|
---|
[1d83419] | 289 | {
|
---|
| 290 | /* rounding - if first bit after fraction is set then round up */
|
---|
[c67aff2] | 291 | (*fraction) += (0x1 << (32 - FLOAT32_FRACTION_SIZE - 3));
|
---|
[1d83419] | 292 |
|
---|
[c67aff2] | 293 | if ((*fraction) &
|
---|
| 294 | (FLOAT32_HIDDEN_BIT_MASK << (32 - FLOAT32_FRACTION_SIZE - 1))) {
|
---|
[1d83419] | 295 | /* rounding overflow */
|
---|
| 296 | ++(*exp);
|
---|
| 297 | (*fraction) >>= 1;
|
---|
[c67aff2] | 298 | }
|
---|
[1d83419] | 299 |
|
---|
[c67aff2] | 300 | if (((*exp) >= FLOAT32_MAX_EXPONENT) || ((*exp) < 0)) {
|
---|
[1d83419] | 301 | /* overflow - set infinity as result */
|
---|
| 302 | (*exp) = FLOAT32_MAX_EXPONENT;
|
---|
| 303 | (*fraction) = 0;
|
---|
| 304 | }
|
---|
| 305 | }
|
---|
| 306 |
|
---|
[c67aff2] | 307 | /**
|
---|
| 308 | * Round and normalize number expressed by exponent and fraction with
|
---|
[94b696c] | 309 | * first bit (equal to hidden bit) at bit 62.
|
---|
[c67aff2] | 310 | *
|
---|
| 311 | * @param exp Exponent part.
|
---|
[94b696c] | 312 | * @param fraction Fraction with hidden bit shifted to bit 62.
|
---|
[1d83419] | 313 | */
|
---|
[88d5c1e] | 314 | void round_float64(int32_t *exp, uint64_t *fraction)
|
---|
[1d83419] | 315 | {
|
---|
[94b696c] | 316 | /*
|
---|
| 317 | * Rounding - if first bit after fraction is set then round up.
|
---|
| 318 | */
|
---|
| 319 |
|
---|
| 320 | /*
|
---|
| 321 | * Add 1 to the least significant bit of the fraction respecting the
|
---|
| 322 | * current shift to bit 62 and see if there will be a carry to bit 63.
|
---|
| 323 | */
|
---|
[c67aff2] | 324 | (*fraction) += (0x1 << (64 - FLOAT64_FRACTION_SIZE - 3));
|
---|
[1d83419] | 325 |
|
---|
[94b696c] | 326 | /* See if there was a carry to bit 63. */
|
---|
[c67aff2] | 327 | if ((*fraction) &
|
---|
[94b696c] | 328 | (FLOAT64_HIDDEN_BIT_MASK << (64 - FLOAT64_FRACTION_SIZE - 1))) {
|
---|
[1d83419] | 329 | /* rounding overflow */
|
---|
| 330 | ++(*exp);
|
---|
| 331 | (*fraction) >>= 1;
|
---|
[c67aff2] | 332 | }
|
---|
[1d83419] | 333 |
|
---|
[c67aff2] | 334 | if (((*exp) >= FLOAT64_MAX_EXPONENT) || ((*exp) < 0)) {
|
---|
[1d83419] | 335 | /* overflow - set infinity as result */
|
---|
| 336 | (*exp) = FLOAT64_MAX_EXPONENT;
|
---|
| 337 | (*fraction) = 0;
|
---|
[c67aff2] | 338 | }
|
---|
| 339 | }
|
---|
| 340 |
|
---|
| 341 | /**
|
---|
| 342 | * Round and normalize number expressed by exponent and fraction with
|
---|
| 343 | * first bit (equal to hidden bit) at 126th bit.
|
---|
| 344 | *
|
---|
| 345 | * @param exp Exponent part.
|
---|
| 346 | * @param frac_hi High part of fraction part with hidden bit shifted to 126th bit.
|
---|
| 347 | * @param frac_lo Low part of fraction part with hidden bit shifted to 126th bit.
|
---|
| 348 | */
|
---|
[88d5c1e] | 349 | void round_float128(int32_t *exp, uint64_t *frac_hi, uint64_t *frac_lo)
|
---|
[c67aff2] | 350 | {
|
---|
| 351 | uint64_t tmp_hi, tmp_lo;
|
---|
| 352 |
|
---|
| 353 | /* rounding - if first bit after fraction is set then round up */
|
---|
| 354 | lshift128(0x0ll, 0x1ll, (128 - FLOAT128_FRACTION_SIZE - 3), &tmp_hi, &tmp_lo);
|
---|
| 355 | add128(*frac_hi, *frac_lo, tmp_hi, tmp_lo, frac_hi, frac_lo);
|
---|
| 356 |
|
---|
| 357 | lshift128(FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
| 358 | (128 - FLOAT128_FRACTION_SIZE - 3), &tmp_hi, &tmp_lo);
|
---|
| 359 | and128(*frac_hi, *frac_lo, tmp_hi, tmp_lo, &tmp_hi, &tmp_lo);
|
---|
| 360 | if (lt128(0x0ll, 0x0ll, tmp_hi, tmp_lo)) {
|
---|
| 361 | /* rounding overflow */
|
---|
| 362 | ++(*exp);
|
---|
| 363 | rshift128(*frac_hi, *frac_lo, 1, frac_hi, frac_lo);
|
---|
| 364 | }
|
---|
| 365 |
|
---|
| 366 | if (((*exp) >= FLOAT128_MAX_EXPONENT) || ((*exp) < 0)) {
|
---|
| 367 | /* overflow - set infinity as result */
|
---|
| 368 | (*exp) = FLOAT128_MAX_EXPONENT;
|
---|
| 369 | (*frac_hi) = 0;
|
---|
| 370 | (*frac_lo) = 0;
|
---|
| 371 | }
|
---|
| 372 | }
|
---|
| 373 |
|
---|
| 374 | /**
|
---|
| 375 | * Logical shift left on the 128-bit operand.
|
---|
| 376 | *
|
---|
| 377 | * @param a_hi High part of the input operand.
|
---|
| 378 | * @param a_lo Low part of the input operand.
|
---|
| 379 | * @param shift Number of bits by witch to shift.
|
---|
| 380 | * @param r_hi Address to store high part of the result.
|
---|
| 381 | * @param r_lo Address to store low part of the result.
|
---|
| 382 | */
|
---|
| 383 | void lshift128(
|
---|
| 384 | uint64_t a_hi, uint64_t a_lo, int shift,
|
---|
| 385 | uint64_t *r_hi, uint64_t *r_lo)
|
---|
| 386 | {
|
---|
| 387 | if (shift <= 0) {
|
---|
| 388 | /* do nothing */
|
---|
| 389 | } else if (shift >= 128) {
|
---|
| 390 | a_hi = 0;
|
---|
| 391 | a_lo = 0;
|
---|
| 392 | } else if (shift >= 64) {
|
---|
| 393 | a_hi = a_lo << (shift - 64);
|
---|
| 394 | a_lo = 0;
|
---|
| 395 | } else {
|
---|
| 396 | a_hi <<= shift;
|
---|
| 397 | a_hi |= a_lo >> (64 - shift);
|
---|
| 398 | a_lo <<= shift;
|
---|
| 399 | }
|
---|
| 400 |
|
---|
| 401 | *r_hi = a_hi;
|
---|
| 402 | *r_lo = a_lo;
|
---|
| 403 | }
|
---|
| 404 |
|
---|
| 405 | /**
|
---|
| 406 | * Logical shift right on the 128-bit operand.
|
---|
| 407 | *
|
---|
| 408 | * @param a_hi High part of the input operand.
|
---|
| 409 | * @param a_lo Low part of the input operand.
|
---|
| 410 | * @param shift Number of bits by witch to shift.
|
---|
| 411 | * @param r_hi Address to store high part of the result.
|
---|
| 412 | * @param r_lo Address to store low part of the result.
|
---|
| 413 | */
|
---|
| 414 | void rshift128(
|
---|
| 415 | uint64_t a_hi, uint64_t a_lo, int shift,
|
---|
| 416 | uint64_t *r_hi, uint64_t *r_lo)
|
---|
| 417 | {
|
---|
| 418 | if (shift <= 0) {
|
---|
| 419 | /* do nothing */
|
---|
| 420 | } else if (shift >= 128) {
|
---|
| 421 | a_hi = 0;
|
---|
| 422 | a_lo = 0;
|
---|
| 423 | } else if (shift >= 64) {
|
---|
| 424 | a_lo = a_hi >> (shift - 64);
|
---|
| 425 | a_hi = 0;
|
---|
| 426 | } else {
|
---|
| 427 | a_lo >>= shift;
|
---|
| 428 | a_lo |= a_hi << (64 - shift);
|
---|
| 429 | a_hi >>= shift;
|
---|
| 430 | }
|
---|
| 431 |
|
---|
| 432 | *r_hi = a_hi;
|
---|
| 433 | *r_lo = a_lo;
|
---|
| 434 | }
|
---|
| 435 |
|
---|
| 436 | /**
|
---|
| 437 | * Bitwise AND on 128-bit operands.
|
---|
| 438 | *
|
---|
| 439 | * @param a_hi High part of the first input operand.
|
---|
| 440 | * @param a_lo Low part of the first input operand.
|
---|
| 441 | * @param b_hi High part of the second input operand.
|
---|
| 442 | * @param b_lo Low part of the second input operand.
|
---|
| 443 | * @param r_hi Address to store high part of the result.
|
---|
| 444 | * @param r_lo Address to store low part of the result.
|
---|
| 445 | */
|
---|
| 446 | void and128(
|
---|
| 447 | uint64_t a_hi, uint64_t a_lo,
|
---|
| 448 | uint64_t b_hi, uint64_t b_lo,
|
---|
| 449 | uint64_t *r_hi, uint64_t *r_lo)
|
---|
| 450 | {
|
---|
| 451 | *r_hi = a_hi & b_hi;
|
---|
| 452 | *r_lo = a_lo & b_lo;
|
---|
| 453 | }
|
---|
| 454 |
|
---|
| 455 | /**
|
---|
| 456 | * Bitwise inclusive OR on 128-bit operands.
|
---|
| 457 | *
|
---|
| 458 | * @param a_hi High part of the first input operand.
|
---|
| 459 | * @param a_lo Low part of the first input operand.
|
---|
| 460 | * @param b_hi High part of the second input operand.
|
---|
| 461 | * @param b_lo Low part of the second input operand.
|
---|
| 462 | * @param r_hi Address to store high part of the result.
|
---|
| 463 | * @param r_lo Address to store low part of the result.
|
---|
| 464 | */
|
---|
| 465 | void or128(
|
---|
| 466 | uint64_t a_hi, uint64_t a_lo,
|
---|
| 467 | uint64_t b_hi, uint64_t b_lo,
|
---|
| 468 | uint64_t *r_hi, uint64_t *r_lo)
|
---|
| 469 | {
|
---|
| 470 | *r_hi = a_hi | b_hi;
|
---|
| 471 | *r_lo = a_lo | b_lo;
|
---|
| 472 | }
|
---|
| 473 |
|
---|
| 474 | /**
|
---|
| 475 | * Bitwise exclusive OR on 128-bit operands.
|
---|
| 476 | *
|
---|
| 477 | * @param a_hi High part of the first input operand.
|
---|
| 478 | * @param a_lo Low part of the first input operand.
|
---|
| 479 | * @param b_hi High part of the second input operand.
|
---|
| 480 | * @param b_lo Low part of the second input operand.
|
---|
| 481 | * @param r_hi Address to store high part of the result.
|
---|
| 482 | * @param r_lo Address to store low part of the result.
|
---|
| 483 | */
|
---|
| 484 | void xor128(
|
---|
| 485 | uint64_t a_hi, uint64_t a_lo,
|
---|
| 486 | uint64_t b_hi, uint64_t b_lo,
|
---|
| 487 | uint64_t *r_hi, uint64_t *r_lo)
|
---|
| 488 | {
|
---|
| 489 | *r_hi = a_hi ^ b_hi;
|
---|
| 490 | *r_lo = a_lo ^ b_lo;
|
---|
| 491 | }
|
---|
| 492 |
|
---|
| 493 | /**
|
---|
| 494 | * Bitwise NOT on the 128-bit operand.
|
---|
| 495 | *
|
---|
| 496 | * @param a_hi High part of the input operand.
|
---|
| 497 | * @param a_lo Low part of the input operand.
|
---|
| 498 | * @param r_hi Address to store high part of the result.
|
---|
| 499 | * @param r_lo Address to store low part of the result.
|
---|
| 500 | */
|
---|
| 501 | void not128(
|
---|
| 502 | uint64_t a_hi, uint64_t a_lo,
|
---|
| 503 | uint64_t *r_hi, uint64_t *r_lo)
|
---|
| 504 | {
|
---|
| 505 | *r_hi = ~a_hi;
|
---|
| 506 | *r_lo = ~a_lo;
|
---|
| 507 | }
|
---|
| 508 |
|
---|
| 509 | /**
|
---|
| 510 | * Equality comparison of 128-bit operands.
|
---|
| 511 | *
|
---|
| 512 | * @param a_hi High part of the first input operand.
|
---|
| 513 | * @param a_lo Low part of the first input operand.
|
---|
| 514 | * @param b_hi High part of the second input operand.
|
---|
| 515 | * @param b_lo Low part of the second input operand.
|
---|
| 516 | * @return 1 if operands are equal, 0 otherwise.
|
---|
| 517 | */
|
---|
| 518 | int eq128(uint64_t a_hi, uint64_t a_lo, uint64_t b_hi, uint64_t b_lo)
|
---|
| 519 | {
|
---|
| 520 | return (a_hi == b_hi) && (a_lo == b_lo);
|
---|
| 521 | }
|
---|
| 522 |
|
---|
| 523 | /**
|
---|
| 524 | * Lower-or-equal comparison of 128-bit operands.
|
---|
| 525 | *
|
---|
| 526 | * @param a_hi High part of the first input operand.
|
---|
| 527 | * @param a_lo Low part of the first input operand.
|
---|
| 528 | * @param b_hi High part of the second input operand.
|
---|
| 529 | * @param b_lo Low part of the second input operand.
|
---|
| 530 | * @return 1 if a is lower or equal to b, 0 otherwise.
|
---|
| 531 | */
|
---|
| 532 | int le128(uint64_t a_hi, uint64_t a_lo, uint64_t b_hi, uint64_t b_lo)
|
---|
| 533 | {
|
---|
| 534 | return (a_hi < b_hi) || ((a_hi == b_hi) && (a_lo <= b_lo));
|
---|
| 535 | }
|
---|
| 536 |
|
---|
| 537 | /**
|
---|
| 538 | * Lower-than comparison of 128-bit operands.
|
---|
| 539 | *
|
---|
| 540 | * @param a_hi High part of the first input operand.
|
---|
| 541 | * @param a_lo Low part of the first input operand.
|
---|
| 542 | * @param b_hi High part of the second input operand.
|
---|
| 543 | * @param b_lo Low part of the second input operand.
|
---|
| 544 | * @return 1 if a is lower than b, 0 otherwise.
|
---|
| 545 | */
|
---|
| 546 | int lt128(uint64_t a_hi, uint64_t a_lo, uint64_t b_hi, uint64_t b_lo)
|
---|
| 547 | {
|
---|
| 548 | return (a_hi < b_hi) || ((a_hi == b_hi) && (a_lo < b_lo));
|
---|
| 549 | }
|
---|
| 550 |
|
---|
| 551 | /**
|
---|
| 552 | * Addition of two 128-bit unsigned integers.
|
---|
| 553 | *
|
---|
| 554 | * @param a_hi High part of the first input operand.
|
---|
| 555 | * @param a_lo Low part of the first input operand.
|
---|
| 556 | * @param b_hi High part of the second input operand.
|
---|
| 557 | * @param b_lo Low part of the second input operand.
|
---|
| 558 | * @param r_hi Address to store high part of the result.
|
---|
| 559 | * @param r_lo Address to store low part of the result.
|
---|
| 560 | */
|
---|
| 561 | void add128(uint64_t a_hi, uint64_t a_lo,
|
---|
| 562 | uint64_t b_hi, uint64_t b_lo,
|
---|
| 563 | uint64_t *r_hi, uint64_t *r_lo)
|
---|
| 564 | {
|
---|
| 565 | uint64_t low = a_lo + b_lo;
|
---|
| 566 | *r_lo = low;
|
---|
| 567 | /* detect overflow to add a carry */
|
---|
| 568 | *r_hi = a_hi + b_hi + (low < a_lo);
|
---|
| 569 | }
|
---|
| 570 |
|
---|
| 571 | /**
|
---|
| 572 | * Substraction of two 128-bit unsigned integers.
|
---|
| 573 | *
|
---|
| 574 | * @param a_hi High part of the first input operand.
|
---|
| 575 | * @param a_lo Low part of the first input operand.
|
---|
| 576 | * @param b_hi High part of the second input operand.
|
---|
| 577 | * @param b_lo Low part of the second input operand.
|
---|
| 578 | * @param r_hi Address to store high part of the result.
|
---|
| 579 | * @param r_lo Address to store low part of the result.
|
---|
| 580 | */
|
---|
| 581 | void sub128(uint64_t a_hi, uint64_t a_lo,
|
---|
| 582 | uint64_t b_hi, uint64_t b_lo,
|
---|
| 583 | uint64_t *r_hi, uint64_t *r_lo)
|
---|
| 584 | {
|
---|
| 585 | *r_lo = a_lo - b_lo;
|
---|
| 586 | /* detect underflow to substract a carry */
|
---|
| 587 | *r_hi = a_hi - b_hi - (a_lo < b_lo);
|
---|
| 588 | }
|
---|
| 589 |
|
---|
| 590 | /**
|
---|
| 591 | * Multiplication of two 64-bit unsigned integers.
|
---|
| 592 | *
|
---|
| 593 | * @param a First input operand.
|
---|
| 594 | * @param b Second input operand.
|
---|
| 595 | * @param r_hi Address to store high part of the result.
|
---|
| 596 | * @param r_lo Address to store low part of the result.
|
---|
| 597 | */
|
---|
| 598 | void mul64(uint64_t a, uint64_t b, uint64_t *r_hi, uint64_t *r_lo)
|
---|
| 599 | {
|
---|
| 600 | uint64_t low, high, middle1, middle2;
|
---|
| 601 | uint32_t alow, blow;
|
---|
| 602 |
|
---|
| 603 | alow = a & 0xFFFFFFFF;
|
---|
| 604 | blow = b & 0xFFFFFFFF;
|
---|
| 605 |
|
---|
| 606 | a >>= 32;
|
---|
| 607 | b >>= 32;
|
---|
| 608 |
|
---|
| 609 | low = ((uint64_t) alow) * blow;
|
---|
| 610 | middle1 = a * blow;
|
---|
| 611 | middle2 = alow * b;
|
---|
| 612 | high = a * b;
|
---|
| 613 |
|
---|
| 614 | middle1 += middle2;
|
---|
| 615 | high += (((uint64_t) (middle1 < middle2)) << 32) + (middle1 >> 32);
|
---|
| 616 | middle1 <<= 32;
|
---|
| 617 | low += middle1;
|
---|
| 618 | high += (low < middle1);
|
---|
| 619 | *r_lo = low;
|
---|
| 620 | *r_hi = high;
|
---|
| 621 | }
|
---|
| 622 |
|
---|
| 623 | /**
|
---|
| 624 | * Multiplication of two 128-bit unsigned integers.
|
---|
| 625 | *
|
---|
| 626 | * @param a_hi High part of the first input operand.
|
---|
| 627 | * @param a_lo Low part of the first input operand.
|
---|
| 628 | * @param b_hi High part of the second input operand.
|
---|
| 629 | * @param b_lo Low part of the second input operand.
|
---|
| 630 | * @param r_hihi Address to store first (highest) quarter of the result.
|
---|
| 631 | * @param r_hilo Address to store second quarter of the result.
|
---|
| 632 | * @param r_lohi Address to store third quarter of the result.
|
---|
| 633 | * @param r_lolo Address to store fourth (lowest) quarter of the result.
|
---|
| 634 | */
|
---|
| 635 | void mul128(uint64_t a_hi, uint64_t a_lo, uint64_t b_hi, uint64_t b_lo,
|
---|
| 636 | uint64_t *r_hihi, uint64_t *r_hilo, uint64_t *r_lohi, uint64_t *r_lolo)
|
---|
| 637 | {
|
---|
| 638 | uint64_t hihi, hilo, lohi, lolo;
|
---|
| 639 | uint64_t tmp1, tmp2;
|
---|
| 640 |
|
---|
| 641 | mul64(a_lo, b_lo, &lohi, &lolo);
|
---|
| 642 | mul64(a_lo, b_hi, &hilo, &tmp2);
|
---|
| 643 | add128(hilo, tmp2, 0x0ll, lohi, &hilo, &lohi);
|
---|
| 644 | mul64(a_hi, b_hi, &hihi, &tmp1);
|
---|
| 645 | add128(hihi, tmp1, 0x0ll, hilo, &hihi, &hilo);
|
---|
| 646 | mul64(a_hi, b_lo, &tmp1, &tmp2);
|
---|
| 647 | add128(tmp1, tmp2, 0x0ll, lohi, &tmp1, &lohi);
|
---|
| 648 | add128(hihi, hilo, 0x0ll, tmp1, &hihi, &hilo);
|
---|
| 649 |
|
---|
| 650 | *r_hihi = hihi;
|
---|
| 651 | *r_hilo = hilo;
|
---|
| 652 | *r_lohi = lohi;
|
---|
| 653 | *r_lolo = lolo;
|
---|
| 654 | }
|
---|
| 655 |
|
---|
| 656 | /**
|
---|
| 657 | * Estimate the quotient of 128-bit unsigned divident and 64-bit unsigned
|
---|
| 658 | * divisor.
|
---|
| 659 | *
|
---|
| 660 | * @param a_hi High part of the divident.
|
---|
| 661 | * @param a_lo Low part of the divident.
|
---|
| 662 | * @param b Divisor.
|
---|
| 663 | * @return Quotient approximation.
|
---|
| 664 | */
|
---|
| 665 | uint64_t div128est(uint64_t a_hi, uint64_t a_lo, uint64_t b)
|
---|
| 666 | {
|
---|
| 667 | uint64_t b_hi, b_lo;
|
---|
| 668 | uint64_t rem_hi, rem_lo;
|
---|
| 669 | uint64_t tmp_hi, tmp_lo;
|
---|
| 670 | uint64_t result;
|
---|
| 671 |
|
---|
| 672 | if (b <= a_hi) {
|
---|
| 673 | return 0xFFFFFFFFFFFFFFFFull;
|
---|
| 674 | }
|
---|
| 675 |
|
---|
| 676 | b_hi = b >> 32;
|
---|
| 677 | result = ((b_hi << 32) <= a_hi) ? (0xFFFFFFFFull << 32) : (a_hi / b_hi) << 32;
|
---|
| 678 | mul64(b, result, &tmp_hi, &tmp_lo);
|
---|
| 679 | sub128(a_hi, a_lo, tmp_hi, tmp_lo, &rem_hi, &rem_lo);
|
---|
| 680 |
|
---|
| 681 | while ((int64_t) rem_hi < 0) {
|
---|
| 682 | result -= 0x1ll << 32;
|
---|
| 683 | b_lo = b << 32;
|
---|
| 684 | add128(rem_hi, rem_lo, b_hi, b_lo, &rem_hi, &rem_lo);
|
---|
| 685 | }
|
---|
| 686 |
|
---|
| 687 | rem_hi = (rem_hi << 32) | (rem_lo >> 32);
|
---|
| 688 | if ((b_hi << 32) <= rem_hi) {
|
---|
| 689 | result |= 0xFFFFFFFF;
|
---|
| 690 | } else {
|
---|
| 691 | result |= rem_hi / b_hi;
|
---|
[1d83419] | 692 | }
|
---|
| 693 |
|
---|
[c67aff2] | 694 | return result;
|
---|
[1d83419] | 695 | }
|
---|
| 696 |
|
---|
[231a60a] | 697 | /** @}
|
---|
[846848a6] | 698 | */
|
---|