1 | /*
|
---|
2 | * Copyright (c) 2005 Josef Cejka
|
---|
3 | * Copyright (c) 2011 Petr Koupy
|
---|
4 | * All rights reserved.
|
---|
5 | *
|
---|
6 | * Redistribution and use in source and binary forms, with or without
|
---|
7 | * modification, are permitted provided that the following conditions
|
---|
8 | * are met:
|
---|
9 | *
|
---|
10 | * - Redistributions of source code must retain the above copyright
|
---|
11 | * notice, this list of conditions and the following disclaimer.
|
---|
12 | * - Redistributions in binary form must reproduce the above copyright
|
---|
13 | * notice, this list of conditions and the following disclaimer in the
|
---|
14 | * documentation and/or other materials provided with the distribution.
|
---|
15 | * - The name of the author may not be used to endorse or promote products
|
---|
16 | * derived from this software without specific prior written permission.
|
---|
17 | *
|
---|
18 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
19 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
20 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
21 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
22 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
23 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
24 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
25 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
26 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
27 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
28 | */
|
---|
29 |
|
---|
30 | /** @addtogroup softfloat
|
---|
31 | * @{
|
---|
32 | */
|
---|
33 | /** @file Addition functions.
|
---|
34 | */
|
---|
35 |
|
---|
36 | #include "add.h"
|
---|
37 | #include "comparison.h"
|
---|
38 | #include "common.h"
|
---|
39 | #include "sub.h"
|
---|
40 |
|
---|
41 | /** Add two single-precision floats with the same sign.
|
---|
42 | *
|
---|
43 | * @param a First input operand.
|
---|
44 | * @param b Second input operand.
|
---|
45 | * @return Result of addition.
|
---|
46 | */
|
---|
47 | float32 add_float32(float32 a, float32 b)
|
---|
48 | {
|
---|
49 | int expdiff;
|
---|
50 | uint32_t exp1, exp2, frac1, frac2;
|
---|
51 |
|
---|
52 | expdiff = a.parts.exp - b.parts.exp;
|
---|
53 | if (expdiff < 0) {
|
---|
54 | if (is_float32_nan(b)) {
|
---|
55 | /* TODO: fix SigNaN */
|
---|
56 | if (is_float32_signan(b)) {
|
---|
57 | }
|
---|
58 |
|
---|
59 | return b;
|
---|
60 | }
|
---|
61 |
|
---|
62 | if (b.parts.exp == FLOAT32_MAX_EXPONENT) {
|
---|
63 | return b;
|
---|
64 | }
|
---|
65 |
|
---|
66 | frac1 = b.parts.fraction;
|
---|
67 | exp1 = b.parts.exp;
|
---|
68 | frac2 = a.parts.fraction;
|
---|
69 | exp2 = a.parts.exp;
|
---|
70 | expdiff *= -1;
|
---|
71 | } else {
|
---|
72 | if ((is_float32_nan(a)) || (is_float32_nan(b))) {
|
---|
73 | /* TODO: fix SigNaN */
|
---|
74 | if (is_float32_signan(a) || is_float32_signan(b)) {
|
---|
75 | }
|
---|
76 | return (is_float32_nan(a) ? a : b);
|
---|
77 | }
|
---|
78 |
|
---|
79 | if (a.parts.exp == FLOAT32_MAX_EXPONENT) {
|
---|
80 | return a;
|
---|
81 | }
|
---|
82 |
|
---|
83 | frac1 = a.parts.fraction;
|
---|
84 | exp1 = a.parts.exp;
|
---|
85 | frac2 = b.parts.fraction;
|
---|
86 | exp2 = b.parts.exp;
|
---|
87 | }
|
---|
88 |
|
---|
89 | if (exp1 == 0) {
|
---|
90 | /* both are denormalized */
|
---|
91 | frac1 += frac2;
|
---|
92 | if (frac1 & FLOAT32_HIDDEN_BIT_MASK) {
|
---|
93 | /* result is not denormalized */
|
---|
94 | a.parts.exp = 1;
|
---|
95 | }
|
---|
96 | a.parts.fraction = frac1;
|
---|
97 | return a;
|
---|
98 | }
|
---|
99 |
|
---|
100 | frac1 |= FLOAT32_HIDDEN_BIT_MASK; /* add hidden bit */
|
---|
101 |
|
---|
102 | if (exp2 == 0) {
|
---|
103 | /* second operand is denormalized */
|
---|
104 | --expdiff;
|
---|
105 | } else {
|
---|
106 | /* add hidden bit to second operand */
|
---|
107 | frac2 |= FLOAT32_HIDDEN_BIT_MASK;
|
---|
108 | }
|
---|
109 |
|
---|
110 | /* create some space for rounding */
|
---|
111 | frac1 <<= 6;
|
---|
112 | frac2 <<= 6;
|
---|
113 |
|
---|
114 | if (expdiff < (FLOAT32_FRACTION_SIZE + 2)) {
|
---|
115 | frac2 >>= expdiff;
|
---|
116 | frac1 += frac2;
|
---|
117 | } else {
|
---|
118 | a.parts.exp = exp1;
|
---|
119 | a.parts.fraction = (frac1 >> 6) & (~(FLOAT32_HIDDEN_BIT_MASK));
|
---|
120 | return a;
|
---|
121 | }
|
---|
122 |
|
---|
123 | if (frac1 & (FLOAT32_HIDDEN_BIT_MASK << 7)) {
|
---|
124 | ++exp1;
|
---|
125 | frac1 >>= 1;
|
---|
126 | }
|
---|
127 |
|
---|
128 | /* rounding - if first bit after fraction is set then round up */
|
---|
129 | frac1 += (0x1 << 5);
|
---|
130 |
|
---|
131 | if (frac1 & (FLOAT32_HIDDEN_BIT_MASK << 7)) {
|
---|
132 | /* rounding overflow */
|
---|
133 | ++exp1;
|
---|
134 | frac1 >>= 1;
|
---|
135 | }
|
---|
136 |
|
---|
137 | if ((exp1 == FLOAT32_MAX_EXPONENT) || (exp2 > exp1)) {
|
---|
138 | /* overflow - set infinity as result */
|
---|
139 | a.parts.exp = FLOAT32_MAX_EXPONENT;
|
---|
140 | a.parts.fraction = 0;
|
---|
141 | return a;
|
---|
142 | }
|
---|
143 |
|
---|
144 | a.parts.exp = exp1;
|
---|
145 |
|
---|
146 | /* Clear hidden bit and shift */
|
---|
147 | a.parts.fraction = ((frac1 >> 6) & (~FLOAT32_HIDDEN_BIT_MASK));
|
---|
148 | return a;
|
---|
149 | }
|
---|
150 |
|
---|
151 | /** Add two double-precision floats with the same sign.
|
---|
152 | *
|
---|
153 | * @param a First input operand.
|
---|
154 | * @param b Second input operand.
|
---|
155 | * @return Result of addition.
|
---|
156 | */
|
---|
157 | float64 add_float64(float64 a, float64 b)
|
---|
158 | {
|
---|
159 | int expdiff;
|
---|
160 | uint32_t exp1, exp2;
|
---|
161 | uint64_t frac1, frac2;
|
---|
162 |
|
---|
163 | expdiff = ((int) a.parts.exp) - b.parts.exp;
|
---|
164 | if (expdiff < 0) {
|
---|
165 | if (is_float64_nan(b)) {
|
---|
166 | /* TODO: fix SigNaN */
|
---|
167 | if (is_float64_signan(b)) {
|
---|
168 | }
|
---|
169 |
|
---|
170 | return b;
|
---|
171 | }
|
---|
172 |
|
---|
173 | /* b is infinity and a not */
|
---|
174 | if (b.parts.exp == FLOAT64_MAX_EXPONENT) {
|
---|
175 | return b;
|
---|
176 | }
|
---|
177 |
|
---|
178 | frac1 = b.parts.fraction;
|
---|
179 | exp1 = b.parts.exp;
|
---|
180 | frac2 = a.parts.fraction;
|
---|
181 | exp2 = a.parts.exp;
|
---|
182 | expdiff *= -1;
|
---|
183 | } else {
|
---|
184 | if (is_float64_nan(a)) {
|
---|
185 | /* TODO: fix SigNaN */
|
---|
186 | if (is_float64_signan(a) || is_float64_signan(b)) {
|
---|
187 | }
|
---|
188 | return a;
|
---|
189 | }
|
---|
190 |
|
---|
191 | /* a is infinity and b not */
|
---|
192 | if (a.parts.exp == FLOAT64_MAX_EXPONENT) {
|
---|
193 | return a;
|
---|
194 | }
|
---|
195 |
|
---|
196 | frac1 = a.parts.fraction;
|
---|
197 | exp1 = a.parts.exp;
|
---|
198 | frac2 = b.parts.fraction;
|
---|
199 | exp2 = b.parts.exp;
|
---|
200 | }
|
---|
201 |
|
---|
202 | if (exp1 == 0) {
|
---|
203 | /* both are denormalized */
|
---|
204 | frac1 += frac2;
|
---|
205 | if (frac1 & FLOAT64_HIDDEN_BIT_MASK) {
|
---|
206 | /* result is not denormalized */
|
---|
207 | a.parts.exp = 1;
|
---|
208 | }
|
---|
209 | a.parts.fraction = frac1;
|
---|
210 | return a;
|
---|
211 | }
|
---|
212 |
|
---|
213 | /* add hidden bit - frac1 is sure not denormalized */
|
---|
214 | frac1 |= FLOAT64_HIDDEN_BIT_MASK;
|
---|
215 |
|
---|
216 | /* second operand ... */
|
---|
217 | if (exp2 == 0) {
|
---|
218 | /* ... is denormalized */
|
---|
219 | --expdiff;
|
---|
220 | } else {
|
---|
221 | /* is not denormalized */
|
---|
222 | frac2 |= FLOAT64_HIDDEN_BIT_MASK;
|
---|
223 | }
|
---|
224 |
|
---|
225 | /* create some space for rounding */
|
---|
226 | frac1 <<= 6;
|
---|
227 | frac2 <<= 6;
|
---|
228 |
|
---|
229 | if (expdiff < (FLOAT64_FRACTION_SIZE + 2)) {
|
---|
230 | frac2 >>= expdiff;
|
---|
231 | frac1 += frac2;
|
---|
232 | } else {
|
---|
233 | a.parts.exp = exp1;
|
---|
234 | a.parts.fraction = (frac1 >> 6) & (~(FLOAT64_HIDDEN_BIT_MASK));
|
---|
235 | return a;
|
---|
236 | }
|
---|
237 |
|
---|
238 | if (frac1 & (FLOAT64_HIDDEN_BIT_MASK << 7)) {
|
---|
239 | ++exp1;
|
---|
240 | frac1 >>= 1;
|
---|
241 | }
|
---|
242 |
|
---|
243 | /* rounding - if first bit after fraction is set then round up */
|
---|
244 | frac1 += (0x1 << 5);
|
---|
245 |
|
---|
246 | if (frac1 & (FLOAT64_HIDDEN_BIT_MASK << 7)) {
|
---|
247 | /* rounding overflow */
|
---|
248 | ++exp1;
|
---|
249 | frac1 >>= 1;
|
---|
250 | }
|
---|
251 |
|
---|
252 | if ((exp1 == FLOAT64_MAX_EXPONENT) || (exp2 > exp1)) {
|
---|
253 | /* overflow - set infinity as result */
|
---|
254 | a.parts.exp = FLOAT64_MAX_EXPONENT;
|
---|
255 | a.parts.fraction = 0;
|
---|
256 | return a;
|
---|
257 | }
|
---|
258 |
|
---|
259 | a.parts.exp = exp1;
|
---|
260 | /* Clear hidden bit and shift */
|
---|
261 | a.parts.fraction = ((frac1 >> 6) & (~FLOAT64_HIDDEN_BIT_MASK));
|
---|
262 | return a;
|
---|
263 | }
|
---|
264 |
|
---|
265 | /** Add two quadruple-precision floats with the same sign.
|
---|
266 | *
|
---|
267 | * @param a First input operand.
|
---|
268 | * @param b Second input operand.
|
---|
269 | * @return Result of addition.
|
---|
270 | */
|
---|
271 | float128 add_float128(float128 a, float128 b)
|
---|
272 | {
|
---|
273 | int expdiff;
|
---|
274 | uint32_t exp1, exp2;
|
---|
275 | uint64_t frac1_hi, frac1_lo, frac2_hi, frac2_lo, tmp_hi, tmp_lo;
|
---|
276 |
|
---|
277 | expdiff = ((int) a.parts.exp) - b.parts.exp;
|
---|
278 | if (expdiff < 0) {
|
---|
279 | if (is_float128_nan(b)) {
|
---|
280 | /* TODO: fix SigNaN */
|
---|
281 | if (is_float128_signan(b)) {
|
---|
282 | }
|
---|
283 |
|
---|
284 | return b;
|
---|
285 | }
|
---|
286 |
|
---|
287 | /* b is infinity and a not */
|
---|
288 | if (b.parts.exp == FLOAT128_MAX_EXPONENT) {
|
---|
289 | return b;
|
---|
290 | }
|
---|
291 |
|
---|
292 | frac1_hi = b.parts.frac_hi;
|
---|
293 | frac1_lo = b.parts.frac_lo;
|
---|
294 | exp1 = b.parts.exp;
|
---|
295 | frac2_hi = a.parts.frac_hi;
|
---|
296 | frac2_lo = a.parts.frac_lo;
|
---|
297 | exp2 = a.parts.exp;
|
---|
298 | expdiff *= -1;
|
---|
299 | } else {
|
---|
300 | if (is_float128_nan(a)) {
|
---|
301 | /* TODO: fix SigNaN */
|
---|
302 | if (is_float128_signan(a) || is_float128_signan(b)) {
|
---|
303 | }
|
---|
304 | return a;
|
---|
305 | }
|
---|
306 |
|
---|
307 | /* a is infinity and b not */
|
---|
308 | if (a.parts.exp == FLOAT128_MAX_EXPONENT) {
|
---|
309 | return a;
|
---|
310 | }
|
---|
311 |
|
---|
312 | frac1_hi = a.parts.frac_hi;
|
---|
313 | frac1_lo = a.parts.frac_lo;
|
---|
314 | exp1 = a.parts.exp;
|
---|
315 | frac2_hi = b.parts.frac_hi;
|
---|
316 | frac2_lo = b.parts.frac_lo;
|
---|
317 | exp2 = b.parts.exp;
|
---|
318 | }
|
---|
319 |
|
---|
320 | if (exp1 == 0) {
|
---|
321 | /* both are denormalized */
|
---|
322 | add128(frac1_hi, frac1_lo, frac2_hi, frac2_lo, &frac1_hi, &frac1_lo);
|
---|
323 |
|
---|
324 | and128(frac1_hi, frac1_lo,
|
---|
325 | FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
326 | &tmp_hi, &tmp_lo);
|
---|
327 | if (lt128(0x0ll, 0x0ll, tmp_hi, tmp_lo)) {
|
---|
328 | /* result is not denormalized */
|
---|
329 | a.parts.exp = 1;
|
---|
330 | }
|
---|
331 |
|
---|
332 | a.parts.frac_hi = frac1_hi;
|
---|
333 | a.parts.frac_lo = frac1_lo;
|
---|
334 | return a;
|
---|
335 | }
|
---|
336 |
|
---|
337 | /* add hidden bit - frac1 is sure not denormalized */
|
---|
338 | or128(frac1_hi, frac1_lo,
|
---|
339 | FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
340 | &frac1_hi, &frac1_lo);
|
---|
341 |
|
---|
342 | /* second operand ... */
|
---|
343 | if (exp2 == 0) {
|
---|
344 | /* ... is denormalized */
|
---|
345 | --expdiff;
|
---|
346 | } else {
|
---|
347 | /* is not denormalized */
|
---|
348 | or128(frac2_hi, frac2_lo,
|
---|
349 | FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
350 | &frac2_hi, &frac2_lo);
|
---|
351 | }
|
---|
352 |
|
---|
353 | /* create some space for rounding */
|
---|
354 | lshift128(frac1_hi, frac1_lo, 6, &frac1_hi, &frac1_lo);
|
---|
355 | lshift128(frac2_hi, frac2_lo, 6, &frac2_hi, &frac2_lo);
|
---|
356 |
|
---|
357 | if (expdiff < (FLOAT128_FRACTION_SIZE + 2)) {
|
---|
358 | rshift128(frac2_hi, frac2_lo, expdiff, &frac2_hi, &frac2_lo);
|
---|
359 | add128(frac1_hi, frac1_lo, frac2_hi, frac2_lo, &frac1_hi, &frac1_lo);
|
---|
360 | } else {
|
---|
361 | a.parts.exp = exp1;
|
---|
362 |
|
---|
363 | rshift128(frac1_hi, frac1_lo, 6, &frac1_hi, &frac1_lo);
|
---|
364 | not128(FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
365 | &tmp_hi, &tmp_lo);
|
---|
366 | and128(frac1_hi, frac1_lo, tmp_hi, tmp_lo, &tmp_hi, &tmp_lo);
|
---|
367 |
|
---|
368 | a.parts.frac_hi = tmp_hi;
|
---|
369 | a.parts.frac_lo = tmp_lo;
|
---|
370 | return a;
|
---|
371 | }
|
---|
372 |
|
---|
373 | lshift128(FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO, 7,
|
---|
374 | &tmp_hi, &tmp_lo);
|
---|
375 | and128(frac1_hi, frac1_lo, tmp_hi, tmp_lo, &tmp_hi, &tmp_lo);
|
---|
376 | if (lt128(0x0ll, 0x0ll, tmp_hi, tmp_lo)) {
|
---|
377 | ++exp1;
|
---|
378 | rshift128(frac1_hi, frac1_lo, 1, &frac1_hi, &frac1_lo);
|
---|
379 | }
|
---|
380 |
|
---|
381 | /* rounding - if first bit after fraction is set then round up */
|
---|
382 | add128(frac1_hi, frac1_lo, 0x0ll, 0x1ll << 5, &frac1_hi, &frac1_lo);
|
---|
383 |
|
---|
384 | lshift128(FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO, 7,
|
---|
385 | &tmp_hi, &tmp_lo);
|
---|
386 | and128(frac1_hi, frac1_lo, tmp_hi, tmp_lo, &tmp_hi, &tmp_lo);
|
---|
387 | if (lt128(0x0ll, 0x0ll, tmp_hi, tmp_lo)) {
|
---|
388 | /* rounding overflow */
|
---|
389 | ++exp1;
|
---|
390 | rshift128(frac1_hi, frac1_lo, 1, &frac1_hi, &frac1_lo);
|
---|
391 | }
|
---|
392 |
|
---|
393 | if ((exp1 == FLOAT128_MAX_EXPONENT ) || (exp2 > exp1)) {
|
---|
394 | /* overflow - set infinity as result */
|
---|
395 | a.parts.exp = FLOAT64_MAX_EXPONENT;
|
---|
396 | a.parts.frac_hi = 0;
|
---|
397 | a.parts.frac_lo = 0;
|
---|
398 | return a;
|
---|
399 | }
|
---|
400 |
|
---|
401 | a.parts.exp = exp1;
|
---|
402 |
|
---|
403 | /* Clear hidden bit and shift */
|
---|
404 | rshift128(frac1_hi, frac1_lo, 6, &frac1_hi, &frac1_lo);
|
---|
405 | not128(FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
406 | &tmp_hi, &tmp_lo);
|
---|
407 | and128(frac1_hi, frac1_lo, tmp_hi, tmp_lo, &tmp_hi, &tmp_lo);
|
---|
408 |
|
---|
409 | a.parts.frac_hi = tmp_hi;
|
---|
410 | a.parts.frac_lo = tmp_lo;
|
---|
411 |
|
---|
412 | return a;
|
---|
413 | }
|
---|
414 |
|
---|
415 | #ifdef float32_t
|
---|
416 |
|
---|
417 | float32_t __addsf3(float32_t a, float32_t b)
|
---|
418 | {
|
---|
419 | float32_u ua;
|
---|
420 | ua.val = a;
|
---|
421 |
|
---|
422 | float32_u ub;
|
---|
423 | ub.val = b;
|
---|
424 |
|
---|
425 | float32_u res;
|
---|
426 |
|
---|
427 | if (ua.data.parts.sign != ub.data.parts.sign) {
|
---|
428 | if (ua.data.parts.sign) {
|
---|
429 | ua.data.parts.sign = 0;
|
---|
430 | res.data = sub_float32(ub.data, ua.data);
|
---|
431 | } else {
|
---|
432 | ub.data.parts.sign = 0;
|
---|
433 | res.data = sub_float32(ua.data, ub.data);
|
---|
434 | }
|
---|
435 | } else
|
---|
436 | res.data = add_float32(ua.data, ub.data);
|
---|
437 |
|
---|
438 | return res.val;
|
---|
439 | }
|
---|
440 |
|
---|
441 | float32_t __aeabi_fadd(float32_t a, float32_t b)
|
---|
442 | {
|
---|
443 | float32_u ua;
|
---|
444 | ua.val = a;
|
---|
445 |
|
---|
446 | float32_u ub;
|
---|
447 | ub.val = b;
|
---|
448 |
|
---|
449 | float32_u res;
|
---|
450 |
|
---|
451 | if (ua.data.parts.sign != ub.data.parts.sign) {
|
---|
452 | if (ua.data.parts.sign) {
|
---|
453 | ua.data.parts.sign = 0;
|
---|
454 | res.data = sub_float32(ub.data, ua.data);
|
---|
455 | } else {
|
---|
456 | ub.data.parts.sign = 0;
|
---|
457 | res.data = sub_float32(ua.data, ub.data);
|
---|
458 | }
|
---|
459 | } else
|
---|
460 | res.data = add_float32(ua.data, ub.data);
|
---|
461 |
|
---|
462 | return res.val;
|
---|
463 | }
|
---|
464 |
|
---|
465 | #endif
|
---|
466 |
|
---|
467 | #ifdef float64_t
|
---|
468 |
|
---|
469 | float64_t __adddf3(float64_t a, float64_t b)
|
---|
470 | {
|
---|
471 | float64_u ua;
|
---|
472 | ua.val = a;
|
---|
473 |
|
---|
474 | float64_u ub;
|
---|
475 | ub.val = b;
|
---|
476 |
|
---|
477 | float64_u res;
|
---|
478 |
|
---|
479 | if (ua.data.parts.sign != ub.data.parts.sign) {
|
---|
480 | if (ua.data.parts.sign) {
|
---|
481 | ua.data.parts.sign = 0;
|
---|
482 | res.data = sub_float64(ub.data, ua.data);
|
---|
483 | } else {
|
---|
484 | ub.data.parts.sign = 0;
|
---|
485 | res.data = sub_float64(ua.data, ub.data);
|
---|
486 | }
|
---|
487 | } else
|
---|
488 | res.data = add_float64(ua.data, ub.data);
|
---|
489 |
|
---|
490 | return res.val;
|
---|
491 | }
|
---|
492 |
|
---|
493 | float64_t __aeabi_dadd(float64_t a, float64_t b)
|
---|
494 | {
|
---|
495 | float64_u ua;
|
---|
496 | ua.val = a;
|
---|
497 |
|
---|
498 | float64_u ub;
|
---|
499 | ub.val = b;
|
---|
500 |
|
---|
501 | float64_u res;
|
---|
502 |
|
---|
503 | if (ua.data.parts.sign != ub.data.parts.sign) {
|
---|
504 | if (ua.data.parts.sign) {
|
---|
505 | ua.data.parts.sign = 0;
|
---|
506 | res.data = sub_float64(ub.data, ua.data);
|
---|
507 | } else {
|
---|
508 | ub.data.parts.sign = 0;
|
---|
509 | res.data = sub_float64(ua.data, ub.data);
|
---|
510 | }
|
---|
511 | } else
|
---|
512 | res.data = add_float64(ua.data, ub.data);
|
---|
513 |
|
---|
514 | return res.val;
|
---|
515 | }
|
---|
516 |
|
---|
517 | #endif
|
---|
518 |
|
---|
519 | #ifdef float128_t
|
---|
520 |
|
---|
521 | float128_t __addtf3(float128_t a, float128_t b)
|
---|
522 | {
|
---|
523 | float128_u ua;
|
---|
524 | ua.val = a;
|
---|
525 |
|
---|
526 | float128_u ub;
|
---|
527 | ub.val = b;
|
---|
528 |
|
---|
529 | float128_u res;
|
---|
530 |
|
---|
531 | if (ua.data.parts.sign != ub.data.parts.sign) {
|
---|
532 | if (ua.data.parts.sign) {
|
---|
533 | ua.data.parts.sign = 0;
|
---|
534 | res.data = sub_float128(ub.data, ua.data);
|
---|
535 | } else {
|
---|
536 | ub.data.parts.sign = 0;
|
---|
537 | res.data = sub_float128(ua.data, ub.data);
|
---|
538 | }
|
---|
539 | } else
|
---|
540 | res.data = add_float128(ua.data, ub.data);
|
---|
541 |
|
---|
542 | return res.val;
|
---|
543 | }
|
---|
544 |
|
---|
545 | void _Qp_add(float128_t *c, float128_t *a, float128_t *b)
|
---|
546 | {
|
---|
547 | *c = __addtf3(*a, *b);
|
---|
548 | }
|
---|
549 |
|
---|
550 | #endif
|
---|
551 |
|
---|
552 | /** @}
|
---|
553 | */
|
---|