1 | /*
|
---|
2 | * Copyright (c) 2011 Petr Koupy
|
---|
3 | * Copyright (c) 2011 Jiri Zarevucky
|
---|
4 | * All rights reserved.
|
---|
5 | *
|
---|
6 | * Redistribution and use in source and binary forms, with or without
|
---|
7 | * modification, are permitted provided that the following conditions
|
---|
8 | * are met:
|
---|
9 | *
|
---|
10 | * - Redistributions of source code must retain the above copyright
|
---|
11 | * notice, this list of conditions and the following disclaimer.
|
---|
12 | * - Redistributions in binary form must reproduce the above copyright
|
---|
13 | * notice, this list of conditions and the following disclaimer in the
|
---|
14 | * documentation and/or other materials provided with the distribution.
|
---|
15 | * - The name of the author may not be used to endorse or promote products
|
---|
16 | * derived from this software without specific prior written permission.
|
---|
17 | *
|
---|
18 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
19 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
20 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
21 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
22 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
23 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
24 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
25 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
26 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
27 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
28 | */
|
---|
29 |
|
---|
30 | /** @addtogroup libposix
|
---|
31 | * @{
|
---|
32 | */
|
---|
33 | /** @file Time measurement support.
|
---|
34 | */
|
---|
35 |
|
---|
36 | #define LIBPOSIX_INTERNAL
|
---|
37 |
|
---|
38 | /* Must be first. */
|
---|
39 | #include "stdbool.h"
|
---|
40 |
|
---|
41 | #include "internal/common.h"
|
---|
42 | #include "time.h"
|
---|
43 |
|
---|
44 | #include "ctype.h"
|
---|
45 | #include "errno.h"
|
---|
46 | #include "signal.h"
|
---|
47 |
|
---|
48 | #include "libc/malloc.h"
|
---|
49 | #include "libc/task.h"
|
---|
50 | #include "libc/stats.h"
|
---|
51 | #include "libc/sys/time.h"
|
---|
52 |
|
---|
53 | // TODO: test everything in this file
|
---|
54 |
|
---|
55 | /* In some places in this file, phrase "normalized broken-down time" is used.
|
---|
56 | * This means time broken down to components (year, month, day, hour, min, sec),
|
---|
57 | * in which every component is in its proper bounds. Non-normalized time could
|
---|
58 | * e.g. be 2011-54-5 29:13:-5, which would semantically mean start of year 2011
|
---|
59 | * + 53 months + 4 days + 29 hours + 13 minutes - 5 seconds.
|
---|
60 | */
|
---|
61 |
|
---|
62 |
|
---|
63 |
|
---|
64 | /* Helper functions ***********************************************************/
|
---|
65 |
|
---|
66 | #define HOURS_PER_DAY (24)
|
---|
67 | #define MINS_PER_HOUR (60)
|
---|
68 | #define SECS_PER_MIN (60)
|
---|
69 | #define MINS_PER_DAY (MINS_PER_HOUR * HOURS_PER_DAY)
|
---|
70 | #define SECS_PER_HOUR (SECS_PER_MIN * MINS_PER_HOUR)
|
---|
71 | #define SECS_PER_DAY (SECS_PER_HOUR * HOURS_PER_DAY)
|
---|
72 |
|
---|
73 | /**
|
---|
74 | * Checks whether the year is a leap year.
|
---|
75 | *
|
---|
76 | * @param year Year since 1900 (e.g. for 1970, the value is 70).
|
---|
77 | * @return true if year is a leap year, false otherwise
|
---|
78 | */
|
---|
79 | static bool _is_leap_year(time_t year)
|
---|
80 | {
|
---|
81 | year += 1900;
|
---|
82 |
|
---|
83 | if (year % 400 == 0)
|
---|
84 | return true;
|
---|
85 | if (year % 100 == 0)
|
---|
86 | return false;
|
---|
87 | if (year % 4 == 0)
|
---|
88 | return true;
|
---|
89 | return false;
|
---|
90 | }
|
---|
91 |
|
---|
92 | /**
|
---|
93 | * Returns how many days there are in the given month of the given year.
|
---|
94 | * Note that year is only taken into account if month is February.
|
---|
95 | *
|
---|
96 | * @param year Year since 1900 (can be negative).
|
---|
97 | * @param mon Month of the year. 0 for January, 11 for December.
|
---|
98 | * @return Number of days in the specified month.
|
---|
99 | */
|
---|
100 | static int _days_in_month(time_t year, time_t mon)
|
---|
101 | {
|
---|
102 | assert(mon >= 0 && mon <= 11);
|
---|
103 |
|
---|
104 | static int month_days[] =
|
---|
105 | { 31, 0, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
|
---|
106 |
|
---|
107 | if (mon == 1) {
|
---|
108 | year += 1900;
|
---|
109 | /* february */
|
---|
110 | return _is_leap_year(year) ? 29 : 28;
|
---|
111 | } else {
|
---|
112 | return month_days[mon];
|
---|
113 | }
|
---|
114 | }
|
---|
115 |
|
---|
116 | /**
|
---|
117 | * For specified year, month and day of month, returns which day of that year
|
---|
118 | * it is.
|
---|
119 | *
|
---|
120 | * For example, given date 2011-01-03, the corresponding expression is:
|
---|
121 | * _day_of_year(111, 0, 3) == 2
|
---|
122 | *
|
---|
123 | * @param year Year (year 1900 = 0, can be negative).
|
---|
124 | * @param mon Month (January = 0).
|
---|
125 | * @param mday Day of month (First day is 1).
|
---|
126 | * @return Day of year (First day is 0).
|
---|
127 | */
|
---|
128 | static int _day_of_year(time_t year, time_t mon, time_t mday)
|
---|
129 | {
|
---|
130 | static int mdays[] =
|
---|
131 | { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
|
---|
132 | static int leap_mdays[] =
|
---|
133 | { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335 };
|
---|
134 |
|
---|
135 | return (_is_leap_year(year) ? leap_mdays[mon] : mdays[mon]) + mday - 1;
|
---|
136 | }
|
---|
137 |
|
---|
138 | /**
|
---|
139 | * Integer division that rounds to negative infinity.
|
---|
140 | * Used by some functions in this file.
|
---|
141 | *
|
---|
142 | * @param op1 Dividend.
|
---|
143 | * @param op2 Divisor.
|
---|
144 | * @return Rounded quotient.
|
---|
145 | */
|
---|
146 | static time_t _floor_div(time_t op1, time_t op2)
|
---|
147 | {
|
---|
148 | if (op1 >= 0 || op1 % op2 == 0) {
|
---|
149 | return op1 / op2;
|
---|
150 | } else {
|
---|
151 | return op1 / op2 - 1;
|
---|
152 | }
|
---|
153 | }
|
---|
154 |
|
---|
155 | /**
|
---|
156 | * Modulo that rounds to negative infinity.
|
---|
157 | * Used by some functions in this file.
|
---|
158 | *
|
---|
159 | * @param op1 Dividend.
|
---|
160 | * @param op2 Divisor.
|
---|
161 | * @return Remainder.
|
---|
162 | */
|
---|
163 | static time_t _floor_mod(time_t op1, time_t op2)
|
---|
164 | {
|
---|
165 | int div = _floor_div(op1, op2);
|
---|
166 |
|
---|
167 | /* (a / b) * b + a % b == a */
|
---|
168 | /* thus, a % b == a - (a / b) * b */
|
---|
169 |
|
---|
170 | int result = op1 - div * op2;
|
---|
171 |
|
---|
172 | /* Some paranoid checking to ensure I didn't make a mistake here. */
|
---|
173 | assert(result >= 0);
|
---|
174 | assert(result < op2);
|
---|
175 | assert(div * op2 + result == op1);
|
---|
176 |
|
---|
177 | return result;
|
---|
178 | }
|
---|
179 |
|
---|
180 | /**
|
---|
181 | * Number of days since the Epoch.
|
---|
182 | * Epoch is 1970-01-01, which is also equal to day 0.
|
---|
183 | *
|
---|
184 | * @param year Year (year 1900 = 0, may be negative).
|
---|
185 | * @param mon Month (January = 0).
|
---|
186 | * @param mday Day of month (first day = 1).
|
---|
187 | * @return Number of days since the Epoch.
|
---|
188 | */
|
---|
189 | static time_t _days_since_epoch(time_t year, time_t mon, time_t mday)
|
---|
190 | {
|
---|
191 | return (year - 70) * 365 + _floor_div(year - 69, 4) -
|
---|
192 | _floor_div(year - 1, 100) + _floor_div(year + 299, 400) +
|
---|
193 | _day_of_year(year, mon, mday);
|
---|
194 | }
|
---|
195 |
|
---|
196 | /**
|
---|
197 | * Which day of week the specified date is.
|
---|
198 | *
|
---|
199 | * @param year Year (year 1900 = 0).
|
---|
200 | * @param mon Month (January = 0).
|
---|
201 | * @param mday Day of month (first = 1).
|
---|
202 | * @return Day of week (Sunday = 0).
|
---|
203 | */
|
---|
204 | static int _day_of_week(time_t year, time_t mon, time_t mday)
|
---|
205 | {
|
---|
206 | /* 1970-01-01 is Thursday */
|
---|
207 | return _floor_mod((_days_since_epoch(year, mon, mday) + 4), 7);
|
---|
208 | }
|
---|
209 |
|
---|
210 | /**
|
---|
211 | * Normalizes the broken-down time and optionally adds specified amount of
|
---|
212 | * seconds.
|
---|
213 | *
|
---|
214 | * @param tm Broken-down time to normalize.
|
---|
215 | * @param sec_add Seconds to add.
|
---|
216 | * @return 0 on success, -1 on overflow
|
---|
217 | */
|
---|
218 | static int _normalize_time(struct tm *tm, time_t sec_add)
|
---|
219 | {
|
---|
220 | // TODO: DST correction
|
---|
221 |
|
---|
222 | /* Set initial values. */
|
---|
223 | time_t sec = tm->tm_sec + sec_add;
|
---|
224 | time_t min = tm->tm_min;
|
---|
225 | time_t hour = tm->tm_hour;
|
---|
226 | time_t day = tm->tm_mday - 1;
|
---|
227 | time_t mon = tm->tm_mon;
|
---|
228 | time_t year = tm->tm_year;
|
---|
229 |
|
---|
230 | /* Adjust time. */
|
---|
231 | min += _floor_div(sec, SECS_PER_MIN);
|
---|
232 | sec = _floor_mod(sec, SECS_PER_MIN);
|
---|
233 | hour += _floor_div(min, MINS_PER_HOUR);
|
---|
234 | min = _floor_mod(min, MINS_PER_HOUR);
|
---|
235 | day += _floor_div(hour, HOURS_PER_DAY);
|
---|
236 | hour = _floor_mod(hour, HOURS_PER_DAY);
|
---|
237 |
|
---|
238 | /* Adjust month. */
|
---|
239 | year += _floor_div(mon, 12);
|
---|
240 | mon = _floor_mod(mon, 12);
|
---|
241 |
|
---|
242 | /* Now the difficult part - days of month. */
|
---|
243 |
|
---|
244 | /* First, deal with whole cycles of 400 years = 146097 days. */
|
---|
245 | year += _floor_div(day, 146097) * 400;
|
---|
246 | day = _floor_mod(day, 146097);
|
---|
247 |
|
---|
248 | /* Then, go in one year steps. */
|
---|
249 | if (mon <= 1) {
|
---|
250 | /* January and February. */
|
---|
251 | while (day > 365) {
|
---|
252 | day -= _is_leap_year(year) ? 366 : 365;
|
---|
253 | year++;
|
---|
254 | }
|
---|
255 | } else {
|
---|
256 | /* Rest of the year. */
|
---|
257 | while (day > 365) {
|
---|
258 | day -= _is_leap_year(year + 1) ? 366 : 365;
|
---|
259 | year++;
|
---|
260 | }
|
---|
261 | }
|
---|
262 |
|
---|
263 | /* Finally, finish it off month per month. */
|
---|
264 | while (day >= _days_in_month(year, mon)) {
|
---|
265 | day -= _days_in_month(year, mon);
|
---|
266 | mon++;
|
---|
267 | if (mon >= 12) {
|
---|
268 | mon -= 12;
|
---|
269 | year++;
|
---|
270 | }
|
---|
271 | }
|
---|
272 |
|
---|
273 | /* Calculate the remaining two fields. */
|
---|
274 | tm->tm_yday = _day_of_year(year, mon, day + 1);
|
---|
275 | tm->tm_wday = _day_of_week(year, mon, day + 1);
|
---|
276 |
|
---|
277 | /* And put the values back to the struct. */
|
---|
278 | tm->tm_sec = (int) sec;
|
---|
279 | tm->tm_min = (int) min;
|
---|
280 | tm->tm_hour = (int) hour;
|
---|
281 | tm->tm_mday = (int) day + 1;
|
---|
282 | tm->tm_mon = (int) mon;
|
---|
283 |
|
---|
284 | /* Casts to work around libc brain-damage. */
|
---|
285 | if (year > ((int)INT_MAX) || year < ((int)INT_MIN)) {
|
---|
286 | tm->tm_year = (year < 0) ? ((int)INT_MIN) : ((int)INT_MAX);
|
---|
287 | return -1;
|
---|
288 | }
|
---|
289 |
|
---|
290 | tm->tm_year = (int) year;
|
---|
291 | return 0;
|
---|
292 | }
|
---|
293 |
|
---|
294 | /******************************************************************************/
|
---|
295 |
|
---|
296 | int posix_daylight;
|
---|
297 | long posix_timezone;
|
---|
298 | char *posix_tzname[2];
|
---|
299 |
|
---|
300 | /**
|
---|
301 | * Set timezone conversion information.
|
---|
302 | */
|
---|
303 | void posix_tzset(void)
|
---|
304 | {
|
---|
305 | // TODO: read environment
|
---|
306 | posix_tzname[0] = (char *) "GMT";
|
---|
307 | posix_tzname[1] = (char *) "GMT";
|
---|
308 | posix_daylight = 0;
|
---|
309 | posix_timezone = 0;
|
---|
310 | }
|
---|
311 |
|
---|
312 | /**
|
---|
313 | * Calculate the difference between two times, in seconds.
|
---|
314 | *
|
---|
315 | * @param time1 First time.
|
---|
316 | * @param time0 Second time.
|
---|
317 | * @return Time in seconds.
|
---|
318 | */
|
---|
319 | double posix_difftime(time_t time1, time_t time0)
|
---|
320 | {
|
---|
321 | return (double) (time1 - time0);
|
---|
322 | }
|
---|
323 |
|
---|
324 | /**
|
---|
325 | * Converts a time value to a broken-down UTC time.
|
---|
326 | *
|
---|
327 | * @param timer Time to convert.
|
---|
328 | * @param result Structure to store the result to.
|
---|
329 | * @return Value of result on success, NULL on overflow.
|
---|
330 | */
|
---|
331 | struct tm *posix_gmtime_r(const time_t *restrict timer,
|
---|
332 | struct tm *restrict result)
|
---|
333 | {
|
---|
334 | assert(timer != NULL);
|
---|
335 | assert(result != NULL);
|
---|
336 |
|
---|
337 | /* Set result to epoch. */
|
---|
338 | result->tm_sec = 0;
|
---|
339 | result->tm_min = 0;
|
---|
340 | result->tm_hour = 0;
|
---|
341 | result->tm_mday = 1;
|
---|
342 | result->tm_mon = 0;
|
---|
343 | result->tm_year = 70; /* 1970 */
|
---|
344 |
|
---|
345 | if (_normalize_time(result, *timer) == -1) {
|
---|
346 | errno = EOVERFLOW;
|
---|
347 | return NULL;
|
---|
348 | }
|
---|
349 |
|
---|
350 | return result;
|
---|
351 | }
|
---|
352 |
|
---|
353 | /**
|
---|
354 | * Converts a time value to a broken-down local time.
|
---|
355 | *
|
---|
356 | * @param timer Time to convert.
|
---|
357 | * @param result Structure to store the result to.
|
---|
358 | * @return Value of result on success, NULL on overflow.
|
---|
359 | */
|
---|
360 | struct tm *posix_localtime_r(const time_t *restrict timer,
|
---|
361 | struct tm *restrict result)
|
---|
362 | {
|
---|
363 | // TODO: deal with timezone
|
---|
364 | // currently assumes system and all times are in GMT
|
---|
365 | return posix_gmtime_r(timer, result);
|
---|
366 | }
|
---|
367 |
|
---|
368 | /**
|
---|
369 | * Converts broken-down time to a string in format
|
---|
370 | * "Sun Jan 1 00:00:00 1970\n". (Obsolete)
|
---|
371 | *
|
---|
372 | * @param timeptr Broken-down time structure.
|
---|
373 | * @param buf Buffer to store string to, must be at least ASCTIME_BUF_LEN
|
---|
374 | * bytes long.
|
---|
375 | * @return Value of buf.
|
---|
376 | */
|
---|
377 | char *posix_asctime_r(const struct tm *restrict timeptr,
|
---|
378 | char *restrict buf)
|
---|
379 | {
|
---|
380 | assert(timeptr != NULL);
|
---|
381 | assert(buf != NULL);
|
---|
382 |
|
---|
383 | static const char *wday[] = {
|
---|
384 | "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
|
---|
385 | };
|
---|
386 | static const char *mon[] = {
|
---|
387 | "Jan", "Feb", "Mar", "Apr", "May", "Jun",
|
---|
388 | "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
|
---|
389 | };
|
---|
390 |
|
---|
391 | snprintf(buf, ASCTIME_BUF_LEN, "%s %s %2d %02d:%02d:%02d %d\n",
|
---|
392 | wday[timeptr->tm_wday],
|
---|
393 | mon[timeptr->tm_mon],
|
---|
394 | timeptr->tm_mday, timeptr->tm_hour,
|
---|
395 | timeptr->tm_min, timeptr->tm_sec,
|
---|
396 | 1900 + timeptr->tm_year);
|
---|
397 |
|
---|
398 | return buf;
|
---|
399 | }
|
---|
400 |
|
---|
401 | /**
|
---|
402 | * Reentrant variant of ctime().
|
---|
403 | *
|
---|
404 | * @param timer Time to convert.
|
---|
405 | * @param buf Buffer to store string to. Must be at least ASCTIME_BUF_LEN
|
---|
406 | * bytes long.
|
---|
407 | * @return Pointer to buf on success, NULL on falure.
|
---|
408 | */
|
---|
409 | char *posix_ctime_r(const time_t *timer, char *buf)
|
---|
410 | {
|
---|
411 | struct tm loctime;
|
---|
412 | if (posix_localtime_r(timer, &loctime) == NULL) {
|
---|
413 | return NULL;
|
---|
414 | }
|
---|
415 | return posix_asctime_r(&loctime, buf);
|
---|
416 | }
|
---|
417 |
|
---|
418 | /**
|
---|
419 | * Get clock resolution. Only CLOCK_REALTIME is supported.
|
---|
420 | *
|
---|
421 | * @param clock_id Clock ID.
|
---|
422 | * @param res Pointer to the variable where the resolution is to be written.
|
---|
423 | * @return 0 on success, -1 with errno set on failure.
|
---|
424 | */
|
---|
425 | int posix_clock_getres(posix_clockid_t clock_id, struct posix_timespec *res)
|
---|
426 | {
|
---|
427 | assert(res != NULL);
|
---|
428 |
|
---|
429 | switch (clock_id) {
|
---|
430 | case CLOCK_REALTIME:
|
---|
431 | res->tv_sec = 0;
|
---|
432 | res->tv_nsec = 1000; /* Microsecond resolution. */
|
---|
433 | return 0;
|
---|
434 | default:
|
---|
435 | errno = EINVAL;
|
---|
436 | return -1;
|
---|
437 | }
|
---|
438 | }
|
---|
439 |
|
---|
440 | /**
|
---|
441 | * Get time. Only CLOCK_REALTIME is supported.
|
---|
442 | *
|
---|
443 | * @param clock_id ID of the clock to query.
|
---|
444 | * @param tp Pointer to the variable where the time is to be written.
|
---|
445 | * @return 0 on success, -1 with errno on failure.
|
---|
446 | */
|
---|
447 | int posix_clock_gettime(posix_clockid_t clock_id, struct posix_timespec *tp)
|
---|
448 | {
|
---|
449 | assert(tp != NULL);
|
---|
450 |
|
---|
451 | switch (clock_id) {
|
---|
452 | case CLOCK_REALTIME:
|
---|
453 | ;
|
---|
454 | struct timeval tv;
|
---|
455 | gettimeofday(&tv, NULL);
|
---|
456 | tp->tv_sec = tv.tv_sec;
|
---|
457 | tp->tv_nsec = tv.tv_usec * 1000;
|
---|
458 | return 0;
|
---|
459 | default:
|
---|
460 | errno = EINVAL;
|
---|
461 | return -1;
|
---|
462 | }
|
---|
463 | }
|
---|
464 |
|
---|
465 | /**
|
---|
466 | * Set time on a specified clock. As HelenOS doesn't support this yet,
|
---|
467 | * this function always fails.
|
---|
468 | *
|
---|
469 | * @param clock_id ID of the clock to set.
|
---|
470 | * @param tp Time to set.
|
---|
471 | * @return 0 on success, -1 with errno on failure.
|
---|
472 | */
|
---|
473 | int posix_clock_settime(posix_clockid_t clock_id,
|
---|
474 | const struct posix_timespec *tp)
|
---|
475 | {
|
---|
476 | assert(tp != NULL);
|
---|
477 |
|
---|
478 | switch (clock_id) {
|
---|
479 | case CLOCK_REALTIME:
|
---|
480 | // TODO: setting clock
|
---|
481 | // FIXME: HelenOS doesn't actually support hardware
|
---|
482 | // clock yet
|
---|
483 | errno = EPERM;
|
---|
484 | return -1;
|
---|
485 | default:
|
---|
486 | errno = EINVAL;
|
---|
487 | return -1;
|
---|
488 | }
|
---|
489 | }
|
---|
490 |
|
---|
491 | /**
|
---|
492 | * Sleep on a specified clock.
|
---|
493 | *
|
---|
494 | * @param clock_id ID of the clock to sleep on (only CLOCK_REALTIME supported).
|
---|
495 | * @param flags Flags (none supported).
|
---|
496 | * @param rqtp Sleep time.
|
---|
497 | * @param rmtp Remaining time is written here if sleep is interrupted.
|
---|
498 | * @return 0 on success, -1 with errno set on failure.
|
---|
499 | */
|
---|
500 | int posix_clock_nanosleep(posix_clockid_t clock_id, int flags,
|
---|
501 | const struct posix_timespec *rqtp, struct posix_timespec *rmtp)
|
---|
502 | {
|
---|
503 | assert(rqtp != NULL);
|
---|
504 | assert(rmtp != NULL);
|
---|
505 |
|
---|
506 | switch (clock_id) {
|
---|
507 | case CLOCK_REALTIME:
|
---|
508 | // TODO: interruptible sleep
|
---|
509 | if (rqtp->tv_sec != 0) {
|
---|
510 | sleep(rqtp->tv_sec);
|
---|
511 | }
|
---|
512 | if (rqtp->tv_nsec != 0) {
|
---|
513 | usleep(rqtp->tv_nsec / 1000);
|
---|
514 | }
|
---|
515 | return 0;
|
---|
516 | default:
|
---|
517 | errno = EINVAL;
|
---|
518 | return -1;
|
---|
519 | }
|
---|
520 | }
|
---|
521 |
|
---|
522 | /**
|
---|
523 | * Get CPU time used since the process invocation.
|
---|
524 | *
|
---|
525 | * @return Consumed CPU cycles by this process or -1 if not available.
|
---|
526 | */
|
---|
527 | posix_clock_t posix_clock(void)
|
---|
528 | {
|
---|
529 | posix_clock_t total_cycles = -1;
|
---|
530 | stats_task_t *task_stats = stats_get_task(task_get_id());
|
---|
531 | if (task_stats) {
|
---|
532 | total_cycles = (posix_clock_t) (task_stats->kcycles +
|
---|
533 | task_stats->ucycles);
|
---|
534 | free(task_stats);
|
---|
535 | task_stats = 0;
|
---|
536 | }
|
---|
537 |
|
---|
538 | return total_cycles;
|
---|
539 | }
|
---|
540 |
|
---|
541 | /** @}
|
---|
542 | */
|
---|