source: mainline/uspace/lib/posix/source/time.c@ 32b3a12

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 32b3a12 was a3da2b2, checked in by Vojtech Horky <vojtechhorky@…>, 13 years ago

Introduce include/ and source/ directories into libposix

  • Property mode set to 100644
File size: 22.6 KB
Line 
1/*
2 * Copyright (c) 2011 Petr Koupy
3 * Copyright (c) 2011 Jiri Zarevucky
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *
10 * - Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * - Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * - The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30/** @addtogroup libposix
31 * @{
32 */
33/** @file Time measurement support.
34 */
35
36#define LIBPOSIX_INTERNAL
37
38/* Must be first. */
39#include "posix/stdbool.h"
40
41#include "internal/common.h"
42#include "posix/time.h"
43
44#include "posix/ctype.h"
45#include "posix/errno.h"
46#include "posix/signal.h"
47#include "posix/assert.h"
48
49#include "libc/malloc.h"
50#include "libc/task.h"
51#include "libc/stats.h"
52#include "libc/sys/time.h"
53
54// TODO: test everything in this file
55
56/* In some places in this file, phrase "normalized broken-down time" is used.
57 * This means time broken down to components (year, month, day, hour, min, sec),
58 * in which every component is in its proper bounds. Non-normalized time could
59 * e.g. be 2011-54-5 29:13:-5, which would semantically mean start of year 2011
60 * + 53 months + 4 days + 29 hours + 13 minutes - 5 seconds.
61 */
62
63
64
65/* Helper functions ***********************************************************/
66
67#define HOURS_PER_DAY (24)
68#define MINS_PER_HOUR (60)
69#define SECS_PER_MIN (60)
70#define MINS_PER_DAY (MINS_PER_HOUR * HOURS_PER_DAY)
71#define SECS_PER_HOUR (SECS_PER_MIN * MINS_PER_HOUR)
72#define SECS_PER_DAY (SECS_PER_HOUR * HOURS_PER_DAY)
73
74/**
75 * Checks whether the year is a leap year.
76 *
77 * @param year Year since 1900 (e.g. for 1970, the value is 70).
78 * @return true if year is a leap year, false otherwise
79 */
80static bool _is_leap_year(time_t year)
81{
82 year += 1900;
83
84 if (year % 400 == 0)
85 return true;
86 if (year % 100 == 0)
87 return false;
88 if (year % 4 == 0)
89 return true;
90 return false;
91}
92
93/**
94 * Returns how many days there are in the given month of the given year.
95 * Note that year is only taken into account if month is February.
96 *
97 * @param year Year since 1900 (can be negative).
98 * @param mon Month of the year. 0 for January, 11 for December.
99 * @return Number of days in the specified month.
100 */
101static int _days_in_month(time_t year, time_t mon)
102{
103 assert(mon >= 0 && mon <= 11);
104
105 static int month_days[] =
106 { 31, 0, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
107
108 if (mon == 1) {
109 year += 1900;
110 /* february */
111 return _is_leap_year(year) ? 29 : 28;
112 } else {
113 return month_days[mon];
114 }
115}
116
117/**
118 * For specified year, month and day of month, returns which day of that year
119 * it is.
120 *
121 * For example, given date 2011-01-03, the corresponding expression is:
122 * _day_of_year(111, 0, 3) == 2
123 *
124 * @param year Year (year 1900 = 0, can be negative).
125 * @param mon Month (January = 0).
126 * @param mday Day of month (First day is 1).
127 * @return Day of year (First day is 0).
128 */
129static int _day_of_year(time_t year, time_t mon, time_t mday)
130{
131 static int mdays[] =
132 { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
133 static int leap_mdays[] =
134 { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335 };
135
136 return (_is_leap_year(year) ? leap_mdays[mon] : mdays[mon]) + mday - 1;
137}
138
139/**
140 * Integer division that rounds to negative infinity.
141 * Used by some functions in this file.
142 *
143 * @param op1 Divident.
144 * @param op2 Divisor.
145 * @return Rounded quotient.
146 */
147static time_t _floor_div(time_t op1, time_t op2)
148{
149 if (op1 >= 0 || op1 % op2 == 0) {
150 return op1 / op2;
151 } else {
152 return op1 / op2 - 1;
153 }
154}
155
156/**
157 * Modulo that rounds to negative infinity.
158 * Used by some functions in this file.
159 *
160 * @param op1 Divident.
161 * @param op2 Divisor.
162 * @return Remainder.
163 */
164static time_t _floor_mod(time_t op1, time_t op2)
165{
166 int div = _floor_div(op1, op2);
167
168 /* (a / b) * b + a % b == a */
169 /* thus, a % b == a - (a / b) * b */
170
171 int result = op1 - div * op2;
172
173 /* Some paranoid checking to ensure I didn't make a mistake here. */
174 assert(result >= 0);
175 assert(result < op2);
176 assert(div * op2 + result == op1);
177
178 return result;
179}
180
181/**
182 * Number of days since the Epoch.
183 * Epoch is 1970-01-01, which is also equal to day 0.
184 *
185 * @param year Year (year 1900 = 0, may be negative).
186 * @param mon Month (January = 0).
187 * @param mday Day of month (first day = 1).
188 * @return Number of days since the Epoch.
189 */
190static time_t _days_since_epoch(time_t year, time_t mon, time_t mday)
191{
192 return (year - 70) * 365 + _floor_div(year - 69, 4) -
193 _floor_div(year - 1, 100) + _floor_div(year + 299, 400) +
194 _day_of_year(year, mon, mday);
195}
196
197/**
198 * Seconds since the Epoch. see also _days_since_epoch().
199 *
200 * @param tm Normalized broken-down time.
201 * @return Number of seconds since the epoch, not counting leap seconds.
202 */
203static time_t _secs_since_epoch(const struct posix_tm *tm)
204{
205 return _days_since_epoch(tm->tm_year, tm->tm_mon, tm->tm_mday) *
206 SECS_PER_DAY + tm->tm_hour * SECS_PER_HOUR +
207 tm->tm_min * SECS_PER_MIN + tm->tm_sec;
208}
209
210/**
211 * Which day of week the specified date is.
212 *
213 * @param year Year (year 1900 = 0).
214 * @param mon Month (January = 0).
215 * @param mday Day of month (first = 1).
216 * @return Day of week (Sunday = 0).
217 */
218static int _day_of_week(time_t year, time_t mon, time_t mday)
219{
220 /* 1970-01-01 is Thursday */
221 return _floor_mod((_days_since_epoch(year, mon, mday) + 4), 7);
222}
223
224/**
225 * Normalizes the broken-down time and optionally adds specified amount of
226 * seconds.
227 *
228 * @param tm Broken-down time to normalize.
229 * @param sec_add Seconds to add.
230 * @return 0 on success, -1 on overflow
231 */
232static int _normalize_time(struct posix_tm *tm, time_t sec_add)
233{
234 // TODO: DST correction
235
236 /* Set initial values. */
237 time_t sec = tm->tm_sec + sec_add;
238 time_t min = tm->tm_min;
239 time_t hour = tm->tm_hour;
240 time_t day = tm->tm_mday - 1;
241 time_t mon = tm->tm_mon;
242 time_t year = tm->tm_year;
243
244 /* Adjust time. */
245 min += _floor_div(sec, SECS_PER_MIN);
246 sec = _floor_mod(sec, SECS_PER_MIN);
247 hour += _floor_div(min, MINS_PER_HOUR);
248 min = _floor_mod(min, MINS_PER_HOUR);
249 day += _floor_div(hour, HOURS_PER_DAY);
250 hour = _floor_mod(hour, HOURS_PER_DAY);
251
252 /* Adjust month. */
253 year += _floor_div(mon, 12);
254 mon = _floor_mod(mon, 12);
255
256 /* Now the difficult part - days of month. */
257
258 /* First, deal with whole cycles of 400 years = 146097 days. */
259 year += _floor_div(day, 146097) * 400;
260 day = _floor_mod(day, 146097);
261
262 /* Then, go in one year steps. */
263 if (mon <= 1) {
264 /* January and February. */
265 while (day > 365) {
266 day -= _is_leap_year(year) ? 366 : 365;
267 year++;
268 }
269 } else {
270 /* Rest of the year. */
271 while (day > 365) {
272 day -= _is_leap_year(year + 1) ? 366 : 365;
273 year++;
274 }
275 }
276
277 /* Finally, finish it off month per month. */
278 while (day >= _days_in_month(year, mon)) {
279 day -= _days_in_month(year, mon);
280 mon++;
281 if (mon >= 12) {
282 mon -= 12;
283 year++;
284 }
285 }
286
287 /* Calculate the remaining two fields. */
288 tm->tm_yday = _day_of_year(year, mon, day + 1);
289 tm->tm_wday = _day_of_week(year, mon, day + 1);
290
291 /* And put the values back to the struct. */
292 tm->tm_sec = (int) sec;
293 tm->tm_min = (int) min;
294 tm->tm_hour = (int) hour;
295 tm->tm_mday = (int) day + 1;
296 tm->tm_mon = (int) mon;
297
298 /* Casts to work around libc brain-damage. */
299 if (year > ((int)INT_MAX) || year < ((int)INT_MIN)) {
300 tm->tm_year = (year < 0) ? ((int)INT_MIN) : ((int)INT_MAX);
301 return -1;
302 }
303
304 tm->tm_year = (int) year;
305 return 0;
306}
307
308/**
309 * Which day the week-based year starts on, relative to the first calendar day.
310 * E.g. if the year starts on December 31st, the return value is -1.
311 *
312 * @param Year since 1900.
313 * @return Offset of week-based year relative to calendar year.
314 */
315static int _wbyear_offset(int year)
316{
317 int start_wday = _day_of_week(year, 0, 1);
318 return _floor_mod(4 - start_wday, 7) - 3;
319}
320
321/**
322 * Returns week-based year of the specified time.
323 *
324 * @param tm Normalized broken-down time.
325 * @return Week-based year.
326 */
327static int _wbyear(const struct posix_tm *tm)
328{
329 int day = tm->tm_yday - _wbyear_offset(tm->tm_year);
330 if (day < 0) {
331 /* Last week of previous year. */
332 return tm->tm_year - 1;
333 }
334 if (day > 364 + _is_leap_year(tm->tm_year)) {
335 /* First week of next year. */
336 return tm->tm_year + 1;
337 }
338 /* All the other days are in the calendar year. */
339 return tm->tm_year;
340}
341
342/**
343 * Week number of the year, assuming weeks start on sunday.
344 * The first Sunday of January is the first day of week 1;
345 * days in the new year before this are in week 0.
346 *
347 * @param tm Normalized broken-down time.
348 * @return The week number (0 - 53).
349 */
350static int _sun_week_number(const struct posix_tm *tm)
351{
352 int first_day = (7 - _day_of_week(tm->tm_year, 0, 1)) % 7;
353 return (tm->tm_yday - first_day + 7) / 7;
354}
355
356/**
357 * Week number of the year, assuming weeks start on monday.
358 * If the week containing January 1st has four or more days in the new year,
359 * then it is considered week 1. Otherwise, it is the last week of the previous
360 * year, and the next week is week 1. Both January 4th and the first Thursday
361 * of January are always in week 1.
362 *
363 * @param tm Normalized broken-down time.
364 * @return The week number (1 - 53).
365 */
366static int _iso_week_number(const struct posix_tm *tm)
367{
368 int day = tm->tm_yday - _wbyear_offset(tm->tm_year);
369 if (day < 0) {
370 /* Last week of previous year. */
371 return 53;
372 }
373 if (day > 364 + _is_leap_year(tm->tm_year)) {
374 /* First week of next year. */
375 return 1;
376 }
377 /* All the other days give correct answer. */
378 return (day / 7 + 1);
379}
380
381/**
382 * Week number of the year, assuming weeks start on monday.
383 * The first Monday of January is the first day of week 1;
384 * days in the new year before this are in week 0.
385 *
386 * @param tm Normalized broken-down time.
387 * @return The week number (0 - 53).
388 */
389static int _mon_week_number(const struct posix_tm *tm)
390{
391 int first_day = (1 - _day_of_week(tm->tm_year, 0, 1)) % 7;
392 return (tm->tm_yday - first_day + 7) / 7;
393}
394
395/******************************************************************************/
396
397int posix_daylight;
398long posix_timezone;
399char *posix_tzname[2];
400
401/**
402 * Set timezone conversion information.
403 */
404void posix_tzset(void)
405{
406 // TODO: read environment
407 posix_tzname[0] = (char *) "GMT";
408 posix_tzname[1] = (char *) "GMT";
409 posix_daylight = 0;
410 posix_timezone = 0;
411}
412
413/**
414 * Calculate the difference between two times, in seconds.
415 *
416 * @param time1 First time.
417 * @param time0 Second time.
418 * @return Time in seconds.
419 */
420double posix_difftime(time_t time1, time_t time0)
421{
422 return (double) (time1 - time0);
423}
424
425/**
426 * This function first normalizes the provided broken-down time
427 * (moves all values to their proper bounds) and then tries to
428 * calculate the appropriate time_t representation.
429 *
430 * @param tm Broken-down time.
431 * @return time_t representation of the time, undefined value on overflow.
432 */
433time_t posix_mktime(struct posix_tm *tm)
434{
435 // TODO: take DST flag into account
436 // TODO: detect overflow
437
438 _normalize_time(tm, 0);
439 return _secs_since_epoch(tm);
440}
441
442/**
443 * Converts a time value to a broken-down UTC time.
444 *
445 * @param timer Time to convert.
446 * @return Normalized broken-down time in UTC, NULL on overflow.
447 */
448struct posix_tm *posix_gmtime(const time_t *timer)
449{
450 assert(timer != NULL);
451
452 static struct posix_tm result;
453 return posix_gmtime_r(timer, &result);
454}
455
456/**
457 * Converts a time value to a broken-down UTC time.
458 *
459 * @param timer Time to convert.
460 * @param result Structure to store the result to.
461 * @return Value of result on success, NULL on overflow.
462 */
463struct posix_tm *posix_gmtime_r(const time_t *restrict timer,
464 struct posix_tm *restrict result)
465{
466 assert(timer != NULL);
467 assert(result != NULL);
468
469 /* Set result to epoch. */
470 result->tm_sec = 0;
471 result->tm_min = 0;
472 result->tm_hour = 0;
473 result->tm_mday = 1;
474 result->tm_mon = 0;
475 result->tm_year = 70; /* 1970 */
476
477 if (_normalize_time(result, *timer) == -1) {
478 errno = EOVERFLOW;
479 return NULL;
480 }
481
482 return result;
483}
484
485/**
486 * Converts a time value to a broken-down local time.
487 *
488 * @param timer Time to convert.
489 * @return Normalized broken-down time in local timezone, NULL on overflow.
490 */
491struct posix_tm *posix_localtime(const time_t *timer)
492{
493 static struct posix_tm result;
494 return posix_localtime_r(timer, &result);
495}
496
497/**
498 * Converts a time value to a broken-down local time.
499 *
500 * @param timer Time to convert.
501 * @param result Structure to store the result to.
502 * @return Value of result on success, NULL on overflow.
503 */
504struct posix_tm *posix_localtime_r(const time_t *restrict timer,
505 struct posix_tm *restrict result)
506{
507 // TODO: deal with timezone
508 // currently assumes system and all times are in GMT
509 return posix_gmtime_r(timer, result);
510}
511
512/**
513 * Converts broken-down time to a string in format
514 * "Sun Jan 1 00:00:00 1970\n". (Obsolete)
515 *
516 * @param timeptr Broken-down time structure.
517 * @return Pointer to a statically allocated string.
518 */
519char *posix_asctime(const struct posix_tm *timeptr)
520{
521 static char buf[ASCTIME_BUF_LEN];
522 return posix_asctime_r(timeptr, buf);
523}
524
525/**
526 * Converts broken-down time to a string in format
527 * "Sun Jan 1 00:00:00 1970\n". (Obsolete)
528 *
529 * @param timeptr Broken-down time structure.
530 * @param buf Buffer to store string to, must be at least ASCTIME_BUF_LEN
531 * bytes long.
532 * @return Value of buf.
533 */
534char *posix_asctime_r(const struct posix_tm *restrict timeptr,
535 char *restrict buf)
536{
537 assert(timeptr != NULL);
538 assert(buf != NULL);
539
540 static const char *wday[] = {
541 "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
542 };
543 static const char *mon[] = {
544 "Jan", "Feb", "Mar", "Apr", "May", "Jun",
545 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
546 };
547
548 snprintf(buf, ASCTIME_BUF_LEN, "%s %s %2d %02d:%02d:%02d %d\n",
549 wday[timeptr->tm_wday],
550 mon[timeptr->tm_mon],
551 timeptr->tm_mday, timeptr->tm_hour,
552 timeptr->tm_min, timeptr->tm_sec,
553 1900 + timeptr->tm_year);
554
555 return buf;
556}
557
558/**
559 * Equivalent to asctime(localtime(clock)).
560 *
561 * @param timer Time to convert.
562 * @return Pointer to a statically allocated string holding the date.
563 */
564char *posix_ctime(const time_t *timer)
565{
566 struct posix_tm *loctime = posix_localtime(timer);
567 if (loctime == NULL) {
568 return NULL;
569 }
570 return posix_asctime(loctime);
571}
572
573/**
574 * Reentrant variant of ctime().
575 *
576 * @param timer Time to convert.
577 * @param buf Buffer to store string to. Must be at least ASCTIME_BUF_LEN
578 * bytes long.
579 * @return Pointer to buf on success, NULL on falure.
580 */
581char *posix_ctime_r(const time_t *timer, char *buf)
582{
583 struct posix_tm loctime;
584 if (posix_localtime_r(timer, &loctime) == NULL) {
585 return NULL;
586 }
587 return posix_asctime_r(&loctime, buf);
588}
589
590/**
591 * Convert time and date to a string, based on a specified format and
592 * current locale.
593 *
594 * @param s Buffer to write string to.
595 * @param maxsize Size of the buffer.
596 * @param format Format of the output.
597 * @param tm Broken-down time to format.
598 * @return Number of bytes written.
599 */
600size_t posix_strftime(char *restrict s, size_t maxsize,
601 const char *restrict format, const struct posix_tm *restrict tm)
602{
603 assert(s != NULL);
604 assert(format != NULL);
605 assert(tm != NULL);
606
607 // TODO: use locale
608 static const char *wday_abbr[] = {
609 "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
610 };
611 static const char *wday[] = {
612 "Sunday", "Monday", "Tuesday", "Wednesday",
613 "Thursday", "Friday", "Saturday"
614 };
615 static const char *mon_abbr[] = {
616 "Jan", "Feb", "Mar", "Apr", "May", "Jun",
617 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
618 };
619 static const char *mon[] = {
620 "January", "February", "March", "April", "May", "June", "July",
621 "August", "September", "October", "November", "December"
622 };
623
624 if (maxsize < 1) {
625 return 0;
626 }
627
628 char *ptr = s;
629 size_t consumed;
630 size_t remaining = maxsize;
631
632 #define append(...) { \
633 /* FIXME: this requires POSIX-correct snprintf */ \
634 /* otherwise it won't work with non-ascii chars */ \
635 consumed = snprintf(ptr, remaining, __VA_ARGS__); \
636 if (consumed >= remaining) { \
637 return 0; \
638 } \
639 ptr += consumed; \
640 remaining -= consumed; \
641 }
642
643 #define recurse(fmt) { \
644 consumed = posix_strftime(ptr, remaining, fmt, tm); \
645 if (consumed == 0) { \
646 return 0; \
647 } \
648 ptr += consumed; \
649 remaining -= consumed; \
650 }
651
652 #define TO_12H(hour) (((hour) > 12) ? ((hour) - 12) : \
653 (((hour) == 0) ? 12 : (hour)))
654
655 while (*format != '\0') {
656 if (*format != '%') {
657 append("%c", *format);
658 format++;
659 continue;
660 }
661
662 format++;
663 if (*format == '0' || *format == '+') {
664 // TODO: padding
665 format++;
666 }
667 while (isdigit(*format)) {
668 // TODO: padding
669 format++;
670 }
671 if (*format == 'O' || *format == 'E') {
672 // TODO: locale's alternative format
673 format++;
674 }
675
676 switch (*format) {
677 case 'a':
678 append("%s", wday_abbr[tm->tm_wday]); break;
679 case 'A':
680 append("%s", wday[tm->tm_wday]); break;
681 case 'b':
682 append("%s", mon_abbr[tm->tm_mon]); break;
683 case 'B':
684 append("%s", mon[tm->tm_mon]); break;
685 case 'c':
686 // TODO: locale-specific datetime format
687 recurse("%Y-%m-%d %H:%M:%S"); break;
688 case 'C':
689 append("%02d", (1900 + tm->tm_year) / 100); break;
690 case 'd':
691 append("%02d", tm->tm_mday); break;
692 case 'D':
693 recurse("%m/%d/%y"); break;
694 case 'e':
695 append("%2d", tm->tm_mday); break;
696 case 'F':
697 recurse("%+4Y-%m-%d"); break;
698 case 'g':
699 append("%02d", _wbyear(tm) % 100); break;
700 case 'G':
701 append("%d", _wbyear(tm)); break;
702 case 'h':
703 recurse("%b"); break;
704 case 'H':
705 append("%02d", tm->tm_hour); break;
706 case 'I':
707 append("%02d", TO_12H(tm->tm_hour)); break;
708 case 'j':
709 append("%03d", tm->tm_yday); break;
710 case 'k':
711 append("%2d", tm->tm_hour); break;
712 case 'l':
713 append("%2d", TO_12H(tm->tm_hour)); break;
714 case 'm':
715 append("%02d", tm->tm_mon); break;
716 case 'M':
717 append("%02d", tm->tm_min); break;
718 case 'n':
719 append("\n"); break;
720 case 'p':
721 append("%s", tm->tm_hour < 12 ? "AM" : "PM"); break;
722 case 'P':
723 append("%s", tm->tm_hour < 12 ? "am" : "PM"); break;
724 case 'r':
725 recurse("%I:%M:%S %p"); break;
726 case 'R':
727 recurse("%H:%M"); break;
728 case 's':
729 append("%ld", _secs_since_epoch(tm)); break;
730 case 'S':
731 append("%02d", tm->tm_sec); break;
732 case 't':
733 append("\t"); break;
734 case 'T':
735 recurse("%H:%M:%S"); break;
736 case 'u':
737 append("%d", (tm->tm_wday == 0) ? 7 : tm->tm_wday); break;
738 case 'U':
739 append("%02d", _sun_week_number(tm)); break;
740 case 'V':
741 append("%02d", _iso_week_number(tm)); break;
742 case 'w':
743 append("%d", tm->tm_wday); break;
744 case 'W':
745 append("%02d", _mon_week_number(tm)); break;
746 case 'x':
747 // TODO: locale-specific date format
748 recurse("%Y-%m-%d"); break;
749 case 'X':
750 // TODO: locale-specific time format
751 recurse("%H:%M:%S"); break;
752 case 'y':
753 append("%02d", tm->tm_year % 100); break;
754 case 'Y':
755 append("%d", 1900 + tm->tm_year); break;
756 case 'z':
757 // TODO: timezone
758 break;
759 case 'Z':
760 // TODO: timezone
761 break;
762 case '%':
763 append("%%");
764 break;
765 default:
766 /* Invalid specifier, print verbatim. */
767 while (*format != '%') {
768 format--;
769 }
770 append("%%");
771 break;
772 }
773 format++;
774 }
775
776 #undef append
777 #undef recurse
778
779 return maxsize - remaining;
780}
781
782/**
783 * Get clock resolution. Only CLOCK_REALTIME is supported.
784 *
785 * @param clock_id Clock ID.
786 * @param res Pointer to the variable where the resolution is to be written.
787 * @return 0 on success, -1 with errno set on failure.
788 */
789int posix_clock_getres(posix_clockid_t clock_id, struct posix_timespec *res)
790{
791 assert(res != NULL);
792
793 switch (clock_id) {
794 case CLOCK_REALTIME:
795 res->tv_sec = 0;
796 res->tv_nsec = 1000; /* Microsecond resolution. */
797 return 0;
798 default:
799 errno = EINVAL;
800 return -1;
801 }
802}
803
804/**
805 * Get time. Only CLOCK_REALTIME is supported.
806 *
807 * @param clock_id ID of the clock to query.
808 * @param tp Pointer to the variable where the time is to be written.
809 * @return 0 on success, -1 with errno on failure.
810 */
811int posix_clock_gettime(posix_clockid_t clock_id, struct posix_timespec *tp)
812{
813 assert(tp != NULL);
814
815 switch (clock_id) {
816 case CLOCK_REALTIME:
817 ;
818 struct timeval tv;
819 gettimeofday(&tv, NULL);
820 tp->tv_sec = tv.tv_sec;
821 tp->tv_nsec = tv.tv_usec * 1000;
822 return 0;
823 default:
824 errno = EINVAL;
825 return -1;
826 }
827}
828
829/**
830 * Set time on a specified clock. As HelenOS doesn't support this yet,
831 * this function always fails.
832 *
833 * @param clock_id ID of the clock to set.
834 * @param tp Time to set.
835 * @return 0 on success, -1 with errno on failure.
836 */
837int posix_clock_settime(posix_clockid_t clock_id,
838 const struct posix_timespec *tp)
839{
840 assert(tp != NULL);
841
842 switch (clock_id) {
843 case CLOCK_REALTIME:
844 // TODO: setting clock
845 // FIXME: HelenOS doesn't actually support hardware
846 // clock yet
847 errno = EPERM;
848 return -1;
849 default:
850 errno = EINVAL;
851 return -1;
852 }
853}
854
855/**
856 * Sleep on a specified clock.
857 *
858 * @param clock_id ID of the clock to sleep on (only CLOCK_REALTIME supported).
859 * @param flags Flags (none supported).
860 * @param rqtp Sleep time.
861 * @param rmtp Remaining time is written here if sleep is interrupted.
862 * @return 0 on success, -1 with errno set on failure.
863 */
864int posix_clock_nanosleep(posix_clockid_t clock_id, int flags,
865 const struct posix_timespec *rqtp, struct posix_timespec *rmtp)
866{
867 assert(rqtp != NULL);
868 assert(rmtp != NULL);
869
870 switch (clock_id) {
871 case CLOCK_REALTIME:
872 // TODO: interruptible sleep
873 if (rqtp->tv_sec != 0) {
874 sleep(rqtp->tv_sec);
875 }
876 if (rqtp->tv_nsec != 0) {
877 usleep(rqtp->tv_nsec / 1000);
878 }
879 return 0;
880 default:
881 errno = EINVAL;
882 return -1;
883 }
884}
885
886/**
887 * Get CPU time used since the process invocation.
888 *
889 * @return Consumed CPU cycles by this process or -1 if not available.
890 */
891posix_clock_t posix_clock(void)
892{
893 posix_clock_t total_cycles = -1;
894 stats_task_t *task_stats = stats_get_task(task_get_id());
895 if (task_stats) {
896 total_cycles = (posix_clock_t) (task_stats->kcycles + task_stats->ucycles);
897 free(task_stats);
898 task_stats = 0;
899 }
900
901 return total_cycles;
902}
903
904/** @}
905 */
Note: See TracBrowser for help on using the repository browser.