1 | /*
|
---|
2 | * Copyright (c) 2014 Martin Decky
|
---|
3 | * All rights reserved.
|
---|
4 | *
|
---|
5 | * Redistribution and use in source and binary forms, with or without
|
---|
6 | * modification, are permitted provided that the following conditions
|
---|
7 | * are met:
|
---|
8 | *
|
---|
9 | * - Redistributions of source code must retain the above copyright
|
---|
10 | * notice, this list of conditions and the following disclaimer.
|
---|
11 | * - Redistributions in binary form must reproduce the above copyright
|
---|
12 | * notice, this list of conditions and the following disclaimer in the
|
---|
13 | * documentation and/or other materials provided with the distribution.
|
---|
14 | * - The name of the author may not be used to endorse or promote products
|
---|
15 | * derived from this software without specific prior written permission.
|
---|
16 | *
|
---|
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
27 | */
|
---|
28 |
|
---|
29 | /** @addtogroup libmath
|
---|
30 | * @{
|
---|
31 | */
|
---|
32 | /** @file
|
---|
33 | */
|
---|
34 |
|
---|
35 | #include <math.h>
|
---|
36 | #include <trig.h>
|
---|
37 |
|
---|
38 | #define TAYLOR_DEGREE_32 13
|
---|
39 | #define TAYLOR_DEGREE_64 21
|
---|
40 |
|
---|
41 | /** Precomputed values for factorial (starting from 1!) */
|
---|
42 | static float64_t factorials[TAYLOR_DEGREE_64] = {
|
---|
43 | 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800,
|
---|
44 | 479001600, 6227020800.0L, 87178291200.0L, 1307674368000.0L,
|
---|
45 | 20922789888000.0L, 355687428096000.0L, 6402373705728000.0L,
|
---|
46 | 121645100408832000.0L, 2432902008176640000.0L, 51090942171709440000.0L
|
---|
47 | };
|
---|
48 |
|
---|
49 | /** Sine approximation by Taylor series
|
---|
50 | *
|
---|
51 | * Compute the approximation of sine by a Taylor
|
---|
52 | * series (using the first TAYLOR_DEGREE terms).
|
---|
53 | * The approximation is reasonably accurate for
|
---|
54 | * arguments within the interval [-pi/4, pi/4].
|
---|
55 | *
|
---|
56 | * @param arg Sine argument.
|
---|
57 | *
|
---|
58 | * @return Sine value approximation.
|
---|
59 | *
|
---|
60 | */
|
---|
61 | static float64_t taylor_sin(float64_t arg)
|
---|
62 | {
|
---|
63 | float64_t ret = 0;
|
---|
64 | float64_t nom = 1;
|
---|
65 |
|
---|
66 | for (unsigned int i = 0; i < TAYLOR_DEGREE_64; i++) {
|
---|
67 | nom *= arg;
|
---|
68 |
|
---|
69 | if ((i % 4) == 0)
|
---|
70 | ret += nom / factorials[i];
|
---|
71 | else if ((i % 4) == 2)
|
---|
72 | ret -= nom / factorials[i];
|
---|
73 | }
|
---|
74 |
|
---|
75 | return ret;
|
---|
76 | }
|
---|
77 |
|
---|
78 | /** Cosine approximation by Taylor series
|
---|
79 | *
|
---|
80 | * Compute the approximation of cosine by a Taylor
|
---|
81 | * series (using the first TAYLOR_DEGREE terms).
|
---|
82 | * The approximation is reasonably accurate for
|
---|
83 | * arguments within the interval [-pi/4, pi/4].
|
---|
84 | *
|
---|
85 | * @param arg Cosine argument.
|
---|
86 | *
|
---|
87 | * @return Cosine value approximation.
|
---|
88 | *
|
---|
89 | */
|
---|
90 | static float64_t taylor_cos(float64_t arg)
|
---|
91 | {
|
---|
92 | float64_t ret = 1;
|
---|
93 | float64_t nom = 1;
|
---|
94 |
|
---|
95 | for (unsigned int i = 0; i < TAYLOR_DEGREE_64; i++) {
|
---|
96 | nom *= arg;
|
---|
97 |
|
---|
98 | if ((i % 4) == 1)
|
---|
99 | ret -= nom / factorials[i];
|
---|
100 | else if ((i % 4) == 3)
|
---|
101 | ret += nom / factorials[i];
|
---|
102 | }
|
---|
103 |
|
---|
104 | return ret;
|
---|
105 | }
|
---|
106 |
|
---|
107 | /** Sine value for values within base period
|
---|
108 | *
|
---|
109 | * Compute the value of sine for arguments within
|
---|
110 | * the base period [0, 2pi]. For arguments outside
|
---|
111 | * the base period the returned values can be
|
---|
112 | * very inaccurate or even completely wrong.
|
---|
113 | *
|
---|
114 | * @param arg Sine argument.
|
---|
115 | *
|
---|
116 | * @return Sine value.
|
---|
117 | *
|
---|
118 | */
|
---|
119 | static float64_t base_sin(float64_t arg)
|
---|
120 | {
|
---|
121 | unsigned int period = arg / (M_PI / 4);
|
---|
122 |
|
---|
123 | switch (period) {
|
---|
124 | case 0:
|
---|
125 | return taylor_sin(arg);
|
---|
126 | case 1:
|
---|
127 | case 2:
|
---|
128 | return taylor_cos(arg - M_PI / 2);
|
---|
129 | case 3:
|
---|
130 | case 4:
|
---|
131 | return -taylor_sin(arg - M_PI);
|
---|
132 | case 5:
|
---|
133 | case 6:
|
---|
134 | return -taylor_cos(arg - 3 * M_PI / 2);
|
---|
135 | default:
|
---|
136 | return taylor_sin(arg - 2 * M_PI);
|
---|
137 | }
|
---|
138 | }
|
---|
139 |
|
---|
140 | /** Cosine value for values within base period
|
---|
141 | *
|
---|
142 | * Compute the value of cosine for arguments within
|
---|
143 | * the base period [0, 2pi]. For arguments outside
|
---|
144 | * the base period the returned values can be
|
---|
145 | * very inaccurate or even completely wrong.
|
---|
146 | *
|
---|
147 | * @param arg Cosine argument.
|
---|
148 | *
|
---|
149 | * @return Cosine value.
|
---|
150 | *
|
---|
151 | */
|
---|
152 | static float64_t base_cos(float64_t arg)
|
---|
153 | {
|
---|
154 | unsigned int period = arg / (M_PI / 4);
|
---|
155 |
|
---|
156 | switch (period) {
|
---|
157 | case 0:
|
---|
158 | return taylor_cos(arg);
|
---|
159 | case 1:
|
---|
160 | case 2:
|
---|
161 | return -taylor_sin(arg - M_PI / 2);
|
---|
162 | case 3:
|
---|
163 | case 4:
|
---|
164 | return -taylor_cos(arg - M_PI);
|
---|
165 | case 5:
|
---|
166 | case 6:
|
---|
167 | return taylor_sin(arg - 3 * M_PI / 2);
|
---|
168 | default:
|
---|
169 | return taylor_cos(arg - 2 * M_PI);
|
---|
170 | }
|
---|
171 | }
|
---|
172 |
|
---|
173 | /** Double precision sine
|
---|
174 | *
|
---|
175 | * Compute sine value.
|
---|
176 | *
|
---|
177 | * @param arg Sine argument.
|
---|
178 | *
|
---|
179 | * @return Sine value.
|
---|
180 | *
|
---|
181 | */
|
---|
182 | float64_t float64_sin(float64_t arg)
|
---|
183 | {
|
---|
184 | float64_t base_arg = fmod(arg, 2 * M_PI);
|
---|
185 |
|
---|
186 | if (base_arg < 0)
|
---|
187 | return -base_sin(-base_arg);
|
---|
188 |
|
---|
189 | return base_sin(base_arg);
|
---|
190 | }
|
---|
191 |
|
---|
192 | /** Double precision cosine
|
---|
193 | *
|
---|
194 | * Compute cosine value.
|
---|
195 | *
|
---|
196 | * @param arg Cosine argument.
|
---|
197 | *
|
---|
198 | * @return Cosine value.
|
---|
199 | *
|
---|
200 | */
|
---|
201 | float64_t float64_cos(float64_t arg)
|
---|
202 | {
|
---|
203 | float64_t base_arg = fmod(arg, 2 * M_PI);
|
---|
204 |
|
---|
205 | if (base_arg < 0)
|
---|
206 | return base_cos(-base_arg);
|
---|
207 |
|
---|
208 | return base_cos(base_arg);
|
---|
209 | }
|
---|
210 |
|
---|
211 | /** @}
|
---|
212 | */
|
---|