1 | /*
|
---|
2 | * Copyright (c) 2015 Jiri Svoboda
|
---|
3 | * Copyright (c) 2014 Martin Decky
|
---|
4 | * All rights reserved.
|
---|
5 | *
|
---|
6 | * Redistribution and use in source and binary forms, with or without
|
---|
7 | * modification, are permitted provided that the following conditions
|
---|
8 | * are met:
|
---|
9 | *
|
---|
10 | * - Redistributions of source code must retain the above copyright
|
---|
11 | * notice, this list of conditions and the following disclaimer.
|
---|
12 | * - Redistributions in binary form must reproduce the above copyright
|
---|
13 | * notice, this list of conditions and the following disclaimer in the
|
---|
14 | * documentation and/or other materials provided with the distribution.
|
---|
15 | * - The name of the author may not be used to endorse or promote products
|
---|
16 | * derived from this software without specific prior written permission.
|
---|
17 | *
|
---|
18 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
19 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
20 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
21 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
22 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
23 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
24 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
25 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
26 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
27 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
28 | */
|
---|
29 |
|
---|
30 | /** @addtogroup libmath
|
---|
31 | * @{
|
---|
32 | */
|
---|
33 | /** @file
|
---|
34 | */
|
---|
35 |
|
---|
36 | #include <math.h>
|
---|
37 |
|
---|
38 | #define TAYLOR_DEGREE_32 13
|
---|
39 | #define TAYLOR_DEGREE_64 21
|
---|
40 |
|
---|
41 | /** Precomputed values for factorial (starting from 1!) */
|
---|
42 | static double factorials[TAYLOR_DEGREE_64] = {
|
---|
43 | 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800,
|
---|
44 | 479001600, 6227020800.0L, 87178291200.0L, 1307674368000.0L,
|
---|
45 | 20922789888000.0L, 355687428096000.0L, 6402373705728000.0L,
|
---|
46 | 121645100408832000.0L, 2432902008176640000.0L, 51090942171709440000.0L
|
---|
47 | };
|
---|
48 |
|
---|
49 | /** Sine approximation by Taylor series (32-bit floating point)
|
---|
50 | *
|
---|
51 | * Compute the approximation of sine by a Taylor
|
---|
52 | * series (using the first TAYLOR_DEGREE terms).
|
---|
53 | * The approximation is reasonably accurate for
|
---|
54 | * arguments within the interval [-pi/4, pi/4].
|
---|
55 | *
|
---|
56 | * @param arg Sine argument.
|
---|
57 | *
|
---|
58 | * @return Sine value approximation.
|
---|
59 | *
|
---|
60 | */
|
---|
61 | static float taylor_sin_32(float arg)
|
---|
62 | {
|
---|
63 | float ret = 0;
|
---|
64 | float nom = 1;
|
---|
65 |
|
---|
66 | for (unsigned int i = 0; i < TAYLOR_DEGREE_32; i++) {
|
---|
67 | nom *= arg;
|
---|
68 |
|
---|
69 | if ((i % 4) == 0)
|
---|
70 | ret += nom / factorials[i];
|
---|
71 | else if ((i % 4) == 2)
|
---|
72 | ret -= nom / factorials[i];
|
---|
73 | }
|
---|
74 |
|
---|
75 | return ret;
|
---|
76 | }
|
---|
77 |
|
---|
78 | /** Sine approximation by Taylor series (64-bit floating point)
|
---|
79 | *
|
---|
80 | * Compute the approximation of sine by a Taylor
|
---|
81 | * series (using the first TAYLOR_DEGREE terms).
|
---|
82 | * The approximation is reasonably accurate for
|
---|
83 | * arguments within the interval [-pi/4, pi/4].
|
---|
84 | *
|
---|
85 | * @param arg Sine argument.
|
---|
86 | *
|
---|
87 | * @return Sine value approximation.
|
---|
88 | *
|
---|
89 | */
|
---|
90 | static double taylor_sin_64(double arg)
|
---|
91 | {
|
---|
92 | double ret = 0;
|
---|
93 | double nom = 1;
|
---|
94 |
|
---|
95 | for (unsigned int i = 0; i < TAYLOR_DEGREE_64; i++) {
|
---|
96 | nom *= arg;
|
---|
97 |
|
---|
98 | if ((i % 4) == 0)
|
---|
99 | ret += nom / factorials[i];
|
---|
100 | else if ((i % 4) == 2)
|
---|
101 | ret -= nom / factorials[i];
|
---|
102 | }
|
---|
103 |
|
---|
104 | return ret;
|
---|
105 | }
|
---|
106 |
|
---|
107 | /** Cosine approximation by Taylor series (32-bit floating point)
|
---|
108 | *
|
---|
109 | * Compute the approximation of cosine by a Taylor
|
---|
110 | * series (using the first TAYLOR_DEGREE terms).
|
---|
111 | * The approximation is reasonably accurate for
|
---|
112 | * arguments within the interval [-pi/4, pi/4].
|
---|
113 | *
|
---|
114 | * @param arg Cosine argument.
|
---|
115 | *
|
---|
116 | * @return Cosine value approximation.
|
---|
117 | *
|
---|
118 | */
|
---|
119 | static float taylor_cos_32(float arg)
|
---|
120 | {
|
---|
121 | float ret = 1;
|
---|
122 | float nom = 1;
|
---|
123 |
|
---|
124 | for (unsigned int i = 0; i < TAYLOR_DEGREE_32; i++) {
|
---|
125 | nom *= arg;
|
---|
126 |
|
---|
127 | if ((i % 4) == 1)
|
---|
128 | ret -= nom / factorials[i];
|
---|
129 | else if ((i % 4) == 3)
|
---|
130 | ret += nom / factorials[i];
|
---|
131 | }
|
---|
132 |
|
---|
133 | return ret;
|
---|
134 | }
|
---|
135 |
|
---|
136 | /** Cosine approximation by Taylor series (64-bit floating point)
|
---|
137 | *
|
---|
138 | * Compute the approximation of cosine by a Taylor
|
---|
139 | * series (using the first TAYLOR_DEGREE terms).
|
---|
140 | * The approximation is reasonably accurate for
|
---|
141 | * arguments within the interval [-pi/4, pi/4].
|
---|
142 | *
|
---|
143 | * @param arg Cosine argument.
|
---|
144 | *
|
---|
145 | * @return Cosine value approximation.
|
---|
146 | *
|
---|
147 | */
|
---|
148 | static double taylor_cos_64(double arg)
|
---|
149 | {
|
---|
150 | double ret = 1;
|
---|
151 | double nom = 1;
|
---|
152 |
|
---|
153 | for (unsigned int i = 0; i < TAYLOR_DEGREE_64; i++) {
|
---|
154 | nom *= arg;
|
---|
155 |
|
---|
156 | if ((i % 4) == 1)
|
---|
157 | ret -= nom / factorials[i];
|
---|
158 | else if ((i % 4) == 3)
|
---|
159 | ret += nom / factorials[i];
|
---|
160 | }
|
---|
161 |
|
---|
162 | return ret;
|
---|
163 | }
|
---|
164 |
|
---|
165 | /** Sine value for values within base period (32-bit floating point)
|
---|
166 | *
|
---|
167 | * Compute the value of sine for arguments within
|
---|
168 | * the base period [0, 2pi]. For arguments outside
|
---|
169 | * the base period the returned values can be
|
---|
170 | * very inaccurate or even completely wrong.
|
---|
171 | *
|
---|
172 | * @param arg Sine argument.
|
---|
173 | *
|
---|
174 | * @return Sine value.
|
---|
175 | *
|
---|
176 | */
|
---|
177 | static float base_sin_32(float arg)
|
---|
178 | {
|
---|
179 | unsigned int period = arg / (M_PI / 4);
|
---|
180 |
|
---|
181 | switch (period) {
|
---|
182 | case 0:
|
---|
183 | return taylor_sin_32(arg);
|
---|
184 | case 1:
|
---|
185 | case 2:
|
---|
186 | return taylor_cos_32(arg - M_PI / 2);
|
---|
187 | case 3:
|
---|
188 | case 4:
|
---|
189 | return -taylor_sin_32(arg - M_PI);
|
---|
190 | case 5:
|
---|
191 | case 6:
|
---|
192 | return -taylor_cos_32(arg - 3 * M_PI / 2);
|
---|
193 | default:
|
---|
194 | return taylor_sin_32(arg - 2 * M_PI);
|
---|
195 | }
|
---|
196 | }
|
---|
197 |
|
---|
198 | /** Sine value for values within base period (64-bit floating point)
|
---|
199 | *
|
---|
200 | * Compute the value of sine for arguments within
|
---|
201 | * the base period [0, 2pi]. For arguments outside
|
---|
202 | * the base period the returned values can be
|
---|
203 | * very inaccurate or even completely wrong.
|
---|
204 | *
|
---|
205 | * @param arg Sine argument.
|
---|
206 | *
|
---|
207 | * @return Sine value.
|
---|
208 | *
|
---|
209 | */
|
---|
210 | static double base_sin_64(double arg)
|
---|
211 | {
|
---|
212 | unsigned int period = arg / (M_PI / 4);
|
---|
213 |
|
---|
214 | switch (period) {
|
---|
215 | case 0:
|
---|
216 | return taylor_sin_64(arg);
|
---|
217 | case 1:
|
---|
218 | case 2:
|
---|
219 | return taylor_cos_64(arg - M_PI / 2);
|
---|
220 | case 3:
|
---|
221 | case 4:
|
---|
222 | return -taylor_sin_64(arg - M_PI);
|
---|
223 | case 5:
|
---|
224 | case 6:
|
---|
225 | return -taylor_cos_64(arg - 3 * M_PI / 2);
|
---|
226 | default:
|
---|
227 | return taylor_sin_64(arg - 2 * M_PI);
|
---|
228 | }
|
---|
229 | }
|
---|
230 |
|
---|
231 | /** Cosine value for values within base period (32-bit floating point)
|
---|
232 | *
|
---|
233 | * Compute the value of cosine for arguments within
|
---|
234 | * the base period [0, 2pi]. For arguments outside
|
---|
235 | * the base period the returned values can be
|
---|
236 | * very inaccurate or even completely wrong.
|
---|
237 | *
|
---|
238 | * @param arg Cosine argument.
|
---|
239 | *
|
---|
240 | * @return Cosine value.
|
---|
241 | *
|
---|
242 | */
|
---|
243 | static float base_cos_32(float arg)
|
---|
244 | {
|
---|
245 | unsigned int period = arg / (M_PI / 4);
|
---|
246 |
|
---|
247 | switch (period) {
|
---|
248 | case 0:
|
---|
249 | return taylor_cos_32(arg);
|
---|
250 | case 1:
|
---|
251 | case 2:
|
---|
252 | return -taylor_sin_32(arg - M_PI / 2);
|
---|
253 | case 3:
|
---|
254 | case 4:
|
---|
255 | return -taylor_cos_32(arg - M_PI);
|
---|
256 | case 5:
|
---|
257 | case 6:
|
---|
258 | return taylor_sin_32(arg - 3 * M_PI / 2);
|
---|
259 | default:
|
---|
260 | return taylor_cos_32(arg - 2 * M_PI);
|
---|
261 | }
|
---|
262 | }
|
---|
263 |
|
---|
264 | /** Cosine value for values within base period (64-bit floating point)
|
---|
265 | *
|
---|
266 | * Compute the value of cosine for arguments within
|
---|
267 | * the base period [0, 2pi]. For arguments outside
|
---|
268 | * the base period the returned values can be
|
---|
269 | * very inaccurate or even completely wrong.
|
---|
270 | *
|
---|
271 | * @param arg Cosine argument.
|
---|
272 | *
|
---|
273 | * @return Cosine value.
|
---|
274 | *
|
---|
275 | */
|
---|
276 | static double base_cos_64(double arg)
|
---|
277 | {
|
---|
278 | unsigned int period = arg / (M_PI / 4);
|
---|
279 |
|
---|
280 | switch (period) {
|
---|
281 | case 0:
|
---|
282 | return taylor_cos_64(arg);
|
---|
283 | case 1:
|
---|
284 | case 2:
|
---|
285 | return -taylor_sin_64(arg - M_PI / 2);
|
---|
286 | case 3:
|
---|
287 | case 4:
|
---|
288 | return -taylor_cos_64(arg - M_PI);
|
---|
289 | case 5:
|
---|
290 | case 6:
|
---|
291 | return taylor_sin_64(arg - 3 * M_PI / 2);
|
---|
292 | default:
|
---|
293 | return taylor_cos_64(arg - 2 * M_PI);
|
---|
294 | }
|
---|
295 | }
|
---|
296 |
|
---|
297 | /** Sine (32-bit floating point)
|
---|
298 | *
|
---|
299 | * Compute sine value.
|
---|
300 | *
|
---|
301 | * @param arg Sine argument.
|
---|
302 | *
|
---|
303 | * @return Sine value.
|
---|
304 | *
|
---|
305 | */
|
---|
306 | float sinf(float arg)
|
---|
307 | {
|
---|
308 | float base_arg = fmodf(arg, 2 * M_PI);
|
---|
309 |
|
---|
310 | if (base_arg < 0)
|
---|
311 | return -base_sin_32(-base_arg);
|
---|
312 |
|
---|
313 | return base_sin_32(base_arg);
|
---|
314 | }
|
---|
315 |
|
---|
316 | /** Sine (64-bit floating point)
|
---|
317 | *
|
---|
318 | * Compute sine value.
|
---|
319 | *
|
---|
320 | * @param arg Sine argument.
|
---|
321 | *
|
---|
322 | * @return Sine value.
|
---|
323 | *
|
---|
324 | */
|
---|
325 | double sin(double arg)
|
---|
326 | {
|
---|
327 | double base_arg = fmod(arg, 2 * M_PI);
|
---|
328 |
|
---|
329 | if (base_arg < 0)
|
---|
330 | return -base_sin_64(-base_arg);
|
---|
331 |
|
---|
332 | return base_sin_64(base_arg);
|
---|
333 | }
|
---|
334 |
|
---|
335 | /** Cosine (32-bit floating point)
|
---|
336 | *
|
---|
337 | * Compute cosine value.
|
---|
338 | *
|
---|
339 | * @param arg Cosine argument.
|
---|
340 | *
|
---|
341 | * @return Cosine value.
|
---|
342 | *
|
---|
343 | */
|
---|
344 | float cosf(float arg)
|
---|
345 | {
|
---|
346 | float base_arg = fmodf(arg, 2 * M_PI);
|
---|
347 |
|
---|
348 | if (base_arg < 0)
|
---|
349 | return base_cos_32(-base_arg);
|
---|
350 |
|
---|
351 | return base_cos_32(base_arg);
|
---|
352 | }
|
---|
353 |
|
---|
354 | /** Cosine (64-bit floating point)
|
---|
355 | *
|
---|
356 | * Compute cosine value.
|
---|
357 | *
|
---|
358 | * @param arg Cosine argument.
|
---|
359 | *
|
---|
360 | * @return Cosine value.
|
---|
361 | *
|
---|
362 | */
|
---|
363 | double cos(double arg)
|
---|
364 | {
|
---|
365 | double base_arg = fmod(arg, 2 * M_PI);
|
---|
366 |
|
---|
367 | if (base_arg < 0)
|
---|
368 | return base_cos_64(-base_arg);
|
---|
369 |
|
---|
370 | return base_cos_64(base_arg);
|
---|
371 | }
|
---|
372 |
|
---|
373 | /**
|
---|
374 | * Computes sine and cosine at the same time, which might be more efficient than
|
---|
375 | * computing each separately.
|
---|
376 | *
|
---|
377 | * @param x Input value.
|
---|
378 | * @param s Output sine value, *s = sinf(x).
|
---|
379 | * @param c Output cosine value, *c = cosf(x).
|
---|
380 | */
|
---|
381 | void sincosf(float x, float *s, float *c)
|
---|
382 | {
|
---|
383 | float base_arg = fmodf(x, 2 * M_PI);
|
---|
384 |
|
---|
385 | if (base_arg < 0) {
|
---|
386 | *s = -base_sin_32(-base_arg);
|
---|
387 | *c = base_cos_32(-base_arg);
|
---|
388 | } else {
|
---|
389 | *s = base_sin_32(base_arg);
|
---|
390 | *c = base_cos_32(base_arg);
|
---|
391 | }
|
---|
392 | }
|
---|
393 |
|
---|
394 | /**
|
---|
395 | * Computes sine and cosine at the same time, which might be more efficient than
|
---|
396 | * computing each separately.
|
---|
397 | *
|
---|
398 | * @param x Input value.
|
---|
399 | * @param s Output sine value, *s = sin(x).
|
---|
400 | * @param c Output cosine value, *c = cos(x).
|
---|
401 | */
|
---|
402 | void sincos(double x, double *s, double *c)
|
---|
403 | {
|
---|
404 | double base_arg = fmod(x, 2 * M_PI);
|
---|
405 |
|
---|
406 | if (base_arg < 0) {
|
---|
407 | *s = -base_sin_64(-base_arg);
|
---|
408 | *c = base_cos_64(-base_arg);
|
---|
409 | } else {
|
---|
410 | *s = base_sin_64(base_arg);
|
---|
411 | *c = base_cos_64(base_arg);
|
---|
412 | }
|
---|
413 | }
|
---|
414 |
|
---|
415 | /** @}
|
---|
416 | */
|
---|