/* * Copyright (c) 2014 Martin Decky * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * - The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** @addtogroup libmath * @{ */ /** @file */ #include #include #define TAYLOR_DEGREE 13 /** Precomputed values for factorial (starting from 1!) */ static double factorials[TAYLOR_DEGREE] = { 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800 }; /** Sine approximation by Taylor series * * Compute the approximation of sine by a Taylor * series (using the first TAYLOR_DEGREE terms). * The approximation is reasonably accurate for * arguments within the interval [-pi/4, pi/4]. * * @param arg Sine argument. * * @return Sine value approximation. * */ static double taylor_sin(double arg) { double ret = 0; double nom = 1; for (unsigned int i = 0; i < TAYLOR_DEGREE; i++) { nom *= arg; if ((i % 4) == 0) ret += nom / factorials[i]; else if ((i % 4) == 2) ret -= nom / factorials[i]; } return ret; } /** Cosine approximation by Taylor series * * Compute the approximation of cosine by a Taylor * series (using the first TAYLOR_DEGREE terms). * The approximation is reasonably accurate for * arguments within the interval [-pi/4, pi/4]. * * @param arg Cosine argument. * * @return Cosine value approximation. * */ static double taylor_cos(double arg) { double ret = 1; double nom = 1; for (unsigned int i = 0; i < TAYLOR_DEGREE; i++) { nom *= arg; if ((i % 4) == 1) ret -= nom / factorials[i]; else if ((i % 4) == 3) ret += nom / factorials[i]; } return ret; } /** Sine value for values within base period * * Compute the value of sine for arguments within * the base period [0, 2pi]. For arguments outside * the base period the returned values can be * very inaccurate or even completely wrong. * * @param arg Sine argument. * * @return Sine value. * */ static double base_sin(double arg) { unsigned int period = arg / (M_PI / 4); switch (period) { case 0: return taylor_sin(arg); case 1: case 2: return taylor_cos(arg - M_PI / 2); case 3: case 4: return -taylor_sin(arg - M_PI); case 5: case 6: return -taylor_cos(arg - 3 * M_PI / 2); default: return taylor_sin(arg - 2 * M_PI); } } /** Cosine value for values within base period * * Compute the value of cosine for arguments within * the base period [0, 2pi]. For arguments outside * the base period the returned values can be * very inaccurate or even completely wrong. * * @param arg Cosine argument. * * @return Cosine value. * */ static double base_cos(double arg) { unsigned int period = arg / (M_PI / 4); switch (period) { case 0: return taylor_cos(arg); case 1: case 2: return taylor_sin(arg - M_PI / 2); case 3: case 4: return -taylor_cos(arg - M_PI); case 5: case 6: return -taylor_sin(arg - 3 * M_PI / 2); default: return taylor_cos(arg - 2 * M_PI); } } /** Double precision sine * * Compute sine value. * * @param arg Sine argument. * * @return Sine value. * */ double double_sin(double arg) { double base_arg = fmod(arg, 2 * M_PI); if (base_arg < 0) return -base_sin(-base_arg); return base_sin(base_arg); } /** Double precision cosine * * Compute cosine value. * * @param arg Cosine argument. * * @return Cosine value. * */ double double_cos(double arg) { double base_arg = fmod(arg, 2 * M_PI); if (base_arg < 0) return base_cos(-base_arg); return base_cos(base_arg); } /** @} */