1 | /*
|
---|
2 | * ====================================================
|
---|
3 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
---|
4 | *
|
---|
5 | * Developed at SunSoft, a Sun Microsystems, Inc. business.
|
---|
6 | * Permission to use, copy, modify, and distribute this
|
---|
7 | * software is freely granted, provided that this notice
|
---|
8 | * is preserved.
|
---|
9 | * ====================================================
|
---|
10 | */
|
---|
11 |
|
---|
12 | /** @addtogroup libmath
|
---|
13 | * @{
|
---|
14 | */
|
---|
15 | /** @file sqrt mathematical function
|
---|
16 | */
|
---|
17 |
|
---|
18 |
|
---|
19 | /* __ieee754_sqrt(x)
|
---|
20 | * Return correctly rounded sqrt.
|
---|
21 | * ------------------------------------------
|
---|
22 | * | Use the hardware sqrt if you have one |
|
---|
23 | * ------------------------------------------
|
---|
24 | * Method:
|
---|
25 | * Bit by bit method using integer arithmetic. (Slow, but portable)
|
---|
26 | * 1. Normalization
|
---|
27 | * Scale x to y in [1,4) with even powers of 2:
|
---|
28 | * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
|
---|
29 | * sqrt(x) = 2^k * sqrt(y)
|
---|
30 | * 2. Bit by bit computation
|
---|
31 | * Let q = sqrt(y) truncated to i bit after binary point (q = 1),
|
---|
32 | * i 0
|
---|
33 | * i+1 2
|
---|
34 | * s = 2*q , and y = 2 * ( y - q ). (1)
|
---|
35 | * i i i i
|
---|
36 | *
|
---|
37 | * To compute q from q , one checks whether
|
---|
38 | * i+1 i
|
---|
39 | *
|
---|
40 | * -(i+1) 2
|
---|
41 | * (q + 2 ) <= y. (2)
|
---|
42 | * i
|
---|
43 | * -(i+1)
|
---|
44 | * If (2) is false, then q = q ; otherwise q = q + 2 .
|
---|
45 | * i+1 i i+1 i
|
---|
46 | *
|
---|
47 | * With some algebric manipulation, it is not difficult to see
|
---|
48 | * that (2) is equivalent to
|
---|
49 | * -(i+1)
|
---|
50 | * s + 2 <= y (3)
|
---|
51 | * i i
|
---|
52 | *
|
---|
53 | * The advantage of (3) is that s and y can be computed by
|
---|
54 | * i i
|
---|
55 | * the following recurrence formula:
|
---|
56 | * if (3) is false
|
---|
57 | *
|
---|
58 | * s = s , y = y ; (4)
|
---|
59 | * i+1 i i+1 i
|
---|
60 | *
|
---|
61 | * otherwise,
|
---|
62 | * -i -(i+1)
|
---|
63 | * s = s + 2 , y = y - s - 2 (5)
|
---|
64 | * i+1 i i+1 i i
|
---|
65 | *
|
---|
66 | * One may easily use induction to prove (4) and (5).
|
---|
67 | * Note. Since the left hand side of (3) contain only i+2 bits,
|
---|
68 | * it does not necessary to do a full (53-bit) comparison
|
---|
69 | * in (3).
|
---|
70 | * 3. Final rounding
|
---|
71 | * After generating the 53 bits result, we compute one more bit.
|
---|
72 | * Together with the remainder, we can decide whether the
|
---|
73 | * result is exact, bigger than 1/2ulp, or less than 1/2ulp
|
---|
74 | * (it will never equal to 1/2ulp).
|
---|
75 | * The rounding mode can be detected by checking whether
|
---|
76 | * huge + tiny is equal to huge, and whether huge - tiny is
|
---|
77 | * equal to huge for some floating point number "huge" and "tiny".
|
---|
78 | *
|
---|
79 | * Special cases:
|
---|
80 | * sqrt(+-0) = +-0 ... exact
|
---|
81 | * sqrt(inf) = inf
|
---|
82 | * sqrt(-ve) = NaN ... with invalid signal
|
---|
83 | * sqrt(NaN) = NaN ... with invalid signal for signaling NaN
|
---|
84 | *
|
---|
85 | * Other methods : see the appended file at the end of the program below.
|
---|
86 | *---------------
|
---|
87 | */
|
---|
88 |
|
---|
89 | #include <math.h>
|
---|
90 | #include <stdint.h>
|
---|
91 |
|
---|
92 | #include "internal.h"
|
---|
93 |
|
---|
94 | static const double tiny = 1.0e-300;
|
---|
95 |
|
---|
96 | double sqrt(double x)
|
---|
97 | {
|
---|
98 | double z;
|
---|
99 | int32_t sign = (int)0x80000000;
|
---|
100 | int32_t ix0,s0,q,m,t,i;
|
---|
101 | uint32_t r,t1,s1,ix1,q1;
|
---|
102 |
|
---|
103 | EXTRACT_WORDS(ix0, ix1, x);
|
---|
104 |
|
---|
105 | /* take care of Inf and NaN */
|
---|
106 | if ((ix0&0x7ff00000) == 0x7ff00000) {
|
---|
107 | return x*x + x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf, sqrt(-inf)=sNaN */
|
---|
108 | }
|
---|
109 | /* take care of zero */
|
---|
110 | if (ix0 <= 0) {
|
---|
111 | if (((ix0&~sign)|ix1) == 0)
|
---|
112 | return x; /* sqrt(+-0) = +-0 */
|
---|
113 | if (ix0 < 0)
|
---|
114 | return (x-x)/(x-x); /* sqrt(-ve) = sNaN */
|
---|
115 | }
|
---|
116 | /* normalize x */
|
---|
117 | m = ix0>>20;
|
---|
118 | if (m == 0) { /* subnormal x */
|
---|
119 | while (ix0 == 0) {
|
---|
120 | m -= 21;
|
---|
121 | ix0 |= (ix1>>11);
|
---|
122 | ix1 <<= 21;
|
---|
123 | }
|
---|
124 | for (i=0; (ix0&0x00100000) == 0; i++)
|
---|
125 | ix0<<=1;
|
---|
126 | m -= i - 1;
|
---|
127 | ix0 |= ix1>>(32-i);
|
---|
128 | ix1 <<= i;
|
---|
129 | }
|
---|
130 | m -= 1023; /* unbias exponent */
|
---|
131 | ix0 = (ix0&0x000fffff)|0x00100000;
|
---|
132 | if (m & 1) { /* odd m, double x to make it even */
|
---|
133 | ix0 += ix0 + ((ix1&sign)>>31);
|
---|
134 | ix1 += ix1;
|
---|
135 | }
|
---|
136 | m >>= 1; /* m = [m/2] */
|
---|
137 |
|
---|
138 | /* generate sqrt(x) bit by bit */
|
---|
139 | ix0 += ix0 + ((ix1&sign)>>31);
|
---|
140 | ix1 += ix1;
|
---|
141 | q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
|
---|
142 | r = 0x00200000; /* r = moving bit from right to left */
|
---|
143 |
|
---|
144 | while (r != 0) {
|
---|
145 | t = s0 + r;
|
---|
146 | if (t <= ix0) {
|
---|
147 | s0 = t + r;
|
---|
148 | ix0 -= t;
|
---|
149 | q += r;
|
---|
150 | }
|
---|
151 | ix0 += ix0 + ((ix1&sign)>>31);
|
---|
152 | ix1 += ix1;
|
---|
153 | r >>= 1;
|
---|
154 | }
|
---|
155 |
|
---|
156 | r = sign;
|
---|
157 | while (r != 0) {
|
---|
158 | t1 = s1 + r;
|
---|
159 | t = s0;
|
---|
160 | if (t < ix0 || (t == ix0 && t1 <= ix1)) {
|
---|
161 | s1 = t1 + r;
|
---|
162 | if ((t1&sign) == (uint32_t)sign && (s1&sign) == 0)
|
---|
163 | s0++;
|
---|
164 | ix0 -= t;
|
---|
165 | if (ix1 < t1)
|
---|
166 | ix0--;
|
---|
167 | ix1 -= t1;
|
---|
168 | q1 += r;
|
---|
169 | }
|
---|
170 | ix0 += ix0 + ((ix1&sign)>>31);
|
---|
171 | ix1 += ix1;
|
---|
172 | r >>= 1;
|
---|
173 | }
|
---|
174 |
|
---|
175 | /* use floating add to find out rounding direction */
|
---|
176 | if ((ix0|ix1) != 0) {
|
---|
177 | z = 1.0 - tiny; /* raise inexact flag */
|
---|
178 | if (z >= 1.0) {
|
---|
179 | z = 1.0 + tiny;
|
---|
180 | if (q1 == (uint32_t)0xffffffff) {
|
---|
181 | q1 = 0;
|
---|
182 | q++;
|
---|
183 | } else if (z > 1.0) {
|
---|
184 | if (q1 == (uint32_t)0xfffffffe)
|
---|
185 | q++;
|
---|
186 | q1 += 2;
|
---|
187 | } else
|
---|
188 | q1 += q1 & 1;
|
---|
189 | }
|
---|
190 | }
|
---|
191 | ix0 = (q>>1) + 0x3fe00000;
|
---|
192 | ix1 = q1>>1;
|
---|
193 | if (q&1)
|
---|
194 | ix1 |= sign;
|
---|
195 | ix0 += m << 20;
|
---|
196 | INSERT_WORDS(z, ix0, ix1);
|
---|
197 | return z;
|
---|
198 | }
|
---|
199 |
|
---|
200 | /*
|
---|
201 | Other methods (use floating-point arithmetic)
|
---|
202 | -------------
|
---|
203 | (This is a copy of a drafted paper by Prof W. Kahan
|
---|
204 | and K.C. Ng, written in May, 1986)
|
---|
205 | Two algorithms are given here to implement sqrt(x)
|
---|
206 | (IEEE double precision arithmetic) in software.
|
---|
207 | Both supply sqrt(x) correctly rounded. The first algorithm (in
|
---|
208 | Section A) uses newton iterations and involves four divisions.
|
---|
209 | The second one uses reciproot iterations to avoid division, but
|
---|
210 | requires more multiplications. Both algorithms need the ability
|
---|
211 | to chop results of arithmetic operations instead of round them,
|
---|
212 | and the INEXACT flag to indicate when an arithmetic operation
|
---|
213 | is executed exactly with no roundoff error, all part of the
|
---|
214 | standard (IEEE 754-1985). The ability to perform shift, add,
|
---|
215 | subtract and logical AND operations upon 32-bit words is needed
|
---|
216 | too, though not part of the standard.
|
---|
217 | A. sqrt(x) by Newton Iteration
|
---|
218 | (1) Initial approximation
|
---|
219 | Let x0 and x1 be the leading and the trailing 32-bit words of
|
---|
220 | a floating point number x (in IEEE double format) respectively
|
---|
221 | 1 11 52 ...widths
|
---|
222 | ------------------------------------------------------
|
---|
223 | x: |s| e | f |
|
---|
224 | ------------------------------------------------------
|
---|
225 | msb lsb msb lsb ...order
|
---|
226 |
|
---|
227 | ------------------------ ------------------------
|
---|
228 | x0: |s| e | f1 | x1: | f2 |
|
---|
229 | ------------------------ ------------------------
|
---|
230 | By performing shifts and subtracts on x0 and x1 (both regarded
|
---|
231 | as integers), we obtain an 8-bit approximation of sqrt(x) as
|
---|
232 | follows.
|
---|
233 | k := (x0>>1) + 0x1ff80000;
|
---|
234 | y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 bits
|
---|
235 | Here k is a 32-bit integer and T1[] is an integer array containing
|
---|
236 | correction terms. Now magically the floating value of y (y's
|
---|
237 | leading 32-bit word is y0, the value of its trailing word is 0)
|
---|
238 | approximates sqrt(x) to almost 8-bit.
|
---|
239 | Value of T1:
|
---|
240 | static int T1[32]= {
|
---|
241 | 0, 1024, 3062, 5746, 9193, 13348, 18162, 23592,
|
---|
242 | 29598, 36145, 43202, 50740, 58733, 67158, 75992, 85215,
|
---|
243 | 83599, 71378, 60428, 50647, 41945, 34246, 27478, 21581,
|
---|
244 | 16499, 12183, 8588, 5674, 3403, 1742, 661, 130,};
|
---|
245 | (2) Iterative refinement
|
---|
246 | Apply Heron's rule three times to y, we have y approximates
|
---|
247 | sqrt(x) to within 1 ulp (Unit in the Last Place):
|
---|
248 | y := (y+x/y)/2 ... almost 17 sig. bits
|
---|
249 | y := (y+x/y)/2 ... almost 35 sig. bits
|
---|
250 | y := y-(y-x/y)/2 ... within 1 ulp
|
---|
251 | Remark 1.
|
---|
252 | Another way to improve y to within 1 ulp is:
|
---|
253 | y := (y+x/y) ... almost 17 sig. bits to 2*sqrt(x)
|
---|
254 | y := y - 0x00100006 ... almost 18 sig. bits to sqrt(x)
|
---|
255 | 2
|
---|
256 | (x-y )*y
|
---|
257 | y := y + 2* ---------- ...within 1 ulp
|
---|
258 | 2
|
---|
259 | 3y + x
|
---|
260 | This formula has one division fewer than the one above; however,
|
---|
261 | it requires more multiplications and additions. Also x must be
|
---|
262 | scaled in advance to avoid spurious overflow in evaluating the
|
---|
263 | expression 3y*y+x. Hence it is not recommended uless division
|
---|
264 | is slow. If division is very slow, then one should use the
|
---|
265 | reciproot algorithm given in section B.
|
---|
266 | (3) Final adjustment
|
---|
267 | By twiddling y's last bit it is possible to force y to be
|
---|
268 | correctly rounded according to the prevailing rounding mode
|
---|
269 | as follows. Let r and i be copies of the rounding mode and
|
---|
270 | inexact flag before entering the square root program. Also we
|
---|
271 | use the expression y+-ulp for the next representable floating
|
---|
272 | numbers (up and down) of y. Note that y+-ulp = either fixed
|
---|
273 | point y+-1, or multiply y by nextafter(1,+-inf) in chopped
|
---|
274 | mode.
|
---|
275 | I := FALSE; ... reset INEXACT flag I
|
---|
276 | R := RZ; ... set rounding mode to round-toward-zero
|
---|
277 | z := x/y; ... chopped quotient, possibly inexact
|
---|
278 | If(not I) then { ... if the quotient is exact
|
---|
279 | if(z=y) {
|
---|
280 | I := i; ... restore inexact flag
|
---|
281 | R := r; ... restore rounded mode
|
---|
282 | return sqrt(x):=y.
|
---|
283 | } else {
|
---|
284 | z := z - ulp; ... special rounding
|
---|
285 | }
|
---|
286 | }
|
---|
287 | i := TRUE; ... sqrt(x) is inexact
|
---|
288 | If (r=RN) then z=z+ulp ... rounded-to-nearest
|
---|
289 | If (r=RP) then { ... round-toward-+inf
|
---|
290 | y = y+ulp; z=z+ulp;
|
---|
291 | }
|
---|
292 | y := y+z; ... chopped sum
|
---|
293 | y0:=y0-0x00100000; ... y := y/2 is correctly rounded.
|
---|
294 | I := i; ... restore inexact flag
|
---|
295 | R := r; ... restore rounded mode
|
---|
296 | return sqrt(x):=y.
|
---|
297 |
|
---|
298 | (4) Special cases
|
---|
299 | Square root of +inf, +-0, or NaN is itself;
|
---|
300 | Square root of a negative number is NaN with invalid signal.
|
---|
301 | B. sqrt(x) by Reciproot Iteration
|
---|
302 | (1) Initial approximation
|
---|
303 | Let x0 and x1 be the leading and the trailing 32-bit words of
|
---|
304 | a floating point number x (in IEEE double format) respectively
|
---|
305 | (see section A). By performing shifs and subtracts on x0 and y0,
|
---|
306 | we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
|
---|
307 | k := 0x5fe80000 - (x0>>1);
|
---|
308 | y0:= k - T2[63&(k>>14)]. ... y ~ 1/sqrt(x) to 7.8 bits
|
---|
309 | Here k is a 32-bit integer and T2[] is an integer array
|
---|
310 | containing correction terms. Now magically the floating
|
---|
311 | value of y (y's leading 32-bit word is y0, the value of
|
---|
312 | its trailing word y1 is set to zero) approximates 1/sqrt(x)
|
---|
313 | to almost 7.8-bit.
|
---|
314 | Value of T2:
|
---|
315 | static int T2[64]= {
|
---|
316 | 0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866,
|
---|
317 | 0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
|
---|
318 | 0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
|
---|
319 | 0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
|
---|
320 | 0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
|
---|
321 | 0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
|
---|
322 | 0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
|
---|
323 | 0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,};
|
---|
324 | (2) Iterative refinement
|
---|
325 | Apply Reciproot iteration three times to y and multiply the
|
---|
326 | result by x to get an approximation z that matches sqrt(x)
|
---|
327 | to about 1 ulp. To be exact, we will have
|
---|
328 | -1ulp < sqrt(x)-z<1.0625ulp.
|
---|
329 |
|
---|
330 | ... set rounding mode to Round-to-nearest
|
---|
331 | y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x)
|
---|
332 | y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
|
---|
333 | ... special arrangement for better accuracy
|
---|
334 | z := x*y ... 29 bits to sqrt(x), with z*y<1
|
---|
335 | z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x)
|
---|
336 | Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
|
---|
337 | (a) the term z*y in the final iteration is always less than 1;
|
---|
338 | (b) the error in the final result is biased upward so that
|
---|
339 | -1 ulp < sqrt(x) - z < 1.0625 ulp
|
---|
340 | instead of |sqrt(x)-z|<1.03125ulp.
|
---|
341 | (3) Final adjustment
|
---|
342 | By twiddling y's last bit it is possible to force y to be
|
---|
343 | correctly rounded according to the prevailing rounding mode
|
---|
344 | as follows. Let r and i be copies of the rounding mode and
|
---|
345 | inexact flag before entering the square root program. Also we
|
---|
346 | use the expression y+-ulp for the next representable floating
|
---|
347 | numbers (up and down) of y. Note that y+-ulp = either fixed
|
---|
348 | point y+-1, or multiply y by nextafter(1,+-inf) in chopped
|
---|
349 | mode.
|
---|
350 | R := RZ; ... set rounding mode to round-toward-zero
|
---|
351 | switch(r) {
|
---|
352 | case RN: ... round-to-nearest
|
---|
353 | if(x<= z*(z-ulp)...chopped) z = z - ulp; else
|
---|
354 | if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
|
---|
355 | break;
|
---|
356 | case RZ:case RM: ... round-to-zero or round-to--inf
|
---|
357 | R:=RP; ... reset rounding mod to round-to-+inf
|
---|
358 | if(x<z*z ... rounded up) z = z - ulp; else
|
---|
359 | if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
|
---|
360 | break;
|
---|
361 | case RP: ... round-to-+inf
|
---|
362 | if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
|
---|
363 | if(x>z*z ...chopped) z = z+ulp;
|
---|
364 | break;
|
---|
365 | }
|
---|
366 | Remark 3. The above comparisons can be done in fixed point. For
|
---|
367 | example, to compare x and w=z*z chopped, it suffices to compare
|
---|
368 | x1 and w1 (the trailing parts of x and w), regarding them as
|
---|
369 | two's complement integers.
|
---|
370 | ...Is z an exact square root?
|
---|
371 | To determine whether z is an exact square root of x, let z1 be the
|
---|
372 | trailing part of z, and also let x0 and x1 be the leading and
|
---|
373 | trailing parts of x.
|
---|
374 | If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0
|
---|
375 | I := 1; ... Raise Inexact flag: z is not exact
|
---|
376 | else {
|
---|
377 | j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2
|
---|
378 | k := z1 >> 26; ... get z's 25-th and 26-th
|
---|
379 | fraction bits
|
---|
380 | I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
|
---|
381 | }
|
---|
382 | R:= r ... restore rounded mode
|
---|
383 | return sqrt(x):=z.
|
---|
384 | If multiplication is cheaper then the foregoing red tape, the
|
---|
385 | Inexact flag can be evaluated by
|
---|
386 | I := i;
|
---|
387 | I := (z*z!=x) or I.
|
---|
388 | Note that z*z can overwrite I; this value must be sensed if it is
|
---|
389 | True.
|
---|
390 | Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
|
---|
391 | zero.
|
---|
392 | --------------------
|
---|
393 | z1: | f2 |
|
---|
394 | --------------------
|
---|
395 | bit 31 bit 0
|
---|
396 | Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
|
---|
397 | or even of logb(x) have the following relations:
|
---|
398 | -------------------------------------------------
|
---|
399 | bit 27,26 of z1 bit 1,0 of x1 logb(x)
|
---|
400 | -------------------------------------------------
|
---|
401 | 00 00 odd and even
|
---|
402 | 01 01 even
|
---|
403 | 10 10 odd
|
---|
404 | 10 00 even
|
---|
405 | 11 01 even
|
---|
406 | -------------------------------------------------
|
---|
407 | (4) Special cases (see (4) of Section A).
|
---|
408 | */
|
---|
409 |
|
---|
410 | /** @}
|
---|
411 | */
|
---|