source: mainline/uspace/lib/math/generic/sqrt.c@ ca113cf

Last change on this file since ca113cf was ca113cf, checked in by Maurizio Lombardi <mlombard@…>, 4 years ago

math: sync sqrt() to FreeBSD 11.2

  • Property mode set to 100644
File size: 14.0 KB
RevLine 
[048a6e9]1/*
2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4 *
5 * Developed at SunSoft, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
8 * is preserved.
9 * ====================================================
10 */
11
12/** @addtogroup libmath
13 * @{
14 */
15/** @file sqrt mathematical function
16 */
17
18
19/* __ieee754_sqrt(x)
20 * Return correctly rounded sqrt.
21 * ------------------------------------------
22 * | Use the hardware sqrt if you have one |
23 * ------------------------------------------
24 * Method:
25 * Bit by bit method using integer arithmetic. (Slow, but portable)
26 * 1. Normalization
27 * Scale x to y in [1,4) with even powers of 2:
28 * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
29 * sqrt(x) = 2^k * sqrt(y)
30 * 2. Bit by bit computation
31 * Let q = sqrt(y) truncated to i bit after binary point (q = 1),
32 * i 0
33 * i+1 2
34 * s = 2*q , and y = 2 * ( y - q ). (1)
35 * i i i i
36 *
37 * To compute q from q , one checks whether
38 * i+1 i
39 *
40 * -(i+1) 2
41 * (q + 2 ) <= y. (2)
42 * i
43 * -(i+1)
44 * If (2) is false, then q = q ; otherwise q = q + 2 .
45 * i+1 i i+1 i
46 *
47 * With some algebric manipulation, it is not difficult to see
48 * that (2) is equivalent to
49 * -(i+1)
50 * s + 2 <= y (3)
51 * i i
52 *
53 * The advantage of (3) is that s and y can be computed by
54 * i i
55 * the following recurrence formula:
56 * if (3) is false
57 *
58 * s = s , y = y ; (4)
59 * i+1 i i+1 i
60 *
61 * otherwise,
62 * -i -(i+1)
63 * s = s + 2 , y = y - s - 2 (5)
64 * i+1 i i+1 i i
65 *
66 * One may easily use induction to prove (4) and (5).
67 * Note. Since the left hand side of (3) contain only i+2 bits,
68 * it does not necessary to do a full (53-bit) comparison
69 * in (3).
70 * 3. Final rounding
71 * After generating the 53 bits result, we compute one more bit.
72 * Together with the remainder, we can decide whether the
73 * result is exact, bigger than 1/2ulp, or less than 1/2ulp
74 * (it will never equal to 1/2ulp).
75 * The rounding mode can be detected by checking whether
76 * huge + tiny is equal to huge, and whether huge - tiny is
77 * equal to huge for some floating point number "huge" and "tiny".
78 *
79 * Special cases:
80 * sqrt(+-0) = +-0 ... exact
81 * sqrt(inf) = inf
82 * sqrt(-ve) = NaN ... with invalid signal
83 * sqrt(NaN) = NaN ... with invalid signal for signaling NaN
84 *
85 * Other methods : see the appended file at the end of the program below.
86 *---------------
87 */
88
89#include <math.h>
90#include <stdint.h>
91
92#include "internal.h"
93
[ca113cf]94static const double one = 1.0, tiny=1.0e-300;
[048a6e9]95
96double sqrt(double x)
97{
98 double z;
99 int32_t sign = (int)0x80000000;
100 int32_t ix0,s0,q,m,t,i;
101 uint32_t r,t1,s1,ix1,q1;
102
[ca113cf]103 EXTRACT_WORDS(ix0,ix1,x);
[048a6e9]104
[ca113cf]105 /* take care of Inf and NaN */
106 if((ix0&0x7ff00000)==0x7ff00000) {
107 return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
108 sqrt(-inf)=sNaN */
109 }
110 /* take care of zero */
111 if(ix0<=0) {
112 if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
113 else if(ix0<0)
114 return (x-x)/(x-x); /* sqrt(-ve) = sNaN */
[048a6e9]115 }
[ca113cf]116 /* normalize x */
117 m = (ix0>>20);
118 if(m==0) { /* subnormal x */
119 while(ix0==0) {
120 m -= 21;
121 ix0 |= (ix1>>11); ix1 <<= 21;
122 }
123 for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
124 m -= i-1;
125 ix0 |= (ix1>>(32-i));
126 ix1 <<= i;
[048a6e9]127 }
[ca113cf]128 m -= 1023; /* unbias exponent */
[048a6e9]129 ix0 = (ix0&0x000fffff)|0x00100000;
[ca113cf]130 if(m&1){ /* odd m, double x to make it even */
131 ix0 += ix0 + ((ix1&sign)>>31);
132 ix1 += ix1;
[048a6e9]133 }
[ca113cf]134 m >>= 1; /* m = [m/2] */
[048a6e9]135
[ca113cf]136 /* generate sqrt(x) bit by bit */
[048a6e9]137 ix0 += ix0 + ((ix1&sign)>>31);
138 ix1 += ix1;
[ca113cf]139 q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
140 r = 0x00200000; /* r = moving bit from right to left */
[048a6e9]141
[ca113cf]142 while(r!=0) {
143 t = s0+r;
144 if(t<=ix0) {
145 s0 = t+r;
146 ix0 -= t;
147 q += r;
148 }
149 ix0 += ix0 + ((ix1&sign)>>31);
150 ix1 += ix1;
151 r>>=1;
[048a6e9]152 }
153
154 r = sign;
[ca113cf]155 while(r!=0) {
156 t1 = s1+r;
157 t = s0;
158 if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
159 s1 = t1+r;
160 if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
161 ix0 -= t;
162 if (ix1 < t1) ix0 -= 1;
163 ix1 -= t1;
164 q1 += r;
165 }
166 ix0 += ix0 + ((ix1&sign)>>31);
167 ix1 += ix1;
168 r>>=1;
[048a6e9]169 }
170
[ca113cf]171 /* use floating add to find out rounding direction */
172 if((ix0|ix1)!=0) {
173 z = one-tiny; /* trigger inexact flag */
174 if (z>=one) {
175 z = one+tiny;
176 if (q1==(uint32_t)0xffffffff) { q1=0; q += 1;}
177 else if (z>one) {
178 if (q1==(uint32_t)0xfffffffe) q+=1;
179 q1+=2;
180 } else
181 q1 += (q1&1);
182 }
[048a6e9]183 }
[ca113cf]184 ix0 = (q>>1)+0x3fe00000;
185 ix1 = q1>>1;
186 if ((q&1)==1) ix1 |= sign;
187 ix0 += (m <<20);
188 INSERT_WORDS(z,ix0,ix1);
[048a6e9]189 return z;
190}
191
192/*
193Other methods (use floating-point arithmetic)
194-------------
195(This is a copy of a drafted paper by Prof W. Kahan
196and K.C. Ng, written in May, 1986)
197 Two algorithms are given here to implement sqrt(x)
198 (IEEE double precision arithmetic) in software.
199 Both supply sqrt(x) correctly rounded. The first algorithm (in
200 Section A) uses newton iterations and involves four divisions.
201 The second one uses reciproot iterations to avoid division, but
202 requires more multiplications. Both algorithms need the ability
203 to chop results of arithmetic operations instead of round them,
204 and the INEXACT flag to indicate when an arithmetic operation
205 is executed exactly with no roundoff error, all part of the
206 standard (IEEE 754-1985). The ability to perform shift, add,
207 subtract and logical AND operations upon 32-bit words is needed
208 too, though not part of the standard.
209A. sqrt(x) by Newton Iteration
210 (1) Initial approximation
211 Let x0 and x1 be the leading and the trailing 32-bit words of
212 a floating point number x (in IEEE double format) respectively
213 1 11 52 ...widths
214 ------------------------------------------------------
215 x: |s| e | f |
216 ------------------------------------------------------
217 msb lsb msb lsb ...order
218
219 ------------------------ ------------------------
220 x0: |s| e | f1 | x1: | f2 |
221 ------------------------ ------------------------
222 By performing shifts and subtracts on x0 and x1 (both regarded
223 as integers), we obtain an 8-bit approximation of sqrt(x) as
224 follows.
225 k := (x0>>1) + 0x1ff80000;
226 y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 bits
227 Here k is a 32-bit integer and T1[] is an integer array containing
228 correction terms. Now magically the floating value of y (y's
229 leading 32-bit word is y0, the value of its trailing word is 0)
230 approximates sqrt(x) to almost 8-bit.
231 Value of T1:
232 static int T1[32]= {
233 0, 1024, 3062, 5746, 9193, 13348, 18162, 23592,
234 29598, 36145, 43202, 50740, 58733, 67158, 75992, 85215,
235 83599, 71378, 60428, 50647, 41945, 34246, 27478, 21581,
236 16499, 12183, 8588, 5674, 3403, 1742, 661, 130,};
237 (2) Iterative refinement
238 Apply Heron's rule three times to y, we have y approximates
239 sqrt(x) to within 1 ulp (Unit in the Last Place):
240 y := (y+x/y)/2 ... almost 17 sig. bits
241 y := (y+x/y)/2 ... almost 35 sig. bits
242 y := y-(y-x/y)/2 ... within 1 ulp
243 Remark 1.
244 Another way to improve y to within 1 ulp is:
245 y := (y+x/y) ... almost 17 sig. bits to 2*sqrt(x)
246 y := y - 0x00100006 ... almost 18 sig. bits to sqrt(x)
247 2
248 (x-y )*y
249 y := y + 2* ---------- ...within 1 ulp
250 2
251 3y + x
252 This formula has one division fewer than the one above; however,
253 it requires more multiplications and additions. Also x must be
254 scaled in advance to avoid spurious overflow in evaluating the
255 expression 3y*y+x. Hence it is not recommended uless division
256 is slow. If division is very slow, then one should use the
257 reciproot algorithm given in section B.
258 (3) Final adjustment
259 By twiddling y's last bit it is possible to force y to be
260 correctly rounded according to the prevailing rounding mode
261 as follows. Let r and i be copies of the rounding mode and
262 inexact flag before entering the square root program. Also we
263 use the expression y+-ulp for the next representable floating
264 numbers (up and down) of y. Note that y+-ulp = either fixed
265 point y+-1, or multiply y by nextafter(1,+-inf) in chopped
266 mode.
267 I := FALSE; ... reset INEXACT flag I
268 R := RZ; ... set rounding mode to round-toward-zero
269 z := x/y; ... chopped quotient, possibly inexact
270 If(not I) then { ... if the quotient is exact
271 if(z=y) {
272 I := i; ... restore inexact flag
273 R := r; ... restore rounded mode
274 return sqrt(x):=y.
275 } else {
276 z := z - ulp; ... special rounding
277 }
278 }
279 i := TRUE; ... sqrt(x) is inexact
280 If (r=RN) then z=z+ulp ... rounded-to-nearest
281 If (r=RP) then { ... round-toward-+inf
282 y = y+ulp; z=z+ulp;
283 }
284 y := y+z; ... chopped sum
285 y0:=y0-0x00100000; ... y := y/2 is correctly rounded.
286 I := i; ... restore inexact flag
287 R := r; ... restore rounded mode
288 return sqrt(x):=y.
289
290 (4) Special cases
291 Square root of +inf, +-0, or NaN is itself;
292 Square root of a negative number is NaN with invalid signal.
293B. sqrt(x) by Reciproot Iteration
294 (1) Initial approximation
295 Let x0 and x1 be the leading and the trailing 32-bit words of
296 a floating point number x (in IEEE double format) respectively
297 (see section A). By performing shifs and subtracts on x0 and y0,
298 we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
299 k := 0x5fe80000 - (x0>>1);
300 y0:= k - T2[63&(k>>14)]. ... y ~ 1/sqrt(x) to 7.8 bits
301 Here k is a 32-bit integer and T2[] is an integer array
302 containing correction terms. Now magically the floating
303 value of y (y's leading 32-bit word is y0, the value of
304 its trailing word y1 is set to zero) approximates 1/sqrt(x)
305 to almost 7.8-bit.
306 Value of T2:
307 static int T2[64]= {
308 0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866,
309 0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
310 0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
311 0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
312 0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
313 0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
314 0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
315 0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,};
316 (2) Iterative refinement
317 Apply Reciproot iteration three times to y and multiply the
318 result by x to get an approximation z that matches sqrt(x)
319 to about 1 ulp. To be exact, we will have
320 -1ulp < sqrt(x)-z<1.0625ulp.
321
322 ... set rounding mode to Round-to-nearest
323 y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x)
324 y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
325 ... special arrangement for better accuracy
326 z := x*y ... 29 bits to sqrt(x), with z*y<1
327 z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x)
328 Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
329 (a) the term z*y in the final iteration is always less than 1;
330 (b) the error in the final result is biased upward so that
331 -1 ulp < sqrt(x) - z < 1.0625 ulp
332 instead of |sqrt(x)-z|<1.03125ulp.
333 (3) Final adjustment
334 By twiddling y's last bit it is possible to force y to be
335 correctly rounded according to the prevailing rounding mode
336 as follows. Let r and i be copies of the rounding mode and
337 inexact flag before entering the square root program. Also we
338 use the expression y+-ulp for the next representable floating
339 numbers (up and down) of y. Note that y+-ulp = either fixed
340 point y+-1, or multiply y by nextafter(1,+-inf) in chopped
341 mode.
342 R := RZ; ... set rounding mode to round-toward-zero
343 switch(r) {
344 case RN: ... round-to-nearest
345 if(x<= z*(z-ulp)...chopped) z = z - ulp; else
346 if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
347 break;
348 case RZ:case RM: ... round-to-zero or round-to--inf
349 R:=RP; ... reset rounding mod to round-to-+inf
350 if(x<z*z ... rounded up) z = z - ulp; else
351 if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
352 break;
353 case RP: ... round-to-+inf
354 if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
355 if(x>z*z ...chopped) z = z+ulp;
356 break;
357 }
358 Remark 3. The above comparisons can be done in fixed point. For
359 example, to compare x and w=z*z chopped, it suffices to compare
360 x1 and w1 (the trailing parts of x and w), regarding them as
361 two's complement integers.
362 ...Is z an exact square root?
363 To determine whether z is an exact square root of x, let z1 be the
364 trailing part of z, and also let x0 and x1 be the leading and
365 trailing parts of x.
366 If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0
367 I := 1; ... Raise Inexact flag: z is not exact
368 else {
369 j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2
370 k := z1 >> 26; ... get z's 25-th and 26-th
371 fraction bits
372 I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
373 }
374 R:= r ... restore rounded mode
375 return sqrt(x):=z.
376 If multiplication is cheaper then the foregoing red tape, the
377 Inexact flag can be evaluated by
378 I := i;
379 I := (z*z!=x) or I.
380 Note that z*z can overwrite I; this value must be sensed if it is
381 True.
382 Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
383 zero.
384 --------------------
385 z1: | f2 |
386 --------------------
387 bit 31 bit 0
388 Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
389 or even of logb(x) have the following relations:
390 -------------------------------------------------
391 bit 27,26 of z1 bit 1,0 of x1 logb(x)
392 -------------------------------------------------
393 00 00 odd and even
394 01 01 even
395 10 10 odd
396 10 00 even
397 11 01 even
398 -------------------------------------------------
399 (4) Special cases (see (4) of Section A).
400*/
401
402/** @}
403 */
Note: See TracBrowser for help on using the repository browser.