1 | /*
|
---|
2 | * Copyright (c) 2015 Jiri Svoboda
|
---|
3 | * Copyright (c) 2014 Martin Decky
|
---|
4 | * All rights reserved.
|
---|
5 | *
|
---|
6 | * Redistribution and use in source and binary forms, with or without
|
---|
7 | * modification, are permitted provided that the following conditions
|
---|
8 | * are met:
|
---|
9 | *
|
---|
10 | * - Redistributions of source code must retain the above copyright
|
---|
11 | * notice, this list of conditions and the following disclaimer.
|
---|
12 | * - Redistributions in binary form must reproduce the above copyright
|
---|
13 | * notice, this list of conditions and the following disclaimer in the
|
---|
14 | * documentation and/or other materials provided with the distribution.
|
---|
15 | * - The name of the author may not be used to endorse or promote products
|
---|
16 | * derived from this software without specific prior written permission.
|
---|
17 | *
|
---|
18 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
19 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
20 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
21 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
22 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
23 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
24 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
25 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
26 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
27 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
28 | */
|
---|
29 |
|
---|
30 | /** @addtogroup libmath
|
---|
31 | * @{
|
---|
32 | */
|
---|
33 | /** @file
|
---|
34 | */
|
---|
35 |
|
---|
36 | #include <log.h>
|
---|
37 | #include <math.h>
|
---|
38 |
|
---|
39 | #define TAYLOR_DEGREE_32 31
|
---|
40 | #define TAYLOR_DEGREE_64 63
|
---|
41 |
|
---|
42 | /** log(1 - arg) approximation by Taylor series (32-bit floating point)
|
---|
43 | *
|
---|
44 | * Compute the approximation of log(1 - arg) by a Taylor
|
---|
45 | * series (using the first TAYLOR_DEGREE terms).
|
---|
46 | * arg must be within [-1, 1].
|
---|
47 | *
|
---|
48 | * @param arg Argument.
|
---|
49 | *
|
---|
50 | * @return log(1 - arg)
|
---|
51 | *
|
---|
52 | */
|
---|
53 | static float32_t taylor_log_32(float32_t arg)
|
---|
54 | {
|
---|
55 | float32_t ret = 0;
|
---|
56 | float32_t num = 1;
|
---|
57 |
|
---|
58 | for (unsigned int i = 1; i <= TAYLOR_DEGREE_32; i++) {
|
---|
59 | num *= arg;
|
---|
60 |
|
---|
61 | if ((i % 2) == 0)
|
---|
62 | ret += num / i;
|
---|
63 | else
|
---|
64 | ret -= num / i;
|
---|
65 | }
|
---|
66 |
|
---|
67 | return ret;
|
---|
68 | }
|
---|
69 |
|
---|
70 | /** log(1 - arg) approximation by Taylor series (64-bit floating point)
|
---|
71 | *
|
---|
72 | * Compute the approximation of log(1 - arg) by a Taylor
|
---|
73 | * series (using the first TAYLOR_DEGREE terms).
|
---|
74 | * arg must be within [-1, 1].
|
---|
75 | *
|
---|
76 | * @param arg Argument.
|
---|
77 | *
|
---|
78 | * @return log(1 - arg)
|
---|
79 | *
|
---|
80 | */
|
---|
81 | static float64_t taylor_log_64(float64_t arg)
|
---|
82 | {
|
---|
83 | float64_t ret = 0;
|
---|
84 | float64_t num = 1;
|
---|
85 |
|
---|
86 | for (unsigned int i = 1; i <= TAYLOR_DEGREE_64; i++) {
|
---|
87 | num *= arg;
|
---|
88 |
|
---|
89 | if ((i % 2) == 0)
|
---|
90 | ret += num / i;
|
---|
91 | else
|
---|
92 | ret -= num / i;
|
---|
93 | }
|
---|
94 |
|
---|
95 | return ret;
|
---|
96 | }
|
---|
97 |
|
---|
98 | /** Natural logarithm (32-bit floating point)
|
---|
99 | *
|
---|
100 | * @param arg Argument.
|
---|
101 | *
|
---|
102 | * @return Logarithm.
|
---|
103 | *
|
---|
104 | */
|
---|
105 | float32_t float32_log(float32_t arg)
|
---|
106 | {
|
---|
107 | float32_u m;
|
---|
108 | int e;
|
---|
109 |
|
---|
110 | m.val = arg;
|
---|
111 | /*
|
---|
112 | * Factor arg into m * 2^e where m has exponent -1,
|
---|
113 | * which means it is in [1.0000..e-1, 1.1111..e-1] = [0.5, 1.0]
|
---|
114 | * so the argument to taylor_log_32 will be in [0, 0.5]
|
---|
115 | * ensuring that we get at least one extra bit of precision
|
---|
116 | * in each iteration.
|
---|
117 | */
|
---|
118 | e = m.data.parts.exp - (FLOAT32_BIAS - 1);
|
---|
119 | m.data.parts.exp = FLOAT32_BIAS - 1;
|
---|
120 |
|
---|
121 | /*
|
---|
122 | * arg = m * 2^e ; log(arg) = log(m) + log(2^e) =
|
---|
123 | * log(m) + log2(2^e) / log2(e) = log(m) + e / log2(e)
|
---|
124 | */
|
---|
125 | return - taylor_log_32(m.val - 1.0) + e / M_LOG2E;
|
---|
126 | }
|
---|
127 |
|
---|
128 | /** Natural logarithm (64-bit floating point)
|
---|
129 | *
|
---|
130 | * @param arg Argument.
|
---|
131 | *
|
---|
132 | * @return Logarithm.
|
---|
133 | *
|
---|
134 | */
|
---|
135 | float64_t float64_log(float64_t arg)
|
---|
136 | {
|
---|
137 | float64_u m;
|
---|
138 | int e;
|
---|
139 |
|
---|
140 | m.val = arg;
|
---|
141 |
|
---|
142 | /*
|
---|
143 | * Factor arg into m * 2^e where m has exponent -1,
|
---|
144 | * which means it is in [1.0000..e-1, 1.1111..e-1] = [0.5, 1.0]
|
---|
145 | * so the argument to taylor_log_32 will be in [0, 0.5]
|
---|
146 | * ensuring that we get at least one extra bit of precision
|
---|
147 | * in each iteration.
|
---|
148 | */
|
---|
149 | e = m.data.parts.exp - (FLOAT64_BIAS - 1);
|
---|
150 | m.data.parts.exp = FLOAT64_BIAS - 1;
|
---|
151 |
|
---|
152 | /*
|
---|
153 | * arg = m * 2^e ; log(arg) = log(m) + log(2^e) =
|
---|
154 | * log(m) + log2(2^e) / log2(e) = log(m) + e / log2(e)
|
---|
155 | */
|
---|
156 | return - taylor_log_64(m.val - 1.0) + e / M_LOG2E;
|
---|
157 | }
|
---|
158 |
|
---|
159 | /** @}
|
---|
160 | */
|
---|