source: mainline/uspace/lib/libc/malloc/malloc.c@ 5d4e90f0

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 5d4e90f0 was 00acd66, checked in by Jakub Jermar <jakub@…>, 18 years ago

New, better-structured, directory layout for uspace.

  • Property mode set to 100644
File size: 153.3 KB
Line 
1/*
2 This is a version (aka dlmalloc) of malloc/free/realloc written by
3 Doug Lea and released to the public domain, as explained at
4 http://creativecommons.org/licenses/publicdomain. Send questions,
5 comments, complaints, performance data, etc to dl@cs.oswego.edu
6
7* Version 2.8.3 Thu Sep 22 11:16:15 2005 Doug Lea (dl at gee)
8
9 Note: There may be an updated version of this malloc obtainable at
10 ftp://gee.cs.oswego.edu/pub/misc/malloc.c
11 Check before installing!
12
13* Quickstart
14
15 This library is all in one file to simplify the most common usage:
16 ftp it, compile it (-O3), and link it into another program. All of
17 the compile-time options default to reasonable values for use on
18 most platforms. You might later want to step through various
19 compile-time and dynamic tuning options.
20
21 For convenience, an include file for code using this malloc is at:
22 ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.3.h
23 You don't really need this .h file unless you call functions not
24 defined in your system include files. The .h file contains only the
25 excerpts from this file needed for using this malloc on ANSI C/C++
26 systems, so long as you haven't changed compile-time options about
27 naming and tuning parameters. If you do, then you can create your
28 own malloc.h that does include all settings by cutting at the point
29 indicated below. Note that you may already by default be using a C
30 library containing a malloc that is based on some version of this
31 malloc (for example in linux). You might still want to use the one
32 in this file to customize settings or to avoid overheads associated
33 with library versions.
34
35* Vital statistics:
36
37 Supported pointer/size_t representation: 4 or 8 bytes
38 size_t MUST be an unsigned type of the same width as
39 pointers. (If you are using an ancient system that declares
40 size_t as a signed type, or need it to be a different width
41 than pointers, you can use a previous release of this malloc
42 (e.g. 2.7.2) supporting these.)
43
44 Alignment: 8 bytes (default)
45 This suffices for nearly all current machines and C compilers.
46 However, you can define MALLOC_ALIGNMENT to be wider than this
47 if necessary (up to 128bytes), at the expense of using more space.
48
49 Minimum overhead per allocated chunk: 4 or 8 bytes (if 4byte sizes)
50 8 or 16 bytes (if 8byte sizes)
51 Each malloced chunk has a hidden word of overhead holding size
52 and status information, and additional cross-check word
53 if FOOTERS is defined.
54
55 Minimum allocated size: 4-byte ptrs: 16 bytes (including overhead)
56 8-byte ptrs: 32 bytes (including overhead)
57
58 Even a request for zero bytes (i.e., malloc(0)) returns a
59 pointer to something of the minimum allocatable size.
60 The maximum overhead wastage (i.e., number of extra bytes
61 allocated than were requested in malloc) is less than or equal
62 to the minimum size, except for requests >= mmap_threshold that
63 are serviced via mmap(), where the worst case wastage is about
64 32 bytes plus the remainder from a system page (the minimal
65 mmap unit); typically 4096 or 8192 bytes.
66
67 Security: static-safe; optionally more or less
68 The "security" of malloc refers to the ability of malicious
69 code to accentuate the effects of errors (for example, freeing
70 space that is not currently malloc'ed or overwriting past the
71 ends of chunks) in code that calls malloc. This malloc
72 guarantees not to modify any memory locations below the base of
73 heap, i.e., static variables, even in the presence of usage
74 errors. The routines additionally detect most improper frees
75 and reallocs. All this holds as long as the static bookkeeping
76 for malloc itself is not corrupted by some other means. This
77 is only one aspect of security -- these checks do not, and
78 cannot, detect all possible programming errors.
79
80 If FOOTERS is defined nonzero, then each allocated chunk
81 carries an additional check word to verify that it was malloced
82 from its space. These check words are the same within each
83 execution of a program using malloc, but differ across
84 executions, so externally crafted fake chunks cannot be
85 freed. This improves security by rejecting frees/reallocs that
86 could corrupt heap memory, in addition to the checks preventing
87 writes to statics that are always on. This may further improve
88 security at the expense of time and space overhead. (Note that
89 FOOTERS may also be worth using with MSPACES.)
90
91 By default detected errors cause the program to abort (calling
92 "abort()"). You can override this to instead proceed past
93 errors by defining PROCEED_ON_ERROR. In this case, a bad free
94 has no effect, and a malloc that encounters a bad address
95 caused by user overwrites will ignore the bad address by
96 dropping pointers and indices to all known memory. This may
97 be appropriate for programs that should continue if at all
98 possible in the face of programming errors, although they may
99 run out of memory because dropped memory is never reclaimed.
100
101 If you don't like either of these options, you can define
102 CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything
103 else. And if if you are sure that your program using malloc has
104 no errors or vulnerabilities, you can define INSECURE to 1,
105 which might (or might not) provide a small performance improvement.
106
107 Thread-safety: NOT thread-safe unless USE_LOCKS defined
108 When USE_LOCKS is defined, each public call to malloc, free,
109 etc is surrounded with either a pthread mutex or a win32
110 spinlock (depending on WIN32). This is not especially fast, and
111 can be a major bottleneck. It is designed only to provide
112 minimal protection in concurrent environments, and to provide a
113 basis for extensions. If you are using malloc in a concurrent
114 program, consider instead using ptmalloc, which is derived from
115 a version of this malloc. (See http://www.malloc.de).
116
117 System requirements: Any combination of MORECORE and/or MMAP/MUNMAP
118 This malloc can use unix sbrk or any emulation (invoked using
119 the CALL_MORECORE macro) and/or mmap/munmap or any emulation
120 (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system
121 memory. On most unix systems, it tends to work best if both
122 MORECORE and MMAP are enabled. On Win32, it uses emulations
123 based on VirtualAlloc. It also uses common C library functions
124 like memset.
125
126 Compliance: I believe it is compliant with the Single Unix Specification
127 (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably
128 others as well.
129
130* Overview of algorithms
131
132 This is not the fastest, most space-conserving, most portable, or
133 most tunable malloc ever written. However it is among the fastest
134 while also being among the most space-conserving, portable and
135 tunable. Consistent balance across these factors results in a good
136 general-purpose allocator for malloc-intensive programs.
137
138 In most ways, this malloc is a best-fit allocator. Generally, it
139 chooses the best-fitting existing chunk for a request, with ties
140 broken in approximately least-recently-used order. (This strategy
141 normally maintains low fragmentation.) However, for requests less
142 than 256bytes, it deviates from best-fit when there is not an
143 exactly fitting available chunk by preferring to use space adjacent
144 to that used for the previous small request, as well as by breaking
145 ties in approximately most-recently-used order. (These enhance
146 locality of series of small allocations.) And for very large requests
147 (>= 256Kb by default), it relies on system memory mapping
148 facilities, if supported. (This helps avoid carrying around and
149 possibly fragmenting memory used only for large chunks.)
150
151 All operations (except malloc_stats and mallinfo) have execution
152 times that are bounded by a constant factor of the number of bits in
153 a size_t, not counting any clearing in calloc or copying in realloc,
154 or actions surrounding MORECORE and MMAP that have times
155 proportional to the number of non-contiguous regions returned by
156 system allocation routines, which is often just 1.
157
158 The implementation is not very modular and seriously overuses
159 macros. Perhaps someday all C compilers will do as good a job
160 inlining modular code as can now be done by brute-force expansion,
161 but now, enough of them seem not to.
162
163 Some compilers issue a lot of warnings about code that is
164 dead/unreachable only on some platforms, and also about intentional
165 uses of negation on unsigned types. All known cases of each can be
166 ignored.
167
168 For a longer but out of date high-level description, see
169 http://gee.cs.oswego.edu/dl/html/malloc.html
170
171* MSPACES
172 If MSPACES is defined, then in addition to malloc, free, etc.,
173 this file also defines mspace_malloc, mspace_free, etc. These
174 are versions of malloc routines that take an "mspace" argument
175 obtained using create_mspace, to control all internal bookkeeping.
176 If ONLY_MSPACES is defined, only these versions are compiled.
177 So if you would like to use this allocator for only some allocations,
178 and your system malloc for others, you can compile with
179 ONLY_MSPACES and then do something like...
180 static mspace mymspace = create_mspace(0,0); // for example
181 #define mymalloc(bytes) mspace_malloc(mymspace, bytes)
182
183 (Note: If you only need one instance of an mspace, you can instead
184 use "USE_DL_PREFIX" to relabel the global malloc.)
185
186 You can similarly create thread-local allocators by storing
187 mspaces as thread-locals. For example:
188 static __thread mspace tlms = 0;
189 void* tlmalloc(size_t bytes) {
190 if (tlms == 0) tlms = create_mspace(0, 0);
191 return mspace_malloc(tlms, bytes);
192 }
193 void tlfree(void* mem) { mspace_free(tlms, mem); }
194
195 Unless FOOTERS is defined, each mspace is completely independent.
196 You cannot allocate from one and free to another (although
197 conformance is only weakly checked, so usage errors are not always
198 caught). If FOOTERS is defined, then each chunk carries around a tag
199 indicating its originating mspace, and frees are directed to their
200 originating spaces.
201
202 ------------------------- Compile-time options ---------------------------
203
204Be careful in setting #define values for numerical constants of type
205size_t. On some systems, literal values are not automatically extended
206to size_t precision unless they are explicitly casted.
207
208WIN32 default: defined if _WIN32 defined
209 Defining WIN32 sets up defaults for MS environment and compilers.
210 Otherwise defaults are for unix.
211
212MALLOC_ALIGNMENT default: (size_t)8
213 Controls the minimum alignment for malloc'ed chunks. It must be a
214 power of two and at least 8, even on machines for which smaller
215 alignments would suffice. It may be defined as larger than this
216 though. Note however that code and data structures are optimized for
217 the case of 8-byte alignment.
218
219MSPACES default: 0 (false)
220 If true, compile in support for independent allocation spaces.
221 This is only supported if HAVE_MMAP is true.
222
223ONLY_MSPACES default: 0 (false)
224 If true, only compile in mspace versions, not regular versions.
225
226USE_LOCKS default: 0 (false)
227 Causes each call to each public routine to be surrounded with
228 pthread or WIN32 mutex lock/unlock. (If set true, this can be
229 overridden on a per-mspace basis for mspace versions.)
230
231FOOTERS default: 0
232 If true, provide extra checking and dispatching by placing
233 information in the footers of allocated chunks. This adds
234 space and time overhead.
235
236INSECURE default: 0
237 If true, omit checks for usage errors and heap space overwrites.
238
239USE_DL_PREFIX default: NOT defined
240 Causes compiler to prefix all public routines with the string 'dl'.
241 This can be useful when you only want to use this malloc in one part
242 of a program, using your regular system malloc elsewhere.
243
244ABORT default: defined as abort()
245 Defines how to abort on failed checks. On most systems, a failed
246 check cannot die with an "assert" or even print an informative
247 message, because the underlying print routines in turn call malloc,
248 which will fail again. Generally, the best policy is to simply call
249 abort(). It's not very useful to do more than this because many
250 errors due to overwriting will show up as address faults (null, odd
251 addresses etc) rather than malloc-triggered checks, so will also
252 abort. Also, most compilers know that abort() does not return, so
253 can better optimize code conditionally calling it.
254
255PROCEED_ON_ERROR default: defined as 0 (false)
256 Controls whether detected bad addresses cause them to bypassed
257 rather than aborting. If set, detected bad arguments to free and
258 realloc are ignored. And all bookkeeping information is zeroed out
259 upon a detected overwrite of freed heap space, thus losing the
260 ability to ever return it from malloc again, but enabling the
261 application to proceed. If PROCEED_ON_ERROR is defined, the
262 static variable malloc_corruption_error_count is compiled in
263 and can be examined to see if errors have occurred. This option
264 generates slower code than the default abort policy.
265
266DEBUG default: NOT defined
267 The DEBUG setting is mainly intended for people trying to modify
268 this code or diagnose problems when porting to new platforms.
269 However, it may also be able to better isolate user errors than just
270 using runtime checks. The assertions in the check routines spell
271 out in more detail the assumptions and invariants underlying the
272 algorithms. The checking is fairly extensive, and will slow down
273 execution noticeably. Calling malloc_stats or mallinfo with DEBUG
274 set will attempt to check every non-mmapped allocated and free chunk
275 in the course of computing the summaries.
276
277ABORT_ON_ASSERT_FAILURE default: defined as 1 (true)
278 Debugging assertion failures can be nearly impossible if your
279 version of the assert macro causes malloc to be called, which will
280 lead to a cascade of further failures, blowing the runtime stack.
281 ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(),
282 which will usually make debugging easier.
283
284MALLOC_FAILURE_ACTION default: sets errno to ENOMEM, or no-op on win32
285 The action to take before "return 0" when malloc fails to be able to
286 return memory because there is none available.
287
288HAVE_MORECORE default: 1 (true) unless win32 or ONLY_MSPACES
289 True if this system supports sbrk or an emulation of it.
290
291MORECORE default: sbrk
292 The name of the sbrk-style system routine to call to obtain more
293 memory. See below for guidance on writing custom MORECORE
294 functions. The type of the argument to sbrk/MORECORE varies across
295 systems. It cannot be size_t, because it supports negative
296 arguments, so it is normally the signed type of the same width as
297 size_t (sometimes declared as "intptr_t"). It doesn't much matter
298 though. Internally, we only call it with arguments less than half
299 the max value of a size_t, which should work across all reasonable
300 possibilities, although sometimes generating compiler warnings. See
301 near the end of this file for guidelines for creating a custom
302 version of MORECORE.
303
304MORECORE_CONTIGUOUS default: 1 (true)
305 If true, take advantage of fact that consecutive calls to MORECORE
306 with positive arguments always return contiguous increasing
307 addresses. This is true of unix sbrk. It does not hurt too much to
308 set it true anyway, since malloc copes with non-contiguities.
309 Setting it false when definitely non-contiguous saves time
310 and possibly wasted space it would take to discover this though.
311
312MORECORE_CANNOT_TRIM default: NOT defined
313 True if MORECORE cannot release space back to the system when given
314 negative arguments. This is generally necessary only if you are
315 using a hand-crafted MORECORE function that cannot handle negative
316 arguments.
317
318HAVE_MMAP default: 1 (true)
319 True if this system supports mmap or an emulation of it. If so, and
320 HAVE_MORECORE is not true, MMAP is used for all system
321 allocation. If set and HAVE_MORECORE is true as well, MMAP is
322 primarily used to directly allocate very large blocks. It is also
323 used as a backup strategy in cases where MORECORE fails to provide
324 space from system. Note: A single call to MUNMAP is assumed to be
325 able to unmap memory that may have be allocated using multiple calls
326 to MMAP, so long as they are adjacent.
327
328HAVE_MREMAP default: 1 on linux, else 0
329 If true realloc() uses mremap() to re-allocate large blocks and
330 extend or shrink allocation spaces.
331
332MMAP_CLEARS default: 1 on unix
333 True if mmap clears memory so calloc doesn't need to. This is true
334 for standard unix mmap using /dev/zero.
335
336USE_BUILTIN_FFS default: 0 (i.e., not used)
337 Causes malloc to use the builtin ffs() function to compute indices.
338 Some compilers may recognize and intrinsify ffs to be faster than the
339 supplied C version. Also, the case of x86 using gcc is special-cased
340 to an asm instruction, so is already as fast as it can be, and so
341 this setting has no effect. (On most x86s, the asm version is only
342 slightly faster than the C version.)
343
344malloc_getpagesize default: derive from system includes, or 4096.
345 The system page size. To the extent possible, this malloc manages
346 memory from the system in page-size units. This may be (and
347 usually is) a function rather than a constant. This is ignored
348 if WIN32, where page size is determined using getSystemInfo during
349 initialization.
350
351USE_DEV_RANDOM default: 0 (i.e., not used)
352 Causes malloc to use /dev/random to initialize secure magic seed for
353 stamping footers. Otherwise, the current time is used.
354
355NO_MALLINFO default: 0
356 If defined, don't compile "mallinfo". This can be a simple way
357 of dealing with mismatches between system declarations and
358 those in this file.
359
360MALLINFO_FIELD_TYPE default: size_t
361 The type of the fields in the mallinfo struct. This was originally
362 defined as "int" in SVID etc, but is more usefully defined as
363 size_t. The value is used only if HAVE_USR_INCLUDE_MALLOC_H is not set
364
365REALLOC_ZERO_BYTES_FREES default: not defined
366 This should be set if a call to realloc with zero bytes should
367 be the same as a call to free. Some people think it should. Otherwise,
368 since this malloc returns a unique pointer for malloc(0), so does
369 realloc(p, 0).
370
371LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H
372LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H, LACKS_ERRNO_H
373LACKS_STDLIB_H default: NOT defined unless on WIN32
374 Define these if your system does not have these header files.
375 You might need to manually insert some of the declarations they provide.
376
377DEFAULT_GRANULARITY default: page size if MORECORE_CONTIGUOUS,
378 system_info.dwAllocationGranularity in WIN32,
379 otherwise 64K.
380 Also settable using mallopt(M_GRANULARITY, x)
381 The unit for allocating and deallocating memory from the system. On
382 most systems with contiguous MORECORE, there is no reason to
383 make this more than a page. However, systems with MMAP tend to
384 either require or encourage larger granularities. You can increase
385 this value to prevent system allocation functions to be called so
386 often, especially if they are slow. The value must be at least one
387 page and must be a power of two. Setting to 0 causes initialization
388 to either page size or win32 region size. (Note: In previous
389 versions of malloc, the equivalent of this option was called
390 "TOP_PAD")
391
392DEFAULT_TRIM_THRESHOLD default: 2MB
393 Also settable using mallopt(M_TRIM_THRESHOLD, x)
394 The maximum amount of unused top-most memory to keep before
395 releasing via malloc_trim in free(). Automatic trimming is mainly
396 useful in long-lived programs using contiguous MORECORE. Because
397 trimming via sbrk can be slow on some systems, and can sometimes be
398 wasteful (in cases where programs immediately afterward allocate
399 more large chunks) the value should be high enough so that your
400 overall system performance would improve by releasing this much
401 memory. As a rough guide, you might set to a value close to the
402 average size of a process (program) running on your system.
403 Releasing this much memory would allow such a process to run in
404 memory. Generally, it is worth tuning trim thresholds when a
405 program undergoes phases where several large chunks are allocated
406 and released in ways that can reuse each other's storage, perhaps
407 mixed with phases where there are no such chunks at all. The trim
408 value must be greater than page size to have any useful effect. To
409 disable trimming completely, you can set to MAX_SIZE_T. Note that the trick
410 some people use of mallocing a huge space and then freeing it at
411 program startup, in an attempt to reserve system memory, doesn't
412 have the intended effect under automatic trimming, since that memory
413 will immediately be returned to the system.
414
415DEFAULT_MMAP_THRESHOLD default: 256K
416 Also settable using mallopt(M_MMAP_THRESHOLD, x)
417 The request size threshold for using MMAP to directly service a
418 request. Requests of at least this size that cannot be allocated
419 using already-existing space will be serviced via mmap. (If enough
420 normal freed space already exists it is used instead.) Using mmap
421 segregates relatively large chunks of memory so that they can be
422 individually obtained and released from the host system. A request
423 serviced through mmap is never reused by any other request (at least
424 not directly; the system may just so happen to remap successive
425 requests to the same locations). Segregating space in this way has
426 the benefits that: Mmapped space can always be individually released
427 back to the system, which helps keep the system level memory demands
428 of a long-lived program low. Also, mapped memory doesn't become
429 `locked' between other chunks, as can happen with normally allocated
430 chunks, which means that even trimming via malloc_trim would not
431 release them. However, it has the disadvantage that the space
432 cannot be reclaimed, consolidated, and then used to service later
433 requests, as happens with normal chunks. The advantages of mmap
434 nearly always outweigh disadvantages for "large" chunks, but the
435 value of "large" may vary across systems. The default is an
436 empirically derived value that works well in most systems. You can
437 disable mmap by setting to MAX_SIZE_T.
438
439*/
440
441/** @addtogroup libcmalloc malloc
442 * @brief Malloc originally written by Doug Lea and ported to HelenOS.
443 * @ingroup libc
444 * @{
445 */
446/** @file
447 */
448
449
450#include <sys/types.h> /* For size_t */
451
452/** Non-default helenos customizations */
453#define LACKS_FCNTL_H
454#define LACKS_SYS_MMAN_H
455#define LACKS_SYS_PARAM_H
456#undef HAVE_MMAP
457#define HAVE_MMAP 0
458#define LACKS_ERRNO_H
459/* Set errno? */
460#undef MALLOC_FAILURE_ACTION
461#define MALLOC_FAILURE_ACTION
462
463/* The maximum possible size_t value has all bits set */
464#define MAX_SIZE_T (~(size_t)0)
465
466#define ONLY_MSPACES 0
467#define MSPACES 0
468
469#ifdef MALLOC_ALIGNMENT_16
470#define MALLOC_ALIGNMENT ((size_t)16U)
471#else
472#define MALLOC_ALIGNMENT ((size_t)8U)
473#endif
474
475#define FOOTERS 0
476#define ABORT abort()
477#define ABORT_ON_ASSERT_FAILURE 1
478#define PROCEED_ON_ERROR 0
479#define USE_LOCKS 1
480#define INSECURE 0
481#define HAVE_MMAP 0
482
483#define MMAP_CLEARS 1
484
485#define HAVE_MORECORE 1
486#define MORECORE_CONTIGUOUS 1
487#define MORECORE sbrk
488#define DEFAULT_GRANULARITY (0) /* 0 means to compute in init_mparams */
489
490#ifndef DEFAULT_TRIM_THRESHOLD
491#ifndef MORECORE_CANNOT_TRIM
492#define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U)
493#else /* MORECORE_CANNOT_TRIM */
494#define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T
495#endif /* MORECORE_CANNOT_TRIM */
496#endif /* DEFAULT_TRIM_THRESHOLD */
497#ifndef DEFAULT_MMAP_THRESHOLD
498#if HAVE_MMAP
499#define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U)
500#else /* HAVE_MMAP */
501#define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T
502#endif /* HAVE_MMAP */
503#endif /* DEFAULT_MMAP_THRESHOLD */
504#ifndef USE_BUILTIN_FFS
505#define USE_BUILTIN_FFS 0
506#endif /* USE_BUILTIN_FFS */
507#ifndef USE_DEV_RANDOM
508#define USE_DEV_RANDOM 0
509#endif /* USE_DEV_RANDOM */
510#ifndef NO_MALLINFO
511#define NO_MALLINFO 0
512#endif /* NO_MALLINFO */
513#ifndef MALLINFO_FIELD_TYPE
514#define MALLINFO_FIELD_TYPE size_t
515#endif /* MALLINFO_FIELD_TYPE */
516
517/*
518 mallopt tuning options. SVID/XPG defines four standard parameter
519 numbers for mallopt, normally defined in malloc.h. None of these
520 are used in this malloc, so setting them has no effect. But this
521 malloc does support the following options.
522*/
523
524#define M_TRIM_THRESHOLD (-1)
525#define M_GRANULARITY (-2)
526#define M_MMAP_THRESHOLD (-3)
527
528/*
529 ========================================================================
530 To make a fully customizable malloc.h header file, cut everything
531 above this line, put into file malloc.h, edit to suit, and #include it
532 on the next line, as well as in programs that use this malloc.
533 ========================================================================
534*/
535
536#include "malloc.h"
537
538/*------------------------------ internal #includes ---------------------- */
539
540#include <stdio.h> /* for printing in malloc_stats */
541#include <string.h>
542
543#ifndef LACKS_ERRNO_H
544#include <errno.h> /* for MALLOC_FAILURE_ACTION */
545#endif /* LACKS_ERRNO_H */
546#if FOOTERS
547#include <time.h> /* for magic initialization */
548#endif /* FOOTERS */
549#ifndef LACKS_STDLIB_H
550#include <stdlib.h> /* for abort() */
551#endif /* LACKS_STDLIB_H */
552#ifdef DEBUG
553#if ABORT_ON_ASSERT_FAILURE
554#define assert(x) {if(!(x)) {printf(#x);ABORT;}}
555#else /* ABORT_ON_ASSERT_FAILURE */
556#include <assert.h>
557#endif /* ABORT_ON_ASSERT_FAILURE */
558#else /* DEBUG */
559#define assert(x)
560#endif /* DEBUG */
561#if USE_BUILTIN_FFS
562#ifndef LACKS_STRINGS_H
563#include <strings.h> /* for ffs */
564#endif /* LACKS_STRINGS_H */
565#endif /* USE_BUILTIN_FFS */
566#if HAVE_MMAP
567#ifndef LACKS_SYS_MMAN_H
568#include <sys/mman.h> /* for mmap */
569#endif /* LACKS_SYS_MMAN_H */
570#ifndef LACKS_FCNTL_H
571#include <fcntl.h>
572#endif /* LACKS_FCNTL_H */
573#endif /* HAVE_MMAP */
574#if HAVE_MORECORE
575#ifndef LACKS_UNISTD_H
576#include <unistd.h> /* for sbrk */
577#else /* LACKS_UNISTD_H */
578#if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
579extern void* sbrk(ptrdiff_t);
580#endif /* FreeBSD etc */
581#endif /* LACKS_UNISTD_H */
582#endif /* HAVE_MMAP */
583
584#ifndef WIN32
585#ifndef malloc_getpagesize
586# ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
587# ifndef _SC_PAGE_SIZE
588# define _SC_PAGE_SIZE _SC_PAGESIZE
589# endif
590# endif
591# ifdef _SC_PAGE_SIZE
592# define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
593# else
594# if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
595 extern size_t getpagesize();
596# define malloc_getpagesize getpagesize()
597# else
598# ifdef WIN32 /* use supplied emulation of getpagesize */
599# define malloc_getpagesize getpagesize()
600# else
601# ifndef LACKS_SYS_PARAM_H
602# include <sys/param.h>
603# endif
604# ifdef EXEC_PAGESIZE
605# define malloc_getpagesize EXEC_PAGESIZE
606# else
607# ifdef NBPG
608# ifndef CLSIZE
609# define malloc_getpagesize NBPG
610# else
611# define malloc_getpagesize (NBPG * CLSIZE)
612# endif
613# else
614# ifdef NBPC
615# define malloc_getpagesize NBPC
616# else
617# ifdef PAGESIZE
618# define malloc_getpagesize PAGESIZE
619# else /* just guess */
620# define malloc_getpagesize ((size_t)4096U)
621# endif
622# endif
623# endif
624# endif
625# endif
626# endif
627# endif
628#endif
629#endif
630
631/* ------------------- size_t and alignment properties -------------------- */
632
633/* The byte and bit size of a size_t */
634#define SIZE_T_SIZE (sizeof(size_t))
635#define SIZE_T_BITSIZE (sizeof(size_t) << 3)
636
637/* Some constants coerced to size_t */
638/* Annoying but necessary to avoid errors on some plaftorms */
639#define SIZE_T_ZERO ((size_t)0)
640#define SIZE_T_ONE ((size_t)1)
641#define SIZE_T_TWO ((size_t)2)
642#define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1)
643#define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2)
644#define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES)
645#define HALF_MAX_SIZE_T (MAX_SIZE_T / 2U)
646
647/* The bit mask value corresponding to MALLOC_ALIGNMENT */
648#define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE)
649
650/* True if address a has acceptable alignment */
651#define is_aligned(A) (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0)
652
653/* the number of bytes to offset an address to align it */
654#define align_offset(A)\
655 ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\
656 ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK))
657
658/* -------------------------- MMAP preliminaries ------------------------- */
659
660/*
661 If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and
662 checks to fail so compiler optimizer can delete code rather than
663 using so many "#if"s.
664*/
665
666
667/* MORECORE and MMAP must return MFAIL on failure */
668#define MFAIL ((void*)(MAX_SIZE_T))
669#define CMFAIL ((char*)(MFAIL)) /* defined for convenience */
670
671#if !HAVE_MMAP
672#define IS_MMAPPED_BIT (SIZE_T_ZERO)
673#define USE_MMAP_BIT (SIZE_T_ZERO)
674#define CALL_MMAP(s) MFAIL
675#define CALL_MUNMAP(a, s) (-1)
676#define DIRECT_MMAP(s) MFAIL
677
678#else /* HAVE_MMAP */
679#define IS_MMAPPED_BIT (SIZE_T_ONE)
680#define USE_MMAP_BIT (SIZE_T_ONE)
681
682#ifndef WIN32
683#define CALL_MUNMAP(a, s) munmap((a), (s))
684#define MMAP_PROT (PROT_READ|PROT_WRITE)
685#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
686#define MAP_ANONYMOUS MAP_ANON
687#endif /* MAP_ANON */
688#ifdef MAP_ANONYMOUS
689#define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS)
690#define CALL_MMAP(s) mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0)
691#else /* MAP_ANONYMOUS */
692/*
693 Nearly all versions of mmap support MAP_ANONYMOUS, so the following
694 is unlikely to be needed, but is supplied just in case.
695*/
696#define MMAP_FLAGS (MAP_PRIVATE)
697static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
698#define CALL_MMAP(s) ((dev_zero_fd < 0) ? \
699 (dev_zero_fd = open("/dev/zero", O_RDWR), \
700 mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \
701 mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0))
702#endif /* MAP_ANONYMOUS */
703
704#define DIRECT_MMAP(s) CALL_MMAP(s)
705#else /* WIN32 */
706
707/* Win32 MMAP via VirtualAlloc */
708static void* win32mmap(size_t size) {
709 void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);
710 return (ptr != 0)? ptr: MFAIL;
711}
712
713/* For direct MMAP, use MEM_TOP_DOWN to minimize interference */
714static void* win32direct_mmap(size_t size) {
715 void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN,
716 PAGE_READWRITE);
717 return (ptr != 0)? ptr: MFAIL;
718}
719
720/* This function supports releasing coalesed segments */
721static int win32munmap(void* ptr, size_t size) {
722 MEMORY_BASIC_INFORMATION minfo;
723 char* cptr = ptr;
724 while (size) {
725 if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0)
726 return -1;
727 if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr ||
728 minfo.State != MEM_COMMIT || minfo.RegionSize > size)
729 return -1;
730 if (VirtualFree(cptr, 0, MEM_RELEASE) == 0)
731 return -1;
732 cptr += minfo.RegionSize;
733 size -= minfo.RegionSize;
734 }
735 return 0;
736}
737
738#define CALL_MMAP(s) win32mmap(s)
739#define CALL_MUNMAP(a, s) win32munmap((a), (s))
740#define DIRECT_MMAP(s) win32direct_mmap(s)
741#endif /* WIN32 */
742#endif /* HAVE_MMAP */
743
744#if HAVE_MMAP && HAVE_MREMAP
745#define CALL_MREMAP(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv))
746#else /* HAVE_MMAP && HAVE_MREMAP */
747#define CALL_MREMAP(addr, osz, nsz, mv) MFAIL
748#endif /* HAVE_MMAP && HAVE_MREMAP */
749
750#if HAVE_MORECORE
751#define CALL_MORECORE(S) MORECORE(S)
752#else /* HAVE_MORECORE */
753#define CALL_MORECORE(S) MFAIL
754#endif /* HAVE_MORECORE */
755
756/* mstate bit set if continguous morecore disabled or failed */
757#define USE_NONCONTIGUOUS_BIT (4U)
758
759/* segment bit set in create_mspace_with_base */
760#define EXTERN_BIT (8U)
761
762
763/* --------------------------- Lock preliminaries ------------------------ */
764
765#if USE_LOCKS
766
767/*
768 When locks are defined, there are up to two global locks:
769
770 * If HAVE_MORECORE, morecore_mutex protects sequences of calls to
771 MORECORE. In many cases sys_alloc requires two calls, that should
772 not be interleaved with calls by other threads. This does not
773 protect against direct calls to MORECORE by other threads not
774 using this lock, so there is still code to cope the best we can on
775 interference.
776
777 * magic_init_mutex ensures that mparams.magic and other
778 unique mparams values are initialized only once.
779*/
780
781/* By default use posix locks */
782#include <futex.h>
783#define MLOCK_T atomic_t
784#define INITIAL_LOCK(l) futex_initialize(l, 1)
785/* futex_down cannot fail, but can return different
786 * retvals for OK
787 */
788#define ACQUIRE_LOCK(l) ({futex_down(l);0;})
789#define RELEASE_LOCK(l) futex_up(l)
790
791#if HAVE_MORECORE
792static MLOCK_T morecore_mutex = FUTEX_INITIALIZER;
793#endif /* HAVE_MORECORE */
794
795static MLOCK_T magic_init_mutex = FUTEX_INITIALIZER;
796
797
798#define USE_LOCK_BIT (2U)
799#else /* USE_LOCKS */
800#define USE_LOCK_BIT (0U)
801#define INITIAL_LOCK(l)
802#endif /* USE_LOCKS */
803
804#if USE_LOCKS && HAVE_MORECORE
805#define ACQUIRE_MORECORE_LOCK() ACQUIRE_LOCK(&morecore_mutex);
806#define RELEASE_MORECORE_LOCK() RELEASE_LOCK(&morecore_mutex);
807#else /* USE_LOCKS && HAVE_MORECORE */
808#define ACQUIRE_MORECORE_LOCK()
809#define RELEASE_MORECORE_LOCK()
810#endif /* USE_LOCKS && HAVE_MORECORE */
811
812#if USE_LOCKS
813#define ACQUIRE_MAGIC_INIT_LOCK() ACQUIRE_LOCK(&magic_init_mutex);
814#define RELEASE_MAGIC_INIT_LOCK() RELEASE_LOCK(&magic_init_mutex);
815#else /* USE_LOCKS */
816#define ACQUIRE_MAGIC_INIT_LOCK()
817#define RELEASE_MAGIC_INIT_LOCK()
818#endif /* USE_LOCKS */
819
820
821/* ----------------------- Chunk representations ------------------------ */
822
823/*
824 (The following includes lightly edited explanations by Colin Plumb.)
825
826 The malloc_chunk declaration below is misleading (but accurate and
827 necessary). It declares a "view" into memory allowing access to
828 necessary fields at known offsets from a given base.
829
830 Chunks of memory are maintained using a `boundary tag' method as
831 originally described by Knuth. (See the paper by Paul Wilson
832 ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such
833 techniques.) Sizes of free chunks are stored both in the front of
834 each chunk and at the end. This makes consolidating fragmented
835 chunks into bigger chunks fast. The head fields also hold bits
836 representing whether chunks are free or in use.
837
838 Here are some pictures to make it clearer. They are "exploded" to
839 show that the state of a chunk can be thought of as extending from
840 the high 31 bits of the head field of its header through the
841 prev_foot and PINUSE_BIT bit of the following chunk header.
842
843 A chunk that's in use looks like:
844
845 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
846 | Size of previous chunk (if P = 1) |
847 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
848 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
849 | Size of this chunk 1| +-+
850 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
851 | |
852 +- -+
853 | |
854 +- -+
855 | :
856 +- size - sizeof(size_t) available payload bytes -+
857 : |
858 chunk-> +- -+
859 | |
860 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
861 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1|
862 | Size of next chunk (may or may not be in use) | +-+
863 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
864
865 And if it's free, it looks like this:
866
867 chunk-> +- -+
868 | User payload (must be in use, or we would have merged!) |
869 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
870 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
871 | Size of this chunk 0| +-+
872 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
873 | Next pointer |
874 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
875 | Prev pointer |
876 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
877 | :
878 +- size - sizeof(struct chunk) unused bytes -+
879 : |
880 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
881 | Size of this chunk |
882 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
883 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0|
884 | Size of next chunk (must be in use, or we would have merged)| +-+
885 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
886 | :
887 +- User payload -+
888 : |
889 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
890 |0|
891 +-+
892 Note that since we always merge adjacent free chunks, the chunks
893 adjacent to a free chunk must be in use.
894
895 Given a pointer to a chunk (which can be derived trivially from the
896 payload pointer) we can, in O(1) time, find out whether the adjacent
897 chunks are free, and if so, unlink them from the lists that they
898 are on and merge them with the current chunk.
899
900 Chunks always begin on even word boundaries, so the mem portion
901 (which is returned to the user) is also on an even word boundary, and
902 thus at least double-word aligned.
903
904 The P (PINUSE_BIT) bit, stored in the unused low-order bit of the
905 chunk size (which is always a multiple of two words), is an in-use
906 bit for the *previous* chunk. If that bit is *clear*, then the
907 word before the current chunk size contains the previous chunk
908 size, and can be used to find the front of the previous chunk.
909 The very first chunk allocated always has this bit set, preventing
910 access to non-existent (or non-owned) memory. If pinuse is set for
911 any given chunk, then you CANNOT determine the size of the
912 previous chunk, and might even get a memory addressing fault when
913 trying to do so.
914
915 The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of
916 the chunk size redundantly records whether the current chunk is
917 inuse. This redundancy enables usage checks within free and realloc,
918 and reduces indirection when freeing and consolidating chunks.
919
920 Each freshly allocated chunk must have both cinuse and pinuse set.
921 That is, each allocated chunk borders either a previously allocated
922 and still in-use chunk, or the base of its memory arena. This is
923 ensured by making all allocations from the the `lowest' part of any
924 found chunk. Further, no free chunk physically borders another one,
925 so each free chunk is known to be preceded and followed by either
926 inuse chunks or the ends of memory.
927
928 Note that the `foot' of the current chunk is actually represented
929 as the prev_foot of the NEXT chunk. This makes it easier to
930 deal with alignments etc but can be very confusing when trying
931 to extend or adapt this code.
932
933 The exceptions to all this are
934
935 1. The special chunk `top' is the top-most available chunk (i.e.,
936 the one bordering the end of available memory). It is treated
937 specially. Top is never included in any bin, is used only if
938 no other chunk is available, and is released back to the
939 system if it is very large (see M_TRIM_THRESHOLD). In effect,
940 the top chunk is treated as larger (and thus less well
941 fitting) than any other available chunk. The top chunk
942 doesn't update its trailing size field since there is no next
943 contiguous chunk that would have to index off it. However,
944 space is still allocated for it (TOP_FOOT_SIZE) to enable
945 separation or merging when space is extended.
946
947 3. Chunks allocated via mmap, which have the lowest-order bit
948 (IS_MMAPPED_BIT) set in their prev_foot fields, and do not set
949 PINUSE_BIT in their head fields. Because they are allocated
950 one-by-one, each must carry its own prev_foot field, which is
951 also used to hold the offset this chunk has within its mmapped
952 region, which is needed to preserve alignment. Each mmapped
953 chunk is trailed by the first two fields of a fake next-chunk
954 for sake of usage checks.
955
956*/
957
958struct malloc_chunk {
959 size_t prev_foot; /* Size of previous chunk (if free). */
960 size_t head; /* Size and inuse bits. */
961 struct malloc_chunk* fd; /* double links -- used only if free. */
962 struct malloc_chunk* bk;
963};
964
965typedef struct malloc_chunk mchunk;
966typedef struct malloc_chunk* mchunkptr;
967typedef struct malloc_chunk* sbinptr; /* The type of bins of chunks */
968typedef unsigned int bindex_t; /* Described below */
969typedef unsigned int binmap_t; /* Described below */
970typedef unsigned int flag_t; /* The type of various bit flag sets */
971
972/* ------------------- Chunks sizes and alignments ----------------------- */
973
974#define MCHUNK_SIZE (sizeof(mchunk))
975
976#if FOOTERS
977#define CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
978#else /* FOOTERS */
979#define CHUNK_OVERHEAD (SIZE_T_SIZE)
980#endif /* FOOTERS */
981
982/* MMapped chunks need a second word of overhead ... */
983#define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
984/* ... and additional padding for fake next-chunk at foot */
985#define MMAP_FOOT_PAD (FOUR_SIZE_T_SIZES)
986
987/* The smallest size we can malloc is an aligned minimal chunk */
988#define MIN_CHUNK_SIZE\
989 ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
990
991/* conversion from malloc headers to user pointers, and back */
992#define chunk2mem(p) ((void*)((char*)(p) + TWO_SIZE_T_SIZES))
993#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES))
994/* chunk associated with aligned address A */
995#define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A)))
996
997/* Bounds on request (not chunk) sizes. */
998#define MAX_REQUEST ((-MIN_CHUNK_SIZE) << 2)
999#define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE)
1000
1001/* pad request bytes into a usable size */
1002#define pad_request(req) \
1003 (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
1004
1005/* pad request, checking for minimum (but not maximum) */
1006#define request2size(req) \
1007 (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req))
1008
1009
1010/* ------------------ Operations on head and foot fields ----------------- */
1011
1012/*
1013 The head field of a chunk is or'ed with PINUSE_BIT when previous
1014 adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in
1015 use. If the chunk was obtained with mmap, the prev_foot field has
1016 IS_MMAPPED_BIT set, otherwise holding the offset of the base of the
1017 mmapped region to the base of the chunk.
1018*/
1019
1020#define PINUSE_BIT (SIZE_T_ONE)
1021#define CINUSE_BIT (SIZE_T_TWO)
1022#define INUSE_BITS (PINUSE_BIT|CINUSE_BIT)
1023
1024/* Head value for fenceposts */
1025#define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE)
1026
1027/* extraction of fields from head words */
1028#define cinuse(p) ((p)->head & CINUSE_BIT)
1029#define pinuse(p) ((p)->head & PINUSE_BIT)
1030#define chunksize(p) ((p)->head & ~(INUSE_BITS))
1031
1032#define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT)
1033#define clear_cinuse(p) ((p)->head &= ~CINUSE_BIT)
1034
1035/* Treat space at ptr +/- offset as a chunk */
1036#define chunk_plus_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
1037#define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s)))
1038
1039/* Ptr to next or previous physical malloc_chunk. */
1040#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~INUSE_BITS)))
1041#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) ))
1042
1043/* extract next chunk's pinuse bit */
1044#define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT)
1045
1046/* Get/set size at footer */
1047#define get_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot)
1048#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s))
1049
1050/* Set size, pinuse bit, and foot */
1051#define set_size_and_pinuse_of_free_chunk(p, s)\
1052 ((p)->head = (s|PINUSE_BIT), set_foot(p, s))
1053
1054/* Set size, pinuse bit, foot, and clear next pinuse */
1055#define set_free_with_pinuse(p, s, n)\
1056 (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s))
1057
1058#define is_mmapped(p)\
1059 (!((p)->head & PINUSE_BIT) && ((p)->prev_foot & IS_MMAPPED_BIT))
1060
1061/* Get the internal overhead associated with chunk p */
1062#define overhead_for(p)\
1063 (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD)
1064
1065/* Return true if malloced space is not necessarily cleared */
1066#if MMAP_CLEARS
1067#define calloc_must_clear(p) (!is_mmapped(p))
1068#else /* MMAP_CLEARS */
1069#define calloc_must_clear(p) (1)
1070#endif /* MMAP_CLEARS */
1071
1072/* ---------------------- Overlaid data structures ----------------------- */
1073
1074/*
1075 When chunks are not in use, they are treated as nodes of either
1076 lists or trees.
1077
1078 "Small" chunks are stored in circular doubly-linked lists, and look
1079 like this:
1080
1081 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1082 | Size of previous chunk |
1083 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1084 `head:' | Size of chunk, in bytes |P|
1085 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1086 | Forward pointer to next chunk in list |
1087 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1088 | Back pointer to previous chunk in list |
1089 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1090 | Unused space (may be 0 bytes long) .
1091 . .
1092 . |
1093nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1094 `foot:' | Size of chunk, in bytes |
1095 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1096
1097 Larger chunks are kept in a form of bitwise digital trees (aka
1098 tries) keyed on chunksizes. Because malloc_tree_chunks are only for
1099 free chunks greater than 256 bytes, their size doesn't impose any
1100 constraints on user chunk sizes. Each node looks like:
1101
1102 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1103 | Size of previous chunk |
1104 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1105 `head:' | Size of chunk, in bytes |P|
1106 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1107 | Forward pointer to next chunk of same size |
1108 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1109 | Back pointer to previous chunk of same size |
1110 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1111 | Pointer to left child (child[0]) |
1112 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1113 | Pointer to right child (child[1]) |
1114 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1115 | Pointer to parent |
1116 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1117 | bin index of this chunk |
1118 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1119 | Unused space .
1120 . |
1121nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1122 `foot:' | Size of chunk, in bytes |
1123 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1124
1125 Each tree holding treenodes is a tree of unique chunk sizes. Chunks
1126 of the same size are arranged in a circularly-linked list, with only
1127 the oldest chunk (the next to be used, in our FIFO ordering)
1128 actually in the tree. (Tree members are distinguished by a non-null
1129 parent pointer.) If a chunk with the same size an an existing node
1130 is inserted, it is linked off the existing node using pointers that
1131 work in the same way as fd/bk pointers of small chunks.
1132
1133 Each tree contains a power of 2 sized range of chunk sizes (the
1134 smallest is 0x100 <= x < 0x180), which is is divided in half at each
1135 tree level, with the chunks in the smaller half of the range (0x100
1136 <= x < 0x140 for the top nose) in the left subtree and the larger
1137 half (0x140 <= x < 0x180) in the right subtree. This is, of course,
1138 done by inspecting individual bits.
1139
1140 Using these rules, each node's left subtree contains all smaller
1141 sizes than its right subtree. However, the node at the root of each
1142 subtree has no particular ordering relationship to either. (The
1143 dividing line between the subtree sizes is based on trie relation.)
1144 If we remove the last chunk of a given size from the interior of the
1145 tree, we need to replace it with a leaf node. The tree ordering
1146 rules permit a node to be replaced by any leaf below it.
1147
1148 The smallest chunk in a tree (a common operation in a best-fit
1149 allocator) can be found by walking a path to the leftmost leaf in
1150 the tree. Unlike a usual binary tree, where we follow left child
1151 pointers until we reach a null, here we follow the right child
1152 pointer any time the left one is null, until we reach a leaf with
1153 both child pointers null. The smallest chunk in the tree will be
1154 somewhere along that path.
1155
1156 The worst case number of steps to add, find, or remove a node is
1157 bounded by the number of bits differentiating chunks within
1158 bins. Under current bin calculations, this ranges from 6 up to 21
1159 (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case
1160 is of course much better.
1161*/
1162
1163struct malloc_tree_chunk {
1164 /* The first four fields must be compatible with malloc_chunk */
1165 size_t prev_foot;
1166 size_t head;
1167 struct malloc_tree_chunk* fd;
1168 struct malloc_tree_chunk* bk;
1169
1170 struct malloc_tree_chunk* child[2];
1171 struct malloc_tree_chunk* parent;
1172 bindex_t index;
1173};
1174
1175typedef struct malloc_tree_chunk tchunk;
1176typedef struct malloc_tree_chunk* tchunkptr;
1177typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */
1178
1179/* A little helper macro for trees */
1180#define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1])
1181
1182/* ----------------------------- Segments -------------------------------- */
1183
1184/*
1185 Each malloc space may include non-contiguous segments, held in a
1186 list headed by an embedded malloc_segment record representing the
1187 top-most space. Segments also include flags holding properties of
1188 the space. Large chunks that are directly allocated by mmap are not
1189 included in this list. They are instead independently created and
1190 destroyed without otherwise keeping track of them.
1191
1192 Segment management mainly comes into play for spaces allocated by
1193 MMAP. Any call to MMAP might or might not return memory that is
1194 adjacent to an existing segment. MORECORE normally contiguously
1195 extends the current space, so this space is almost always adjacent,
1196 which is simpler and faster to deal with. (This is why MORECORE is
1197 used preferentially to MMAP when both are available -- see
1198 sys_alloc.) When allocating using MMAP, we don't use any of the
1199 hinting mechanisms (inconsistently) supported in various
1200 implementations of unix mmap, or distinguish reserving from
1201 committing memory. Instead, we just ask for space, and exploit
1202 contiguity when we get it. It is probably possible to do
1203 better than this on some systems, but no general scheme seems
1204 to be significantly better.
1205
1206 Management entails a simpler variant of the consolidation scheme
1207 used for chunks to reduce fragmentation -- new adjacent memory is
1208 normally prepended or appended to an existing segment. However,
1209 there are limitations compared to chunk consolidation that mostly
1210 reflect the fact that segment processing is relatively infrequent
1211 (occurring only when getting memory from system) and that we
1212 don't expect to have huge numbers of segments:
1213
1214 * Segments are not indexed, so traversal requires linear scans. (It
1215 would be possible to index these, but is not worth the extra
1216 overhead and complexity for most programs on most platforms.)
1217 * New segments are only appended to old ones when holding top-most
1218 memory; if they cannot be prepended to others, they are held in
1219 different segments.
1220
1221 Except for the top-most segment of an mstate, each segment record
1222 is kept at the tail of its segment. Segments are added by pushing
1223 segment records onto the list headed by &mstate.seg for the
1224 containing mstate.
1225
1226 Segment flags control allocation/merge/deallocation policies:
1227 * If EXTERN_BIT set, then we did not allocate this segment,
1228 and so should not try to deallocate or merge with others.
1229 (This currently holds only for the initial segment passed
1230 into create_mspace_with_base.)
1231 * If IS_MMAPPED_BIT set, the segment may be merged with
1232 other surrounding mmapped segments and trimmed/de-allocated
1233 using munmap.
1234 * If neither bit is set, then the segment was obtained using
1235 MORECORE so can be merged with surrounding MORECORE'd segments
1236 and deallocated/trimmed using MORECORE with negative arguments.
1237*/
1238
1239struct malloc_segment {
1240 char* base; /* base address */
1241 size_t size; /* allocated size */
1242 struct malloc_segment* next; /* ptr to next segment */
1243 flag_t sflags; /* mmap and extern flag */
1244};
1245
1246#define is_mmapped_segment(S) ((S)->sflags & IS_MMAPPED_BIT)
1247#define is_extern_segment(S) ((S)->sflags & EXTERN_BIT)
1248
1249typedef struct malloc_segment msegment;
1250typedef struct malloc_segment* msegmentptr;
1251
1252/* ---------------------------- malloc_state ----------------------------- */
1253
1254/*
1255 A malloc_state holds all of the bookkeeping for a space.
1256 The main fields are:
1257
1258 Top
1259 The topmost chunk of the currently active segment. Its size is
1260 cached in topsize. The actual size of topmost space is
1261 topsize+TOP_FOOT_SIZE, which includes space reserved for adding
1262 fenceposts and segment records if necessary when getting more
1263 space from the system. The size at which to autotrim top is
1264 cached from mparams in trim_check, except that it is disabled if
1265 an autotrim fails.
1266
1267 Designated victim (dv)
1268 This is the preferred chunk for servicing small requests that
1269 don't have exact fits. It is normally the chunk split off most
1270 recently to service another small request. Its size is cached in
1271 dvsize. The link fields of this chunk are not maintained since it
1272 is not kept in a bin.
1273
1274 SmallBins
1275 An array of bin headers for free chunks. These bins hold chunks
1276 with sizes less than MIN_LARGE_SIZE bytes. Each bin contains
1277 chunks of all the same size, spaced 8 bytes apart. To simplify
1278 use in double-linked lists, each bin header acts as a malloc_chunk
1279 pointing to the real first node, if it exists (else pointing to
1280 itself). This avoids special-casing for headers. But to avoid
1281 waste, we allocate only the fd/bk pointers of bins, and then use
1282 repositioning tricks to treat these as the fields of a chunk.
1283
1284 TreeBins
1285 Treebins are pointers to the roots of trees holding a range of
1286 sizes. There are 2 equally spaced treebins for each power of two
1287 from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything
1288 larger.
1289
1290 Bin maps
1291 There is one bit map for small bins ("smallmap") and one for
1292 treebins ("treemap). Each bin sets its bit when non-empty, and
1293 clears the bit when empty. Bit operations are then used to avoid
1294 bin-by-bin searching -- nearly all "search" is done without ever
1295 looking at bins that won't be selected. The bit maps
1296 conservatively use 32 bits per map word, even if on 64bit system.
1297 For a good description of some of the bit-based techniques used
1298 here, see Henry S. Warren Jr's book "Hacker's Delight" (and
1299 supplement at http://hackersdelight.org/). Many of these are
1300 intended to reduce the branchiness of paths through malloc etc, as
1301 well as to reduce the number of memory locations read or written.
1302
1303 Segments
1304 A list of segments headed by an embedded malloc_segment record
1305 representing the initial space.
1306
1307 Address check support
1308 The least_addr field is the least address ever obtained from
1309 MORECORE or MMAP. Attempted frees and reallocs of any address less
1310 than this are trapped (unless INSECURE is defined).
1311
1312 Magic tag
1313 A cross-check field that should always hold same value as mparams.magic.
1314
1315 Flags
1316 Bits recording whether to use MMAP, locks, or contiguous MORECORE
1317
1318 Statistics
1319 Each space keeps track of current and maximum system memory
1320 obtained via MORECORE or MMAP.
1321
1322 Locking
1323 If USE_LOCKS is defined, the "mutex" lock is acquired and released
1324 around every public call using this mspace.
1325*/
1326
1327/* Bin types, widths and sizes */
1328#define NSMALLBINS (32U)
1329#define NTREEBINS (32U)
1330#define SMALLBIN_SHIFT (3U)
1331#define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT)
1332#define TREEBIN_SHIFT (8U)
1333#define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT)
1334#define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE)
1335#define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD)
1336
1337struct malloc_state {
1338 binmap_t smallmap;
1339 binmap_t treemap;
1340 size_t dvsize;
1341 size_t topsize;
1342 char* least_addr;
1343 mchunkptr dv;
1344 mchunkptr top;
1345 size_t trim_check;
1346 size_t magic;
1347 mchunkptr smallbins[(NSMALLBINS+1)*2];
1348 tbinptr treebins[NTREEBINS];
1349 size_t footprint;
1350 size_t max_footprint;
1351 flag_t mflags;
1352#if USE_LOCKS
1353 MLOCK_T mutex; /* locate lock among fields that rarely change */
1354#endif /* USE_LOCKS */
1355 msegment seg;
1356};
1357
1358typedef struct malloc_state* mstate;
1359
1360/* ------------- Global malloc_state and malloc_params ------------------- */
1361
1362/*
1363 malloc_params holds global properties, including those that can be
1364 dynamically set using mallopt. There is a single instance, mparams,
1365 initialized in init_mparams.
1366*/
1367
1368struct malloc_params {
1369 size_t magic;
1370 size_t page_size;
1371 size_t granularity;
1372 size_t mmap_threshold;
1373 size_t trim_threshold;
1374 flag_t default_mflags;
1375};
1376
1377static struct malloc_params mparams;
1378
1379/* The global malloc_state used for all non-"mspace" calls */
1380static struct malloc_state _gm_;
1381#define gm (&_gm_)
1382#define is_global(M) ((M) == &_gm_)
1383#define is_initialized(M) ((M)->top != 0)
1384
1385/* -------------------------- system alloc setup ------------------------- */
1386
1387/* Operations on mflags */
1388
1389#define use_lock(M) ((M)->mflags & USE_LOCK_BIT)
1390#define enable_lock(M) ((M)->mflags |= USE_LOCK_BIT)
1391#define disable_lock(M) ((M)->mflags &= ~USE_LOCK_BIT)
1392
1393#define use_mmap(M) ((M)->mflags & USE_MMAP_BIT)
1394#define enable_mmap(M) ((M)->mflags |= USE_MMAP_BIT)
1395#define disable_mmap(M) ((M)->mflags &= ~USE_MMAP_BIT)
1396
1397#define use_noncontiguous(M) ((M)->mflags & USE_NONCONTIGUOUS_BIT)
1398#define disable_contiguous(M) ((M)->mflags |= USE_NONCONTIGUOUS_BIT)
1399
1400#define set_lock(M,L)\
1401 ((M)->mflags = (L)?\
1402 ((M)->mflags | USE_LOCK_BIT) :\
1403 ((M)->mflags & ~USE_LOCK_BIT))
1404
1405/* page-align a size */
1406#define page_align(S)\
1407 (((S) + (mparams.page_size)) & ~(mparams.page_size - SIZE_T_ONE))
1408
1409/* granularity-align a size */
1410#define granularity_align(S)\
1411 (((S) + (mparams.granularity)) & ~(mparams.granularity - SIZE_T_ONE))
1412
1413#define is_page_aligned(S)\
1414 (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0)
1415#define is_granularity_aligned(S)\
1416 (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0)
1417
1418/* True if segment S holds address A */
1419#define segment_holds(S, A)\
1420 ((char*)(A) >= S->base && (char*)(A) < S->base + S->size)
1421
1422/* Return segment holding given address */
1423static msegmentptr segment_holding(mstate m, char* addr) {
1424 msegmentptr sp = &m->seg;
1425 for (;;) {
1426 if (addr >= sp->base && addr < sp->base + sp->size)
1427 return sp;
1428 if ((sp = sp->next) == 0)
1429 return 0;
1430 }
1431}
1432
1433/* Return true if segment contains a segment link */
1434static int has_segment_link(mstate m, msegmentptr ss) {
1435 msegmentptr sp = &m->seg;
1436 for (;;) {
1437 if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size)
1438 return 1;
1439 if ((sp = sp->next) == 0)
1440 return 0;
1441 }
1442}
1443
1444#ifndef MORECORE_CANNOT_TRIM
1445#define should_trim(M,s) ((s) > (M)->trim_check)
1446#else /* MORECORE_CANNOT_TRIM */
1447#define should_trim(M,s) (0)
1448#endif /* MORECORE_CANNOT_TRIM */
1449
1450/*
1451 TOP_FOOT_SIZE is padding at the end of a segment, including space
1452 that may be needed to place segment records and fenceposts when new
1453 noncontiguous segments are added.
1454*/
1455#define TOP_FOOT_SIZE\
1456 (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE)
1457
1458
1459/* ------------------------------- Hooks -------------------------------- */
1460
1461/*
1462 PREACTION should be defined to return 0 on success, and nonzero on
1463 failure. If you are not using locking, you can redefine these to do
1464 anything you like.
1465*/
1466
1467#if USE_LOCKS
1468
1469/* Ensure locks are initialized */
1470#define GLOBALLY_INITIALIZE() (mparams.page_size == 0 && init_mparams())
1471
1472#define PREACTION(M) ((GLOBALLY_INITIALIZE() || use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0)
1473#define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); }
1474#else /* USE_LOCKS */
1475
1476#ifndef PREACTION
1477#define PREACTION(M) (0)
1478#endif /* PREACTION */
1479
1480#ifndef POSTACTION
1481#define POSTACTION(M)
1482#endif /* POSTACTION */
1483
1484#endif /* USE_LOCKS */
1485
1486/*
1487 CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses.
1488 USAGE_ERROR_ACTION is triggered on detected bad frees and
1489 reallocs. The argument p is an address that might have triggered the
1490 fault. It is ignored by the two predefined actions, but might be
1491 useful in custom actions that try to help diagnose errors.
1492*/
1493
1494#if PROCEED_ON_ERROR
1495
1496/* A count of the number of corruption errors causing resets */
1497int malloc_corruption_error_count;
1498
1499/* default corruption action */
1500static void reset_on_error(mstate m);
1501
1502#define CORRUPTION_ERROR_ACTION(m) reset_on_error(m)
1503#define USAGE_ERROR_ACTION(m, p)
1504
1505#else /* PROCEED_ON_ERROR */
1506
1507#ifndef CORRUPTION_ERROR_ACTION
1508#define CORRUPTION_ERROR_ACTION(m) ABORT
1509#endif /* CORRUPTION_ERROR_ACTION */
1510
1511#ifndef USAGE_ERROR_ACTION
1512#define USAGE_ERROR_ACTION(m,p) ABORT
1513#endif /* USAGE_ERROR_ACTION */
1514
1515#endif /* PROCEED_ON_ERROR */
1516
1517/* -------------------------- Debugging setup ---------------------------- */
1518
1519#if ! DEBUG
1520
1521#define check_free_chunk(M,P)
1522#define check_inuse_chunk(M,P)
1523#define check_malloced_chunk(M,P,N)
1524#define check_mmapped_chunk(M,P)
1525#define check_malloc_state(M)
1526#define check_top_chunk(M,P)
1527
1528#else /* DEBUG */
1529#define check_free_chunk(M,P) do_check_free_chunk(M,P)
1530#define check_inuse_chunk(M,P) do_check_inuse_chunk(M,P)
1531#define check_top_chunk(M,P) do_check_top_chunk(M,P)
1532#define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N)
1533#define check_mmapped_chunk(M,P) do_check_mmapped_chunk(M,P)
1534#define check_malloc_state(M) do_check_malloc_state(M)
1535
1536static void do_check_any_chunk(mstate m, mchunkptr p);
1537static void do_check_top_chunk(mstate m, mchunkptr p);
1538static void do_check_mmapped_chunk(mstate m, mchunkptr p);
1539static void do_check_inuse_chunk(mstate m, mchunkptr p);
1540static void do_check_free_chunk(mstate m, mchunkptr p);
1541static void do_check_malloced_chunk(mstate m, void* mem, size_t s);
1542static void do_check_tree(mstate m, tchunkptr t);
1543static void do_check_treebin(mstate m, bindex_t i);
1544static void do_check_smallbin(mstate m, bindex_t i);
1545static void do_check_malloc_state(mstate m);
1546static int bin_find(mstate m, mchunkptr x);
1547static size_t traverse_and_check(mstate m);
1548#endif /* DEBUG */
1549
1550/* ---------------------------- Indexing Bins ---------------------------- */
1551
1552#define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS)
1553#define small_index(s) ((s) >> SMALLBIN_SHIFT)
1554#define small_index2size(i) ((i) << SMALLBIN_SHIFT)
1555#define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE))
1556
1557/* addressing by index. See above about smallbin repositioning */
1558#define smallbin_at(M, i) ((sbinptr)((char*)&((M)->smallbins[(i)<<1])))
1559#define treebin_at(M,i) (&((M)->treebins[i]))
1560
1561/* assign tree index for size S to variable I */
1562#if defined(__GNUC__) && defined(i386)
1563#define compute_tree_index(S, I)\
1564{\
1565 size_t X = S >> TREEBIN_SHIFT;\
1566 if (X == 0)\
1567 I = 0;\
1568 else if (X > 0xFFFF)\
1569 I = NTREEBINS-1;\
1570 else {\
1571 unsigned int K;\
1572 asm("bsrl %1,%0\n\t" : "=r" (K) : "rm" (X));\
1573 I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
1574 }\
1575}
1576#else /* GNUC */
1577#define compute_tree_index(S, I)\
1578{\
1579 size_t X = S >> TREEBIN_SHIFT;\
1580 if (X == 0)\
1581 I = 0;\
1582 else if (X > 0xFFFF)\
1583 I = NTREEBINS-1;\
1584 else {\
1585 unsigned int Y = (unsigned int)X;\
1586 unsigned int N = ((Y - 0x100) >> 16) & 8;\
1587 unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\
1588 N += K;\
1589 N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\
1590 K = 14 - N + ((Y <<= K) >> 15);\
1591 I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\
1592 }\
1593}
1594#endif /* GNUC */
1595
1596/* Bit representing maximum resolved size in a treebin at i */
1597#define bit_for_tree_index(i) \
1598 (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2)
1599
1600/* Shift placing maximum resolved bit in a treebin at i as sign bit */
1601#define leftshift_for_tree_index(i) \
1602 ((i == NTREEBINS-1)? 0 : \
1603 ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2)))
1604
1605/* The size of the smallest chunk held in bin with index i */
1606#define minsize_for_tree_index(i) \
1607 ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \
1608 (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1)))
1609
1610
1611/* ------------------------ Operations on bin maps ----------------------- */
1612
1613/* bit corresponding to given index */
1614#define idx2bit(i) ((binmap_t)(1) << (i))
1615
1616/* Mark/Clear bits with given index */
1617#define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i))
1618#define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i))
1619#define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i))
1620
1621#define mark_treemap(M,i) ((M)->treemap |= idx2bit(i))
1622#define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i))
1623#define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i))
1624
1625/* index corresponding to given bit */
1626
1627#if defined(__GNUC__) && defined(i386)
1628#define compute_bit2idx(X, I)\
1629{\
1630 unsigned int J;\
1631 asm("bsfl %1,%0\n\t" : "=r" (J) : "rm" (X));\
1632 I = (bindex_t)J;\
1633}
1634
1635#else /* GNUC */
1636#if USE_BUILTIN_FFS
1637#define compute_bit2idx(X, I) I = ffs(X)-1
1638
1639#else /* USE_BUILTIN_FFS */
1640#define compute_bit2idx(X, I)\
1641{\
1642 unsigned int Y = X - 1;\
1643 unsigned int K = Y >> (16-4) & 16;\
1644 unsigned int N = K; Y >>= K;\
1645 N += K = Y >> (8-3) & 8; Y >>= K;\
1646 N += K = Y >> (4-2) & 4; Y >>= K;\
1647 N += K = Y >> (2-1) & 2; Y >>= K;\
1648 N += K = Y >> (1-0) & 1; Y >>= K;\
1649 I = (bindex_t)(N + Y);\
1650}
1651#endif /* USE_BUILTIN_FFS */
1652#endif /* GNUC */
1653
1654/* isolate the least set bit of a bitmap */
1655#define least_bit(x) ((x) & -(x))
1656
1657/* mask with all bits to left of least bit of x on */
1658#define left_bits(x) ((x<<1) | -(x<<1))
1659
1660/* mask with all bits to left of or equal to least bit of x on */
1661#define same_or_left_bits(x) ((x) | -(x))
1662
1663
1664/* ----------------------- Runtime Check Support ------------------------- */
1665
1666/*
1667 For security, the main invariant is that malloc/free/etc never
1668 writes to a static address other than malloc_state, unless static
1669 malloc_state itself has been corrupted, which cannot occur via
1670 malloc (because of these checks). In essence this means that we
1671 believe all pointers, sizes, maps etc held in malloc_state, but
1672 check all of those linked or offsetted from other embedded data
1673 structures. These checks are interspersed with main code in a way
1674 that tends to minimize their run-time cost.
1675
1676 When FOOTERS is defined, in addition to range checking, we also
1677 verify footer fields of inuse chunks, which can be used guarantee
1678 that the mstate controlling malloc/free is intact. This is a
1679 streamlined version of the approach described by William Robertson
1680 et al in "Run-time Detection of Heap-based Overflows" LISA'03
1681 http://www.usenix.org/events/lisa03/tech/robertson.html The footer
1682 of an inuse chunk holds the xor of its mstate and a random seed,
1683 that is checked upon calls to free() and realloc(). This is
1684 (probablistically) unguessable from outside the program, but can be
1685 computed by any code successfully malloc'ing any chunk, so does not
1686 itself provide protection against code that has already broken
1687 security through some other means. Unlike Robertson et al, we
1688 always dynamically check addresses of all offset chunks (previous,
1689 next, etc). This turns out to be cheaper than relying on hashes.
1690*/
1691
1692#if !INSECURE
1693/* Check if address a is at least as high as any from MORECORE or MMAP */
1694#define ok_address(M, a) ((char*)(a) >= (M)->least_addr)
1695/* Check if address of next chunk n is higher than base chunk p */
1696#define ok_next(p, n) ((char*)(p) < (char*)(n))
1697/* Check if p has its cinuse bit on */
1698#define ok_cinuse(p) cinuse(p)
1699/* Check if p has its pinuse bit on */
1700#define ok_pinuse(p) pinuse(p)
1701
1702#else /* !INSECURE */
1703#define ok_address(M, a) (1)
1704#define ok_next(b, n) (1)
1705#define ok_cinuse(p) (1)
1706#define ok_pinuse(p) (1)
1707#endif /* !INSECURE */
1708
1709#if (FOOTERS && !INSECURE)
1710/* Check if (alleged) mstate m has expected magic field */
1711#define ok_magic(M) ((M)->magic == mparams.magic)
1712#else /* (FOOTERS && !INSECURE) */
1713#define ok_magic(M) (1)
1714#endif /* (FOOTERS && !INSECURE) */
1715
1716
1717/* In gcc, use __builtin_expect to minimize impact of checks */
1718#if !INSECURE
1719#if defined(__GNUC__) && __GNUC__ >= 3
1720#define RTCHECK(e) __builtin_expect(e, 1)
1721#else /* GNUC */
1722#define RTCHECK(e) (e)
1723#endif /* GNUC */
1724#else /* !INSECURE */
1725#define RTCHECK(e) (1)
1726#endif /* !INSECURE */
1727
1728/* macros to set up inuse chunks with or without footers */
1729
1730#if !FOOTERS
1731
1732#define mark_inuse_foot(M,p,s)
1733
1734/* Set cinuse bit and pinuse bit of next chunk */
1735#define set_inuse(M,p,s)\
1736 ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
1737 ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
1738
1739/* Set cinuse and pinuse of this chunk and pinuse of next chunk */
1740#define set_inuse_and_pinuse(M,p,s)\
1741 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
1742 ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
1743
1744/* Set size, cinuse and pinuse bit of this chunk */
1745#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
1746 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT))
1747
1748#else /* FOOTERS */
1749
1750/* Set foot of inuse chunk to be xor of mstate and seed */
1751#define mark_inuse_foot(M,p,s)\
1752 (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic))
1753
1754#define get_mstate_for(p)\
1755 ((mstate)(((mchunkptr)((char*)(p) +\
1756 (chunksize(p))))->prev_foot ^ mparams.magic))
1757
1758#define set_inuse(M,p,s)\
1759 ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
1760 (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \
1761 mark_inuse_foot(M,p,s))
1762
1763#define set_inuse_and_pinuse(M,p,s)\
1764 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
1765 (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\
1766 mark_inuse_foot(M,p,s))
1767
1768#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
1769 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
1770 mark_inuse_foot(M, p, s))
1771
1772#endif /* !FOOTERS */
1773
1774/* ---------------------------- setting mparams -------------------------- */
1775
1776/* Initialize mparams */
1777static int init_mparams(void) {
1778 if (mparams.page_size == 0) {
1779 size_t s;
1780
1781 mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD;
1782 mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD;
1783#if MORECORE_CONTIGUOUS
1784 mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT;
1785#else /* MORECORE_CONTIGUOUS */
1786 mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT;
1787#endif /* MORECORE_CONTIGUOUS */
1788
1789#if (FOOTERS && !INSECURE)
1790 {
1791#if USE_DEV_RANDOM
1792 int fd;
1793 unsigned char buf[sizeof(size_t)];
1794 /* Try to use /dev/urandom, else fall back on using time */
1795 if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 &&
1796 read(fd, buf, sizeof(buf)) == sizeof(buf)) {
1797 s = *((size_t *) buf);
1798 close(fd);
1799 }
1800 else
1801#endif /* USE_DEV_RANDOM */
1802 s = (size_t)(time(0) ^ (size_t)0x55555555U);
1803
1804 s |= (size_t)8U; /* ensure nonzero */
1805 s &= ~(size_t)7U; /* improve chances of fault for bad values */
1806
1807 }
1808#else /* (FOOTERS && !INSECURE) */
1809 s = (size_t)0x58585858U;
1810#endif /* (FOOTERS && !INSECURE) */
1811 ACQUIRE_MAGIC_INIT_LOCK();
1812 if (mparams.magic == 0) {
1813 mparams.magic = s;
1814 /* Set up lock for main malloc area */
1815 INITIAL_LOCK(&gm->mutex);
1816 gm->mflags = mparams.default_mflags;
1817 }
1818 RELEASE_MAGIC_INIT_LOCK();
1819
1820#ifndef WIN32
1821 mparams.page_size = malloc_getpagesize;
1822 mparams.granularity = ((DEFAULT_GRANULARITY != 0)?
1823 DEFAULT_GRANULARITY : mparams.page_size);
1824#else /* WIN32 */
1825 {
1826 SYSTEM_INFO system_info;
1827 GetSystemInfo(&system_info);
1828 mparams.page_size = system_info.dwPageSize;
1829 mparams.granularity = system_info.dwAllocationGranularity;
1830 }
1831#endif /* WIN32 */
1832
1833 /* Sanity-check configuration:
1834 size_t must be unsigned and as wide as pointer type.
1835 ints must be at least 4 bytes.
1836 alignment must be at least 8.
1837 Alignment, min chunk size, and page size must all be powers of 2.
1838 */
1839 if ((sizeof(size_t) != sizeof(char*)) ||
1840 (MAX_SIZE_T < MIN_CHUNK_SIZE) ||
1841 (sizeof(int) < 4) ||
1842 (MALLOC_ALIGNMENT < (size_t)8U) ||
1843 ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) != 0) ||
1844 ((MCHUNK_SIZE & (MCHUNK_SIZE-SIZE_T_ONE)) != 0) ||
1845 ((mparams.granularity & (mparams.granularity-SIZE_T_ONE)) != 0) ||
1846 ((mparams.page_size & (mparams.page_size-SIZE_T_ONE)) != 0))
1847 ABORT;
1848 }
1849 return 0;
1850}
1851
1852/* support for mallopt */
1853static int change_mparam(int param_number, int value) {
1854 size_t val = (size_t)value;
1855 init_mparams();
1856 switch(param_number) {
1857 case M_TRIM_THRESHOLD:
1858 mparams.trim_threshold = val;
1859 return 1;
1860 case M_GRANULARITY:
1861 if (val >= mparams.page_size && ((val & (val-1)) == 0)) {
1862 mparams.granularity = val;
1863 return 1;
1864 }
1865 else
1866 return 0;
1867 case M_MMAP_THRESHOLD:
1868 mparams.mmap_threshold = val;
1869 return 1;
1870 default:
1871 return 0;
1872 }
1873}
1874
1875#if DEBUG
1876/* ------------------------- Debugging Support --------------------------- */
1877
1878/* Check properties of any chunk, whether free, inuse, mmapped etc */
1879static void do_check_any_chunk(mstate m, mchunkptr p) {
1880 assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
1881 assert(ok_address(m, p));
1882}
1883
1884/* Check properties of top chunk */
1885static void do_check_top_chunk(mstate m, mchunkptr p) {
1886 msegmentptr sp = segment_holding(m, (char*)p);
1887 size_t sz = chunksize(p);
1888 assert(sp != 0);
1889 assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
1890 assert(ok_address(m, p));
1891 assert(sz == m->topsize);
1892 assert(sz > 0);
1893 assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE);
1894 assert(pinuse(p));
1895 assert(!next_pinuse(p));
1896}
1897
1898/* Check properties of (inuse) mmapped chunks */
1899static void do_check_mmapped_chunk(mstate m, mchunkptr p) {
1900 size_t sz = chunksize(p);
1901 size_t len = (sz + (p->prev_foot & ~IS_MMAPPED_BIT) + MMAP_FOOT_PAD);
1902 assert(is_mmapped(p));
1903 assert(use_mmap(m));
1904 assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
1905 assert(ok_address(m, p));
1906 assert(!is_small(sz));
1907 assert((len & (mparams.page_size-SIZE_T_ONE)) == 0);
1908 assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD);
1909 assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0);
1910}
1911
1912/* Check properties of inuse chunks */
1913static void do_check_inuse_chunk(mstate m, mchunkptr p) {
1914 do_check_any_chunk(m, p);
1915 assert(cinuse(p));
1916 assert(next_pinuse(p));
1917 /* If not pinuse and not mmapped, previous chunk has OK offset */
1918 assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p);
1919 if (is_mmapped(p))
1920 do_check_mmapped_chunk(m, p);
1921}
1922
1923/* Check properties of free chunks */
1924static void do_check_free_chunk(mstate m, mchunkptr p) {
1925 size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT);
1926 mchunkptr next = chunk_plus_offset(p, sz);
1927 do_check_any_chunk(m, p);
1928 assert(!cinuse(p));
1929 assert(!next_pinuse(p));
1930 assert (!is_mmapped(p));
1931 if (p != m->dv && p != m->top) {
1932 if (sz >= MIN_CHUNK_SIZE) {
1933 assert((sz & CHUNK_ALIGN_MASK) == 0);
1934 assert(is_aligned(chunk2mem(p)));
1935 assert(next->prev_foot == sz);
1936 assert(pinuse(p));
1937 assert (next == m->top || cinuse(next));
1938 assert(p->fd->bk == p);
1939 assert(p->bk->fd == p);
1940 }
1941 else /* markers are always of size SIZE_T_SIZE */
1942 assert(sz == SIZE_T_SIZE);
1943 }
1944}
1945
1946/* Check properties of malloced chunks at the point they are malloced */
1947static void do_check_malloced_chunk(mstate m, void* mem, size_t s) {
1948 if (mem != 0) {
1949 mchunkptr p = mem2chunk(mem);
1950 size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT);
1951 do_check_inuse_chunk(m, p);
1952 assert((sz & CHUNK_ALIGN_MASK) == 0);
1953 assert(sz >= MIN_CHUNK_SIZE);
1954 assert(sz >= s);
1955 /* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */
1956 assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE));
1957 }
1958}
1959
1960/* Check a tree and its subtrees. */
1961static void do_check_tree(mstate m, tchunkptr t) {
1962 tchunkptr head = 0;
1963 tchunkptr u = t;
1964 bindex_t tindex = t->index;
1965 size_t tsize = chunksize(t);
1966 bindex_t idx;
1967 compute_tree_index(tsize, idx);
1968 assert(tindex == idx);
1969 assert(tsize >= MIN_LARGE_SIZE);
1970 assert(tsize >= minsize_for_tree_index(idx));
1971 assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1))));
1972
1973 do { /* traverse through chain of same-sized nodes */
1974 do_check_any_chunk(m, ((mchunkptr)u));
1975 assert(u->index == tindex);
1976 assert(chunksize(u) == tsize);
1977 assert(!cinuse(u));
1978 assert(!next_pinuse(u));
1979 assert(u->fd->bk == u);
1980 assert(u->bk->fd == u);
1981 if (u->parent == 0) {
1982 assert(u->child[0] == 0);
1983 assert(u->child[1] == 0);
1984 }
1985 else {
1986 assert(head == 0); /* only one node on chain has parent */
1987 head = u;
1988 assert(u->parent != u);
1989 assert (u->parent->child[0] == u ||
1990 u->parent->child[1] == u ||
1991 *((tbinptr*)(u->parent)) == u);
1992 if (u->child[0] != 0) {
1993 assert(u->child[0]->parent == u);
1994 assert(u->child[0] != u);
1995 do_check_tree(m, u->child[0]);
1996 }
1997 if (u->child[1] != 0) {
1998 assert(u->child[1]->parent == u);
1999 assert(u->child[1] != u);
2000 do_check_tree(m, u->child[1]);
2001 }
2002 if (u->child[0] != 0 && u->child[1] != 0) {
2003 assert(chunksize(u->child[0]) < chunksize(u->child[1]));
2004 }
2005 }
2006 u = u->fd;
2007 } while (u != t);
2008 assert(head != 0);
2009}
2010
2011/* Check all the chunks in a treebin. */
2012static void do_check_treebin(mstate m, bindex_t i) {
2013 tbinptr* tb = treebin_at(m, i);
2014 tchunkptr t = *tb;
2015 int empty = (m->treemap & (1U << i)) == 0;
2016 if (t == 0)
2017 assert(empty);
2018 if (!empty)
2019 do_check_tree(m, t);
2020}
2021
2022/* Check all the chunks in a smallbin. */
2023static void do_check_smallbin(mstate m, bindex_t i) {
2024 sbinptr b = smallbin_at(m, i);
2025 mchunkptr p = b->bk;
2026 unsigned int empty = (m->smallmap & (1U << i)) == 0;
2027 if (p == b)
2028 assert(empty);
2029 if (!empty) {
2030 for (; p != b; p = p->bk) {
2031 size_t size = chunksize(p);
2032 mchunkptr q;
2033 /* each chunk claims to be free */
2034 do_check_free_chunk(m, p);
2035 /* chunk belongs in bin */
2036 assert(small_index(size) == i);
2037 assert(p->bk == b || chunksize(p->bk) == chunksize(p));
2038 /* chunk is followed by an inuse chunk */
2039 q = next_chunk(p);
2040 if (q->head != FENCEPOST_HEAD)
2041 do_check_inuse_chunk(m, q);
2042 }
2043 }
2044}
2045
2046/* Find x in a bin. Used in other check functions. */
2047static int bin_find(mstate m, mchunkptr x) {
2048 size_t size = chunksize(x);
2049 if (is_small(size)) {
2050 bindex_t sidx = small_index(size);
2051 sbinptr b = smallbin_at(m, sidx);
2052 if (smallmap_is_marked(m, sidx)) {
2053 mchunkptr p = b;
2054 do {
2055 if (p == x)
2056 return 1;
2057 } while ((p = p->fd) != b);
2058 }
2059 }
2060 else {
2061 bindex_t tidx;
2062 compute_tree_index(size, tidx);
2063 if (treemap_is_marked(m, tidx)) {
2064 tchunkptr t = *treebin_at(m, tidx);
2065 size_t sizebits = size << leftshift_for_tree_index(tidx);
2066 while (t != 0 && chunksize(t) != size) {
2067 t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
2068 sizebits <<= 1;
2069 }
2070 if (t != 0) {
2071 tchunkptr u = t;
2072 do {
2073 if (u == (tchunkptr)x)
2074 return 1;
2075 } while ((u = u->fd) != t);
2076 }
2077 }
2078 }
2079 return 0;
2080}
2081
2082/* Traverse each chunk and check it; return total */
2083static size_t traverse_and_check(mstate m) {
2084 size_t sum = 0;
2085 if (is_initialized(m)) {
2086 msegmentptr s = &m->seg;
2087 sum += m->topsize + TOP_FOOT_SIZE;
2088 while (s != 0) {
2089 mchunkptr q = align_as_chunk(s->base);
2090 mchunkptr lastq = 0;
2091 assert(pinuse(q));
2092 while (segment_holds(s, q) &&
2093 q != m->top && q->head != FENCEPOST_HEAD) {
2094 sum += chunksize(q);
2095 if (cinuse(q)) {
2096 assert(!bin_find(m, q));
2097 do_check_inuse_chunk(m, q);
2098 }
2099 else {
2100 assert(q == m->dv || bin_find(m, q));
2101 assert(lastq == 0 || cinuse(lastq)); /* Not 2 consecutive free */
2102 do_check_free_chunk(m, q);
2103 }
2104 lastq = q;
2105 q = next_chunk(q);
2106 }
2107 s = s->next;
2108 }
2109 }
2110 return sum;
2111}
2112
2113/* Check all properties of malloc_state. */
2114static void do_check_malloc_state(mstate m) {
2115 bindex_t i;
2116 size_t total;
2117 /* check bins */
2118 for (i = 0; i < NSMALLBINS; ++i)
2119 do_check_smallbin(m, i);
2120 for (i = 0; i < NTREEBINS; ++i)
2121 do_check_treebin(m, i);
2122
2123 if (m->dvsize != 0) { /* check dv chunk */
2124 do_check_any_chunk(m, m->dv);
2125 assert(m->dvsize == chunksize(m->dv));
2126 assert(m->dvsize >= MIN_CHUNK_SIZE);
2127 assert(bin_find(m, m->dv) == 0);
2128 }
2129
2130 if (m->top != 0) { /* check top chunk */
2131 do_check_top_chunk(m, m->top);
2132 assert(m->topsize == chunksize(m->top));
2133 assert(m->topsize > 0);
2134 assert(bin_find(m, m->top) == 0);
2135 }
2136
2137 total = traverse_and_check(m);
2138 assert(total <= m->footprint);
2139 assert(m->footprint <= m->max_footprint);
2140}
2141#endif /* DEBUG */
2142
2143/* ----------------------------- statistics ------------------------------ */
2144
2145#if !NO_MALLINFO
2146static struct mallinfo internal_mallinfo(mstate m) {
2147 struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
2148 if (!PREACTION(m)) {
2149 check_malloc_state(m);
2150 if (is_initialized(m)) {
2151 size_t nfree = SIZE_T_ONE; /* top always free */
2152 size_t mfree = m->topsize + TOP_FOOT_SIZE;
2153 size_t sum = mfree;
2154 msegmentptr s = &m->seg;
2155 while (s != 0) {
2156 mchunkptr q = align_as_chunk(s->base);
2157 while (segment_holds(s, q) &&
2158 q != m->top && q->head != FENCEPOST_HEAD) {
2159 size_t sz = chunksize(q);
2160 sum += sz;
2161 if (!cinuse(q)) {
2162 mfree += sz;
2163 ++nfree;
2164 }
2165 q = next_chunk(q);
2166 }
2167 s = s->next;
2168 }
2169
2170 nm.arena = sum;
2171 nm.ordblks = nfree;
2172 nm.hblkhd = m->footprint - sum;
2173 nm.usmblks = m->max_footprint;
2174 nm.uordblks = m->footprint - mfree;
2175 nm.fordblks = mfree;
2176 nm.keepcost = m->topsize;
2177 }
2178
2179 POSTACTION(m);
2180 }
2181 return nm;
2182}
2183#endif /* !NO_MALLINFO */
2184
2185static void internal_malloc_stats(mstate m) {
2186 if (!PREACTION(m)) {
2187 size_t maxfp = 0;
2188 size_t fp = 0;
2189 size_t used = 0;
2190 check_malloc_state(m);
2191 if (is_initialized(m)) {
2192 msegmentptr s = &m->seg;
2193 maxfp = m->max_footprint;
2194 fp = m->footprint;
2195 used = fp - (m->topsize + TOP_FOOT_SIZE);
2196
2197 while (s != 0) {
2198 mchunkptr q = align_as_chunk(s->base);
2199 while (segment_holds(s, q) &&
2200 q != m->top && q->head != FENCEPOST_HEAD) {
2201 if (!cinuse(q))
2202 used -= chunksize(q);
2203 q = next_chunk(q);
2204 }
2205 s = s->next;
2206 }
2207 }
2208
2209 fprintf(stderr, "max system bytes = %10lu\n", (unsigned long)(maxfp));
2210 fprintf(stderr, "system bytes = %10lu\n", (unsigned long)(fp));
2211 fprintf(stderr, "in use bytes = %10lu\n", (unsigned long)(used));
2212
2213 POSTACTION(m);
2214 }
2215}
2216
2217/* ----------------------- Operations on smallbins ----------------------- */
2218
2219/*
2220 Various forms of linking and unlinking are defined as macros. Even
2221 the ones for trees, which are very long but have very short typical
2222 paths. This is ugly but reduces reliance on inlining support of
2223 compilers.
2224*/
2225
2226/* Link a free chunk into a smallbin */
2227#define insert_small_chunk(M, P, S) {\
2228 bindex_t I = small_index(S);\
2229 mchunkptr B = smallbin_at(M, I);\
2230 mchunkptr F = B;\
2231 assert(S >= MIN_CHUNK_SIZE);\
2232 if (!smallmap_is_marked(M, I))\
2233 mark_smallmap(M, I);\
2234 else if (RTCHECK(ok_address(M, B->fd)))\
2235 F = B->fd;\
2236 else {\
2237 CORRUPTION_ERROR_ACTION(M);\
2238 }\
2239 B->fd = P;\
2240 F->bk = P;\
2241 P->fd = F;\
2242 P->bk = B;\
2243}
2244
2245/* Unlink a chunk from a smallbin */
2246#define unlink_small_chunk(M, P, S) {\
2247 mchunkptr F = P->fd;\
2248 mchunkptr B = P->bk;\
2249 bindex_t I = small_index(S);\
2250 assert(P != B);\
2251 assert(P != F);\
2252 assert(chunksize(P) == small_index2size(I));\
2253 if (F == B)\
2254 clear_smallmap(M, I);\
2255 else if (RTCHECK((F == smallbin_at(M,I) || ok_address(M, F)) &&\
2256 (B == smallbin_at(M,I) || ok_address(M, B)))) {\
2257 F->bk = B;\
2258 B->fd = F;\
2259 }\
2260 else {\
2261 CORRUPTION_ERROR_ACTION(M);\
2262 }\
2263}
2264
2265/* Unlink the first chunk from a smallbin */
2266#define unlink_first_small_chunk(M, B, P, I) {\
2267 mchunkptr F = P->fd;\
2268 assert(P != B);\
2269 assert(P != F);\
2270 assert(chunksize(P) == small_index2size(I));\
2271 if (B == F)\
2272 clear_smallmap(M, I);\
2273 else if (RTCHECK(ok_address(M, F))) {\
2274 B->fd = F;\
2275 F->bk = B;\
2276 }\
2277 else {\
2278 CORRUPTION_ERROR_ACTION(M);\
2279 }\
2280}
2281
2282/* Replace dv node, binning the old one */
2283/* Used only when dvsize known to be small */
2284#define replace_dv(M, P, S) {\
2285 size_t DVS = M->dvsize;\
2286 if (DVS != 0) {\
2287 mchunkptr DV = M->dv;\
2288 assert(is_small(DVS));\
2289 insert_small_chunk(M, DV, DVS);\
2290 }\
2291 M->dvsize = S;\
2292 M->dv = P;\
2293}
2294
2295/* ------------------------- Operations on trees ------------------------- */
2296
2297/* Insert chunk into tree */
2298#define insert_large_chunk(M, X, S) {\
2299 tbinptr* H;\
2300 bindex_t I;\
2301 compute_tree_index(S, I);\
2302 H = treebin_at(M, I);\
2303 X->index = I;\
2304 X->child[0] = X->child[1] = 0;\
2305 if (!treemap_is_marked(M, I)) {\
2306 mark_treemap(M, I);\
2307 *H = X;\
2308 X->parent = (tchunkptr)H;\
2309 X->fd = X->bk = X;\
2310 }\
2311 else {\
2312 tchunkptr T = *H;\
2313 size_t K = S << leftshift_for_tree_index(I);\
2314 for (;;) {\
2315 if (chunksize(T) != S) {\
2316 tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\
2317 K <<= 1;\
2318 if (*C != 0)\
2319 T = *C;\
2320 else if (RTCHECK(ok_address(M, C))) {\
2321 *C = X;\
2322 X->parent = T;\
2323 X->fd = X->bk = X;\
2324 break;\
2325 }\
2326 else {\
2327 CORRUPTION_ERROR_ACTION(M);\
2328 break;\
2329 }\
2330 }\
2331 else {\
2332 tchunkptr F = T->fd;\
2333 if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\
2334 T->fd = F->bk = X;\
2335 X->fd = F;\
2336 X->bk = T;\
2337 X->parent = 0;\
2338 break;\
2339 }\
2340 else {\
2341 CORRUPTION_ERROR_ACTION(M);\
2342 break;\
2343 }\
2344 }\
2345 }\
2346 }\
2347}
2348
2349/*
2350 Unlink steps:
2351
2352 1. If x is a chained node, unlink it from its same-sized fd/bk links
2353 and choose its bk node as its replacement.
2354 2. If x was the last node of its size, but not a leaf node, it must
2355 be replaced with a leaf node (not merely one with an open left or
2356 right), to make sure that lefts and rights of descendents
2357 correspond properly to bit masks. We use the rightmost descendent
2358 of x. We could use any other leaf, but this is easy to locate and
2359 tends to counteract removal of leftmosts elsewhere, and so keeps
2360 paths shorter than minimally guaranteed. This doesn't loop much
2361 because on average a node in a tree is near the bottom.
2362 3. If x is the base of a chain (i.e., has parent links) relink
2363 x's parent and children to x's replacement (or null if none).
2364*/
2365
2366#define unlink_large_chunk(M, X) {\
2367 tchunkptr XP = X->parent;\
2368 tchunkptr R;\
2369 if (X->bk != X) {\
2370 tchunkptr F = X->fd;\
2371 R = X->bk;\
2372 if (RTCHECK(ok_address(M, F))) {\
2373 F->bk = R;\
2374 R->fd = F;\
2375 }\
2376 else {\
2377 CORRUPTION_ERROR_ACTION(M);\
2378 }\
2379 }\
2380 else {\
2381 tchunkptr* RP;\
2382 if (((R = *(RP = &(X->child[1]))) != 0) ||\
2383 ((R = *(RP = &(X->child[0]))) != 0)) {\
2384 tchunkptr* CP;\
2385 while ((*(CP = &(R->child[1])) != 0) ||\
2386 (*(CP = &(R->child[0])) != 0)) {\
2387 R = *(RP = CP);\
2388 }\
2389 if (RTCHECK(ok_address(M, RP)))\
2390 *RP = 0;\
2391 else {\
2392 CORRUPTION_ERROR_ACTION(M);\
2393 }\
2394 }\
2395 }\
2396 if (XP != 0) {\
2397 tbinptr* H = treebin_at(M, X->index);\
2398 if (X == *H) {\
2399 if ((*H = R) == 0) \
2400 clear_treemap(M, X->index);\
2401 }\
2402 else if (RTCHECK(ok_address(M, XP))) {\
2403 if (XP->child[0] == X) \
2404 XP->child[0] = R;\
2405 else \
2406 XP->child[1] = R;\
2407 }\
2408 else\
2409 CORRUPTION_ERROR_ACTION(M);\
2410 if (R != 0) {\
2411 if (RTCHECK(ok_address(M, R))) {\
2412 tchunkptr C0, C1;\
2413 R->parent = XP;\
2414 if ((C0 = X->child[0]) != 0) {\
2415 if (RTCHECK(ok_address(M, C0))) {\
2416 R->child[0] = C0;\
2417 C0->parent = R;\
2418 }\
2419 else\
2420 CORRUPTION_ERROR_ACTION(M);\
2421 }\
2422 if ((C1 = X->child[1]) != 0) {\
2423 if (RTCHECK(ok_address(M, C1))) {\
2424 R->child[1] = C1;\
2425 C1->parent = R;\
2426 }\
2427 else\
2428 CORRUPTION_ERROR_ACTION(M);\
2429 }\
2430 }\
2431 else\
2432 CORRUPTION_ERROR_ACTION(M);\
2433 }\
2434 }\
2435}
2436
2437/* Relays to large vs small bin operations */
2438
2439#define insert_chunk(M, P, S)\
2440 if (is_small(S)) insert_small_chunk(M, P, S)\
2441 else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); }
2442
2443#define unlink_chunk(M, P, S)\
2444 if (is_small(S)) unlink_small_chunk(M, P, S)\
2445 else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); }
2446
2447
2448/* Relays to internal calls to malloc/free from realloc, memalign etc */
2449
2450#if ONLY_MSPACES
2451#define internal_malloc(m, b) mspace_malloc(m, b)
2452#define internal_free(m, mem) mspace_free(m,mem);
2453#else /* ONLY_MSPACES */
2454#if MSPACES
2455#define internal_malloc(m, b)\
2456 (m == gm)? dlmalloc(b) : mspace_malloc(m, b)
2457#define internal_free(m, mem)\
2458 if (m == gm) dlfree(mem); else mspace_free(m,mem);
2459#else /* MSPACES */
2460#define internal_malloc(m, b) dlmalloc(b)
2461#define internal_free(m, mem) dlfree(mem)
2462#endif /* MSPACES */
2463#endif /* ONLY_MSPACES */
2464
2465/* ----------------------- Direct-mmapping chunks ----------------------- */
2466
2467/*
2468 Directly mmapped chunks are set up with an offset to the start of
2469 the mmapped region stored in the prev_foot field of the chunk. This
2470 allows reconstruction of the required argument to MUNMAP when freed,
2471 and also allows adjustment of the returned chunk to meet alignment
2472 requirements (especially in memalign). There is also enough space
2473 allocated to hold a fake next chunk of size SIZE_T_SIZE to maintain
2474 the PINUSE bit so frees can be checked.
2475*/
2476
2477/* Malloc using mmap */
2478static void* mmap_alloc(mstate m, size_t nb) {
2479 size_t mmsize = granularity_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
2480 if (mmsize > nb) { /* Check for wrap around 0 */
2481 char* mm = (char*)(DIRECT_MMAP(mmsize));
2482 if (mm != CMFAIL) {
2483 size_t offset = align_offset(chunk2mem(mm));
2484 size_t psize = mmsize - offset - MMAP_FOOT_PAD;
2485 mchunkptr p = (mchunkptr)(mm + offset);
2486 p->prev_foot = offset | IS_MMAPPED_BIT;
2487 (p)->head = (psize|CINUSE_BIT);
2488 mark_inuse_foot(m, p, psize);
2489 chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD;
2490 chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0;
2491
2492 if (mm < m->least_addr)
2493 m->least_addr = mm;
2494 if ((m->footprint += mmsize) > m->max_footprint)
2495 m->max_footprint = m->footprint;
2496 assert(is_aligned(chunk2mem(p)));
2497 check_mmapped_chunk(m, p);
2498 return chunk2mem(p);
2499 }
2500 }
2501 return 0;
2502}
2503
2504/* Realloc using mmap */
2505static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb) {
2506 size_t oldsize = chunksize(oldp);
2507 if (is_small(nb)) /* Can't shrink mmap regions below small size */
2508 return 0;
2509 /* Keep old chunk if big enough but not too big */
2510 if (oldsize >= nb + SIZE_T_SIZE &&
2511 (oldsize - nb) <= (mparams.granularity << 1))
2512 return oldp;
2513 else {
2514 size_t offset = oldp->prev_foot & ~IS_MMAPPED_BIT;
2515 size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD;
2516 size_t newmmsize = granularity_align(nb + SIX_SIZE_T_SIZES +
2517 CHUNK_ALIGN_MASK);
2518 char* cp = (char*)CALL_MREMAP((char*)oldp - offset,
2519 oldmmsize, newmmsize, 1);
2520 if (cp != CMFAIL) {
2521 mchunkptr newp = (mchunkptr)(cp + offset);
2522 size_t psize = newmmsize - offset - MMAP_FOOT_PAD;
2523 newp->head = (psize|CINUSE_BIT);
2524 mark_inuse_foot(m, newp, psize);
2525 chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD;
2526 chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0;
2527
2528 if (cp < m->least_addr)
2529 m->least_addr = cp;
2530 if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint)
2531 m->max_footprint = m->footprint;
2532 check_mmapped_chunk(m, newp);
2533 return newp;
2534 }
2535 }
2536 return 0;
2537}
2538
2539/* -------------------------- mspace management -------------------------- */
2540
2541/* Initialize top chunk and its size */
2542static void init_top(mstate m, mchunkptr p, size_t psize) {
2543 /* Ensure alignment */
2544 size_t offset = align_offset(chunk2mem(p));
2545 p = (mchunkptr)((char*)p + offset);
2546 psize -= offset;
2547
2548 m->top = p;
2549 m->topsize = psize;
2550 p->head = psize | PINUSE_BIT;
2551 /* set size of fake trailing chunk holding overhead space only once */
2552 chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE;
2553 m->trim_check = mparams.trim_threshold; /* reset on each update */
2554}
2555
2556/* Initialize bins for a new mstate that is otherwise zeroed out */
2557static void init_bins(mstate m) {
2558 /* Establish circular links for smallbins */
2559 bindex_t i;
2560 for (i = 0; i < NSMALLBINS; ++i) {
2561 sbinptr bin = smallbin_at(m,i);
2562 bin->fd = bin->bk = bin;
2563 }
2564}
2565
2566#if PROCEED_ON_ERROR
2567
2568/* default corruption action */
2569static void reset_on_error(mstate m) {
2570 int i;
2571 ++malloc_corruption_error_count;
2572 /* Reinitialize fields to forget about all memory */
2573 m->smallbins = m->treebins = 0;
2574 m->dvsize = m->topsize = 0;
2575 m->seg.base = 0;
2576 m->seg.size = 0;
2577 m->seg.next = 0;
2578 m->top = m->dv = 0;
2579 for (i = 0; i < NTREEBINS; ++i)
2580 *treebin_at(m, i) = 0;
2581 init_bins(m);
2582}
2583#endif /* PROCEED_ON_ERROR */
2584
2585/* Allocate chunk and prepend remainder with chunk in successor base. */
2586static void* prepend_alloc(mstate m, char* newbase, char* oldbase,
2587 size_t nb) {
2588 mchunkptr p = align_as_chunk(newbase);
2589 mchunkptr oldfirst = align_as_chunk(oldbase);
2590 size_t psize = (char*)oldfirst - (char*)p;
2591 mchunkptr q = chunk_plus_offset(p, nb);
2592 size_t qsize = psize - nb;
2593 set_size_and_pinuse_of_inuse_chunk(m, p, nb);
2594
2595 assert((char*)oldfirst > (char*)q);
2596 assert(pinuse(oldfirst));
2597 assert(qsize >= MIN_CHUNK_SIZE);
2598
2599 /* consolidate remainder with first chunk of old base */
2600 if (oldfirst == m->top) {
2601 size_t tsize = m->topsize += qsize;
2602 m->top = q;
2603 q->head = tsize | PINUSE_BIT;
2604 check_top_chunk(m, q);
2605 }
2606 else if (oldfirst == m->dv) {
2607 size_t dsize = m->dvsize += qsize;
2608 m->dv = q;
2609 set_size_and_pinuse_of_free_chunk(q, dsize);
2610 }
2611 else {
2612 if (!cinuse(oldfirst)) {
2613 size_t nsize = chunksize(oldfirst);
2614 unlink_chunk(m, oldfirst, nsize);
2615 oldfirst = chunk_plus_offset(oldfirst, nsize);
2616 qsize += nsize;
2617 }
2618 set_free_with_pinuse(q, qsize, oldfirst);
2619 insert_chunk(m, q, qsize);
2620 check_free_chunk(m, q);
2621 }
2622
2623 check_malloced_chunk(m, chunk2mem(p), nb);
2624 return chunk2mem(p);
2625}
2626
2627
2628/* Add a segment to hold a new noncontiguous region */
2629static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) {
2630 /* Determine locations and sizes of segment, fenceposts, old top */
2631 char* old_top = (char*)m->top;
2632 msegmentptr oldsp = segment_holding(m, old_top);
2633 char* old_end = oldsp->base + oldsp->size;
2634 size_t ssize = pad_request(sizeof(struct malloc_segment));
2635 char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
2636 size_t offset = align_offset(chunk2mem(rawsp));
2637 char* asp = rawsp + offset;
2638 char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp;
2639 mchunkptr sp = (mchunkptr)csp;
2640 msegmentptr ss = (msegmentptr)(chunk2mem(sp));
2641 mchunkptr tnext = chunk_plus_offset(sp, ssize);
2642 mchunkptr p = tnext;
2643 int nfences = 0;
2644
2645 /* reset top to new space */
2646 init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
2647
2648 /* Set up segment record */
2649 assert(is_aligned(ss));
2650 set_size_and_pinuse_of_inuse_chunk(m, sp, ssize);
2651 *ss = m->seg; /* Push current record */
2652 m->seg.base = tbase;
2653 m->seg.size = tsize;
2654 m->seg.sflags = mmapped;
2655 m->seg.next = ss;
2656
2657 /* Insert trailing fenceposts */
2658 for (;;) {
2659 mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE);
2660 p->head = FENCEPOST_HEAD;
2661 ++nfences;
2662 if ((char*)(&(nextp->head)) < old_end)
2663 p = nextp;
2664 else
2665 break;
2666 }
2667 assert(nfences >= 2);
2668
2669 /* Insert the rest of old top into a bin as an ordinary free chunk */
2670 if (csp != old_top) {
2671 mchunkptr q = (mchunkptr)old_top;
2672 size_t psize = csp - old_top;
2673 mchunkptr tn = chunk_plus_offset(q, psize);
2674 set_free_with_pinuse(q, psize, tn);
2675 insert_chunk(m, q, psize);
2676 }
2677
2678 check_top_chunk(m, m->top);
2679}
2680
2681/* -------------------------- System allocation -------------------------- */
2682
2683/* Get memory from system using MORECORE or MMAP */
2684static void* sys_alloc(mstate m, size_t nb) {
2685 char* tbase = CMFAIL;
2686 size_t tsize = 0;
2687 flag_t mmap_flag = 0;
2688
2689 init_mparams();
2690
2691 /* Directly map large chunks */
2692 if (use_mmap(m) && nb >= mparams.mmap_threshold) {
2693 void* mem = mmap_alloc(m, nb);
2694 if (mem != 0)
2695 return mem;
2696 }
2697
2698 /*
2699 Try getting memory in any of three ways (in most-preferred to
2700 least-preferred order):
2701 1. A call to MORECORE that can normally contiguously extend memory.
2702 (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or
2703 or main space is mmapped or a previous contiguous call failed)
2704 2. A call to MMAP new space (disabled if not HAVE_MMAP).
2705 Note that under the default settings, if MORECORE is unable to
2706 fulfill a request, and HAVE_MMAP is true, then mmap is
2707 used as a noncontiguous system allocator. This is a useful backup
2708 strategy for systems with holes in address spaces -- in this case
2709 sbrk cannot contiguously expand the heap, but mmap may be able to
2710 find space.
2711 3. A call to MORECORE that cannot usually contiguously extend memory.
2712 (disabled if not HAVE_MORECORE)
2713 */
2714
2715 if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) {
2716 char* br = CMFAIL;
2717 msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top);
2718 size_t asize = 0;
2719 ACQUIRE_MORECORE_LOCK();
2720
2721 if (ss == 0) { /* First time through or recovery */
2722 char* base = (char*)CALL_MORECORE(0);
2723 if (base != CMFAIL) {
2724 asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE);
2725 /* Adjust to end on a page boundary */
2726 if (!is_page_aligned(base))
2727 asize += (page_align((size_t)base) - (size_t)base);
2728 /* Can't call MORECORE if size is negative when treated as signed */
2729 if (asize < HALF_MAX_SIZE_T &&
2730 (br = (char*)(CALL_MORECORE(asize))) == base) {
2731 tbase = base;
2732 tsize = asize;
2733 }
2734 }
2735 }
2736 else {
2737 /* Subtract out existing available top space from MORECORE request. */
2738 asize = granularity_align(nb - m->topsize + TOP_FOOT_SIZE + SIZE_T_ONE);
2739 /* Use mem here only if it did continuously extend old space */
2740 if (asize < HALF_MAX_SIZE_T &&
2741 (br = (char*)(CALL_MORECORE(asize))) == ss->base+ss->size) {
2742 tbase = br;
2743 tsize = asize;
2744 }
2745 }
2746
2747 if (tbase == CMFAIL) { /* Cope with partial failure */
2748 if (br != CMFAIL) { /* Try to use/extend the space we did get */
2749 if (asize < HALF_MAX_SIZE_T &&
2750 asize < nb + TOP_FOOT_SIZE + SIZE_T_ONE) {
2751 size_t esize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE - asize);
2752 if (esize < HALF_MAX_SIZE_T) {
2753 char* end = (char*)CALL_MORECORE(esize);
2754 if (end != CMFAIL)
2755 asize += esize;
2756 else { /* Can't use; try to release */
2757 CALL_MORECORE(-asize);
2758 br = CMFAIL;
2759 }
2760 }
2761 }
2762 }
2763 if (br != CMFAIL) { /* Use the space we did get */
2764 tbase = br;
2765 tsize = asize;
2766 }
2767 else
2768 disable_contiguous(m); /* Don't try contiguous path in the future */
2769 }
2770
2771 RELEASE_MORECORE_LOCK();
2772 }
2773
2774 if (HAVE_MMAP && tbase == CMFAIL) { /* Try MMAP */
2775 size_t req = nb + TOP_FOOT_SIZE + SIZE_T_ONE;
2776 size_t rsize = granularity_align(req);
2777 if (rsize > nb) { /* Fail if wraps around zero */
2778 char* mp = (char*)(CALL_MMAP(rsize));
2779 if (mp != CMFAIL) {
2780 tbase = mp;
2781 tsize = rsize;
2782 mmap_flag = IS_MMAPPED_BIT;
2783 }
2784 }
2785 }
2786
2787 if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */
2788 size_t asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE);
2789 if (asize < HALF_MAX_SIZE_T) {
2790 char* br = CMFAIL;
2791 char* end = CMFAIL;
2792 ACQUIRE_MORECORE_LOCK();
2793 br = (char*)(CALL_MORECORE(asize));
2794 end = (char*)(CALL_MORECORE(0));
2795 RELEASE_MORECORE_LOCK();
2796 if (br != CMFAIL && end != CMFAIL && br < end) {
2797 size_t ssize = end - br;
2798 if (ssize > nb + TOP_FOOT_SIZE) {
2799 tbase = br;
2800 tsize = ssize;
2801 }
2802 }
2803 }
2804 }
2805
2806 if (tbase != CMFAIL) {
2807
2808 if ((m->footprint += tsize) > m->max_footprint)
2809 m->max_footprint = m->footprint;
2810
2811 if (!is_initialized(m)) { /* first-time initialization */
2812 m->seg.base = m->least_addr = tbase;
2813 m->seg.size = tsize;
2814 m->seg.sflags = mmap_flag;
2815 m->magic = mparams.magic;
2816 init_bins(m);
2817 if (is_global(m))
2818 init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
2819 else {
2820 /* Offset top by embedded malloc_state */
2821 mchunkptr mn = next_chunk(mem2chunk(m));
2822 init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE);
2823 }
2824 }
2825
2826 else {
2827 /* Try to merge with an existing segment */
2828 msegmentptr sp = &m->seg;
2829 while (sp != 0 && tbase != sp->base + sp->size)
2830 sp = sp->next;
2831 if (sp != 0 &&
2832 !is_extern_segment(sp) &&
2833 (sp->sflags & IS_MMAPPED_BIT) == mmap_flag &&
2834 segment_holds(sp, m->top)) { /* append */
2835 sp->size += tsize;
2836 init_top(m, m->top, m->topsize + tsize);
2837 }
2838 else {
2839 if (tbase < m->least_addr)
2840 m->least_addr = tbase;
2841 sp = &m->seg;
2842 while (sp != 0 && sp->base != tbase + tsize)
2843 sp = sp->next;
2844 if (sp != 0 &&
2845 !is_extern_segment(sp) &&
2846 (sp->sflags & IS_MMAPPED_BIT) == mmap_flag) {
2847 char* oldbase = sp->base;
2848 sp->base = tbase;
2849 sp->size += tsize;
2850 return prepend_alloc(m, tbase, oldbase, nb);
2851 }
2852 else
2853 add_segment(m, tbase, tsize, mmap_flag);
2854 }
2855 }
2856
2857 if (nb < m->topsize) { /* Allocate from new or extended top space */
2858 size_t rsize = m->topsize -= nb;
2859 mchunkptr p = m->top;
2860 mchunkptr r = m->top = chunk_plus_offset(p, nb);
2861 r->head = rsize | PINUSE_BIT;
2862 set_size_and_pinuse_of_inuse_chunk(m, p, nb);
2863 check_top_chunk(m, m->top);
2864 check_malloced_chunk(m, chunk2mem(p), nb);
2865 return chunk2mem(p);
2866 }
2867 }
2868
2869 MALLOC_FAILURE_ACTION;
2870 return 0;
2871}
2872
2873/* ----------------------- system deallocation -------------------------- */
2874
2875/* Unmap and unlink any mmapped segments that don't contain used chunks */
2876static size_t release_unused_segments(mstate m) {
2877 size_t released = 0;
2878 msegmentptr pred = &m->seg;
2879 msegmentptr sp = pred->next;
2880 while (sp != 0) {
2881 char* base = sp->base;
2882 size_t size = sp->size;
2883 msegmentptr next = sp->next;
2884 if (is_mmapped_segment(sp) && !is_extern_segment(sp)) {
2885 mchunkptr p = align_as_chunk(base);
2886 size_t psize = chunksize(p);
2887 /* Can unmap if first chunk holds entire segment and not pinned */
2888 if (!cinuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) {
2889 tchunkptr tp = (tchunkptr)p;
2890 assert(segment_holds(sp, (char*)sp));
2891 if (p == m->dv) {
2892 m->dv = 0;
2893 m->dvsize = 0;
2894 }
2895 else {
2896 unlink_large_chunk(m, tp);
2897 }
2898 if (CALL_MUNMAP(base, size) == 0) {
2899 released += size;
2900 m->footprint -= size;
2901 /* unlink obsoleted record */
2902 sp = pred;
2903 sp->next = next;
2904 }
2905 else { /* back out if cannot unmap */
2906 insert_large_chunk(m, tp, psize);
2907 }
2908 }
2909 }
2910 pred = sp;
2911 sp = next;
2912 }
2913 return released;
2914}
2915
2916static int sys_trim(mstate m, size_t pad) {
2917 size_t released = 0;
2918 if (pad < MAX_REQUEST && is_initialized(m)) {
2919 pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */
2920
2921 if (m->topsize > pad) {
2922 /* Shrink top space in granularity-size units, keeping at least one */
2923 size_t unit = mparams.granularity;
2924 size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit -
2925 SIZE_T_ONE) * unit;
2926 msegmentptr sp = segment_holding(m, (char*)m->top);
2927
2928 if (!is_extern_segment(sp)) {
2929 if (is_mmapped_segment(sp)) {
2930 if (HAVE_MMAP &&
2931 sp->size >= extra &&
2932 !has_segment_link(m, sp)) { /* can't shrink if pinned */
2933 /* Prefer mremap, fall back to munmap */
2934 if ((CALL_MREMAP(sp->base, sp->size, sp->size - extra, 0) != MFAIL) ||
2935 (CALL_MUNMAP(sp->base + sp->size - extra, extra) == 0)) {
2936 released = extra;
2937 }
2938 }
2939 }
2940 else if (HAVE_MORECORE) {
2941 if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */
2942 extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit;
2943 ACQUIRE_MORECORE_LOCK();
2944 {
2945 /* Make sure end of memory is where we last set it. */
2946 char* old_br = (char*)(CALL_MORECORE(0));
2947 if (old_br == sp->base + sp->size) {
2948 char* rel_br = (char*)(CALL_MORECORE(-extra));
2949 char* new_br = (char*)(CALL_MORECORE(0));
2950 if (rel_br != CMFAIL && new_br < old_br)
2951 released = old_br - new_br;
2952 }
2953 }
2954 RELEASE_MORECORE_LOCK();
2955 }
2956 }
2957
2958 if (released != 0) {
2959 sp->size -= released;
2960 m->footprint -= released;
2961 init_top(m, m->top, m->topsize - released);
2962 check_top_chunk(m, m->top);
2963 }
2964 }
2965
2966 /* Unmap any unused mmapped segments */
2967 if (HAVE_MMAP)
2968 released += release_unused_segments(m);
2969
2970 /* On failure, disable autotrim to avoid repeated failed future calls */
2971 if (released == 0)
2972 m->trim_check = MAX_SIZE_T;
2973 }
2974
2975 return (released != 0)? 1 : 0;
2976}
2977
2978/* ---------------------------- malloc support --------------------------- */
2979
2980/* allocate a large request from the best fitting chunk in a treebin */
2981static void* tmalloc_large(mstate m, size_t nb) {
2982 tchunkptr v = 0;
2983 size_t rsize = -nb; /* Unsigned negation */
2984 tchunkptr t;
2985 bindex_t idx;
2986 compute_tree_index(nb, idx);
2987
2988 if ((t = *treebin_at(m, idx)) != 0) {
2989 /* Traverse tree for this bin looking for node with size == nb */
2990 size_t sizebits = nb << leftshift_for_tree_index(idx);
2991 tchunkptr rst = 0; /* The deepest untaken right subtree */
2992 for (;;) {
2993 tchunkptr rt;
2994 size_t trem = chunksize(t) - nb;
2995 if (trem < rsize) {
2996 v = t;
2997 if ((rsize = trem) == 0)
2998 break;
2999 }
3000 rt = t->child[1];
3001 t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
3002 if (rt != 0 && rt != t)
3003 rst = rt;
3004 if (t == 0) {
3005 t = rst; /* set t to least subtree holding sizes > nb */
3006 break;
3007 }
3008 sizebits <<= 1;
3009 }
3010 }
3011
3012 if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */
3013 binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap;
3014 if (leftbits != 0) {
3015 bindex_t i;
3016 binmap_t leastbit = least_bit(leftbits);
3017 compute_bit2idx(leastbit, i);
3018 t = *treebin_at(m, i);
3019 }
3020 }
3021
3022 while (t != 0) { /* find smallest of tree or subtree */
3023 size_t trem = chunksize(t) - nb;
3024 if (trem < rsize) {
3025 rsize = trem;
3026 v = t;
3027 }
3028 t = leftmost_child(t);
3029 }
3030
3031 /* If dv is a better fit, return 0 so malloc will use it */
3032 if (v != 0 && rsize < (size_t)(m->dvsize - nb)) {
3033 if (RTCHECK(ok_address(m, v))) { /* split */
3034 mchunkptr r = chunk_plus_offset(v, nb);
3035 assert(chunksize(v) == rsize + nb);
3036 if (RTCHECK(ok_next(v, r))) {
3037 unlink_large_chunk(m, v);
3038 if (rsize < MIN_CHUNK_SIZE)
3039 set_inuse_and_pinuse(m, v, (rsize + nb));
3040 else {
3041 set_size_and_pinuse_of_inuse_chunk(m, v, nb);
3042 set_size_and_pinuse_of_free_chunk(r, rsize);
3043 insert_chunk(m, r, rsize);
3044 }
3045 return chunk2mem(v);
3046 }
3047 }
3048 CORRUPTION_ERROR_ACTION(m);
3049 }
3050 return 0;
3051}
3052
3053/* allocate a small request from the best fitting chunk in a treebin */
3054static void* tmalloc_small(mstate m, size_t nb) {
3055 tchunkptr t, v;
3056 size_t rsize;
3057 bindex_t i;
3058 binmap_t leastbit = least_bit(m->treemap);
3059 compute_bit2idx(leastbit, i);
3060
3061 v = t = *treebin_at(m, i);
3062 rsize = chunksize(t) - nb;
3063
3064 while ((t = leftmost_child(t)) != 0) {
3065 size_t trem = chunksize(t) - nb;
3066 if (trem < rsize) {
3067 rsize = trem;
3068 v = t;
3069 }
3070 }
3071
3072 if (RTCHECK(ok_address(m, v))) {
3073 mchunkptr r = chunk_plus_offset(v, nb);
3074 assert(chunksize(v) == rsize + nb);
3075 if (RTCHECK(ok_next(v, r))) {
3076 unlink_large_chunk(m, v);
3077 if (rsize < MIN_CHUNK_SIZE)
3078 set_inuse_and_pinuse(m, v, (rsize + nb));
3079 else {
3080 set_size_and_pinuse_of_inuse_chunk(m, v, nb);
3081 set_size_and_pinuse_of_free_chunk(r, rsize);
3082 replace_dv(m, r, rsize);
3083 }
3084 return chunk2mem(v);
3085 }
3086 }
3087
3088 CORRUPTION_ERROR_ACTION(m);
3089 return 0;
3090}
3091
3092/* --------------------------- realloc support --------------------------- */
3093
3094static void* internal_realloc(mstate m, void* oldmem, size_t bytes) {
3095 if (bytes >= MAX_REQUEST) {
3096 MALLOC_FAILURE_ACTION;
3097 return 0;
3098 }
3099 if (!PREACTION(m)) {
3100 mchunkptr oldp = mem2chunk(oldmem);
3101 size_t oldsize = chunksize(oldp);
3102 mchunkptr next = chunk_plus_offset(oldp, oldsize);
3103 mchunkptr newp = 0;
3104 void* extra = 0;
3105
3106 /* Try to either shrink or extend into top. Else malloc-copy-free */
3107
3108 if (RTCHECK(ok_address(m, oldp) && ok_cinuse(oldp) &&
3109 ok_next(oldp, next) && ok_pinuse(next))) {
3110 size_t nb = request2size(bytes);
3111 if (is_mmapped(oldp))
3112 newp = mmap_resize(m, oldp, nb);
3113 else if (oldsize >= nb) { /* already big enough */
3114 size_t rsize = oldsize - nb;
3115 newp = oldp;
3116 if (rsize >= MIN_CHUNK_SIZE) {
3117 mchunkptr remainder = chunk_plus_offset(newp, nb);
3118 set_inuse(m, newp, nb);
3119 set_inuse(m, remainder, rsize);
3120 extra = chunk2mem(remainder);
3121 }
3122 }
3123 else if (next == m->top && oldsize + m->topsize > nb) {
3124 /* Expand into top */
3125 size_t newsize = oldsize + m->topsize;
3126 size_t newtopsize = newsize - nb;
3127 mchunkptr newtop = chunk_plus_offset(oldp, nb);
3128 set_inuse(m, oldp, nb);
3129 newtop->head = newtopsize |PINUSE_BIT;
3130 m->top = newtop;
3131 m->topsize = newtopsize;
3132 newp = oldp;
3133 }
3134 }
3135 else {
3136 USAGE_ERROR_ACTION(m, oldmem);
3137 POSTACTION(m);
3138 return 0;
3139 }
3140
3141 POSTACTION(m);
3142
3143 if (newp != 0) {
3144 if (extra != 0) {
3145 internal_free(m, extra);
3146 }
3147 check_inuse_chunk(m, newp);
3148 return chunk2mem(newp);
3149 }
3150 else {
3151 void* newmem = internal_malloc(m, bytes);
3152 if (newmem != 0) {
3153 size_t oc = oldsize - overhead_for(oldp);
3154 memcpy(newmem, oldmem, (oc < bytes)? oc : bytes);
3155 internal_free(m, oldmem);
3156 }
3157 return newmem;
3158 }
3159 }
3160 return 0;
3161}
3162
3163/* --------------------------- memalign support -------------------------- */
3164
3165static void* internal_memalign(mstate m, size_t alignment, size_t bytes) {
3166 if (alignment <= MALLOC_ALIGNMENT) /* Can just use malloc */
3167 return internal_malloc(m, bytes);
3168 if (alignment < MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */
3169 alignment = MIN_CHUNK_SIZE;
3170 if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */
3171 size_t a = MALLOC_ALIGNMENT << 1;
3172 while (a < alignment) a <<= 1;
3173 alignment = a;
3174 }
3175
3176 if (bytes >= MAX_REQUEST - alignment) {
3177 if (m != 0) { /* Test isn't needed but avoids compiler warning */
3178 MALLOC_FAILURE_ACTION;
3179 }
3180 }
3181 else {
3182 size_t nb = request2size(bytes);
3183 size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD;
3184 char* mem = (char*)internal_malloc(m, req);
3185 if (mem != 0) {
3186 void* leader = 0;
3187 void* trailer = 0;
3188 mchunkptr p = mem2chunk(mem);
3189
3190 if (PREACTION(m)) return 0;
3191 if ((((size_t)(mem)) % alignment) != 0) { /* misaligned */
3192 /*
3193 Find an aligned spot inside chunk. Since we need to give
3194 back leading space in a chunk of at least MIN_CHUNK_SIZE, if
3195 the first calculation places us at a spot with less than
3196 MIN_CHUNK_SIZE leader, we can move to the next aligned spot.
3197 We've allocated enough total room so that this is always
3198 possible.
3199 */
3200 char* br = (char*)mem2chunk((size_t)(((size_t)(mem +
3201 alignment -
3202 SIZE_T_ONE)) &
3203 -alignment));
3204 char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)?
3205 br : br+alignment;
3206 mchunkptr newp = (mchunkptr)pos;
3207 size_t leadsize = pos - (char*)(p);
3208 size_t newsize = chunksize(p) - leadsize;
3209
3210 if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */
3211 newp->prev_foot = p->prev_foot + leadsize;
3212 newp->head = (newsize|CINUSE_BIT);
3213 }
3214 else { /* Otherwise, give back leader, use the rest */
3215 set_inuse(m, newp, newsize);
3216 set_inuse(m, p, leadsize);
3217 leader = chunk2mem(p);
3218 }
3219 p = newp;
3220 }
3221
3222 /* Give back spare room at the end */
3223 if (!is_mmapped(p)) {
3224 size_t size = chunksize(p);
3225 if (size > nb + MIN_CHUNK_SIZE) {
3226 size_t remainder_size = size - nb;
3227 mchunkptr remainder = chunk_plus_offset(p, nb);
3228 set_inuse(m, p, nb);
3229 set_inuse(m, remainder, remainder_size);
3230 trailer = chunk2mem(remainder);
3231 }
3232 }
3233
3234 assert (chunksize(p) >= nb);
3235 assert((((size_t)(chunk2mem(p))) % alignment) == 0);
3236 check_inuse_chunk(m, p);
3237 POSTACTION(m);
3238 if (leader != 0) {
3239 internal_free(m, leader);
3240 }
3241 if (trailer != 0) {
3242 internal_free(m, trailer);
3243 }
3244 return chunk2mem(p);
3245 }
3246 }
3247 return 0;
3248}
3249
3250/* ------------------------ comalloc/coalloc support --------------------- */
3251
3252static void** ialloc(mstate m,
3253 size_t n_elements,
3254 size_t* sizes,
3255 int opts,
3256 void* chunks[]) {
3257 /*
3258 This provides common support for independent_X routines, handling
3259 all of the combinations that can result.
3260
3261 The opts arg has:
3262 bit 0 set if all elements are same size (using sizes[0])
3263 bit 1 set if elements should be zeroed
3264 */
3265
3266 size_t element_size; /* chunksize of each element, if all same */
3267 size_t contents_size; /* total size of elements */
3268 size_t array_size; /* request size of pointer array */
3269 void* mem; /* malloced aggregate space */
3270 mchunkptr p; /* corresponding chunk */
3271 size_t remainder_size; /* remaining bytes while splitting */
3272 void** marray; /* either "chunks" or malloced ptr array */
3273 mchunkptr array_chunk; /* chunk for malloced ptr array */
3274 flag_t was_enabled; /* to disable mmap */
3275 size_t size;
3276 size_t i;
3277
3278 /* compute array length, if needed */
3279 if (chunks != 0) {
3280 if (n_elements == 0)
3281 return chunks; /* nothing to do */
3282 marray = chunks;
3283 array_size = 0;
3284 }
3285 else {
3286 /* if empty req, must still return chunk representing empty array */
3287 if (n_elements == 0)
3288 return (void**)internal_malloc(m, 0);
3289 marray = 0;
3290 array_size = request2size(n_elements * (sizeof(void*)));
3291 }
3292
3293 /* compute total element size */
3294 if (opts & 0x1) { /* all-same-size */
3295 element_size = request2size(*sizes);
3296 contents_size = n_elements * element_size;
3297 }
3298 else { /* add up all the sizes */
3299 element_size = 0;
3300 contents_size = 0;
3301 for (i = 0; i != n_elements; ++i)
3302 contents_size += request2size(sizes[i]);
3303 }
3304
3305 size = contents_size + array_size;
3306
3307 /*
3308 Allocate the aggregate chunk. First disable direct-mmapping so
3309 malloc won't use it, since we would not be able to later
3310 free/realloc space internal to a segregated mmap region.
3311 */
3312 was_enabled = use_mmap(m);
3313 disable_mmap(m);
3314 mem = internal_malloc(m, size - CHUNK_OVERHEAD);
3315 if (was_enabled)
3316 enable_mmap(m);
3317 if (mem == 0)
3318 return 0;
3319
3320 if (PREACTION(m)) return 0;
3321 p = mem2chunk(mem);
3322 remainder_size = chunksize(p);
3323
3324 assert(!is_mmapped(p));
3325
3326 if (opts & 0x2) { /* optionally clear the elements */
3327 memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size);
3328 }
3329
3330 /* If not provided, allocate the pointer array as final part of chunk */
3331 if (marray == 0) {
3332 size_t array_chunk_size;
3333 array_chunk = chunk_plus_offset(p, contents_size);
3334 array_chunk_size = remainder_size - contents_size;
3335 marray = (void**) (chunk2mem(array_chunk));
3336 set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size);
3337 remainder_size = contents_size;
3338 }
3339
3340 /* split out elements */
3341 for (i = 0; ; ++i) {
3342 marray[i] = chunk2mem(p);
3343 if (i != n_elements-1) {
3344 if (element_size != 0)
3345 size = element_size;
3346 else
3347 size = request2size(sizes[i]);
3348 remainder_size -= size;
3349 set_size_and_pinuse_of_inuse_chunk(m, p, size);
3350 p = chunk_plus_offset(p, size);
3351 }
3352 else { /* the final element absorbs any overallocation slop */
3353 set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size);
3354 break;
3355 }
3356 }
3357
3358#if DEBUG
3359 if (marray != chunks) {
3360 /* final element must have exactly exhausted chunk */
3361 if (element_size != 0) {
3362 assert(remainder_size == element_size);
3363 }
3364 else {
3365 assert(remainder_size == request2size(sizes[i]));
3366 }
3367 check_inuse_chunk(m, mem2chunk(marray));
3368 }
3369 for (i = 0; i != n_elements; ++i)
3370 check_inuse_chunk(m, mem2chunk(marray[i]));
3371
3372#endif /* DEBUG */
3373
3374 POSTACTION(m);
3375 return marray;
3376}
3377
3378
3379/* -------------------------- public routines ---------------------------- */
3380
3381#if !ONLY_MSPACES
3382
3383void* dlmalloc(size_t bytes) {
3384 /*
3385 Basic algorithm:
3386 If a small request (< 256 bytes minus per-chunk overhead):
3387 1. If one exists, use a remainderless chunk in associated smallbin.
3388 (Remainderless means that there are too few excess bytes to
3389 represent as a chunk.)
3390 2. If it is big enough, use the dv chunk, which is normally the
3391 chunk adjacent to the one used for the most recent small request.
3392 3. If one exists, split the smallest available chunk in a bin,
3393 saving remainder in dv.
3394 4. If it is big enough, use the top chunk.
3395 5. If available, get memory from system and use it
3396 Otherwise, for a large request:
3397 1. Find the smallest available binned chunk that fits, and use it
3398 if it is better fitting than dv chunk, splitting if necessary.
3399 2. If better fitting than any binned chunk, use the dv chunk.
3400 3. If it is big enough, use the top chunk.
3401 4. If request size >= mmap threshold, try to directly mmap this chunk.
3402 5. If available, get memory from system and use it
3403
3404 The ugly goto's here ensure that postaction occurs along all paths.
3405 */
3406
3407 if (!PREACTION(gm)) {
3408 void* mem;
3409 size_t nb;
3410 if (bytes <= MAX_SMALL_REQUEST) {
3411 bindex_t idx;
3412 binmap_t smallbits;
3413 nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
3414 idx = small_index(nb);
3415 smallbits = gm->smallmap >> idx;
3416
3417 if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
3418 mchunkptr b, p;
3419 idx += ~smallbits & 1; /* Uses next bin if idx empty */
3420 b = smallbin_at(gm, idx);
3421 p = b->fd;
3422 assert(chunksize(p) == small_index2size(idx));
3423 unlink_first_small_chunk(gm, b, p, idx);
3424 set_inuse_and_pinuse(gm, p, small_index2size(idx));
3425 mem = chunk2mem(p);
3426 check_malloced_chunk(gm, mem, nb);
3427 goto postaction;
3428 }
3429
3430 else if (nb > gm->dvsize) {
3431 if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
3432 mchunkptr b, p, r;
3433 size_t rsize;
3434 bindex_t i;
3435 binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
3436 binmap_t leastbit = least_bit(leftbits);
3437 compute_bit2idx(leastbit, i);
3438 b = smallbin_at(gm, i);
3439 p = b->fd;
3440 assert(chunksize(p) == small_index2size(i));
3441 unlink_first_small_chunk(gm, b, p, i);
3442 rsize = small_index2size(i) - nb;
3443 /* Fit here cannot be remainderless if 4byte sizes */
3444 if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
3445 set_inuse_and_pinuse(gm, p, small_index2size(i));
3446 else {
3447 set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
3448 r = chunk_plus_offset(p, nb);
3449 set_size_and_pinuse_of_free_chunk(r, rsize);
3450 replace_dv(gm, r, rsize);
3451 }
3452 mem = chunk2mem(p);
3453 check_malloced_chunk(gm, mem, nb);
3454 goto postaction;
3455 }
3456
3457 else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) {
3458 check_malloced_chunk(gm, mem, nb);
3459 goto postaction;
3460 }
3461 }
3462 }
3463 else if (bytes >= MAX_REQUEST)
3464 nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
3465 else {
3466 nb = pad_request(bytes);
3467 if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) {
3468 check_malloced_chunk(gm, mem, nb);
3469 goto postaction;
3470 }
3471 }
3472
3473 if (nb <= gm->dvsize) {
3474 size_t rsize = gm->dvsize - nb;
3475 mchunkptr p = gm->dv;
3476 if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
3477 mchunkptr r = gm->dv = chunk_plus_offset(p, nb);
3478 gm->dvsize = rsize;
3479 set_size_and_pinuse_of_free_chunk(r, rsize);
3480 set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
3481 }
3482 else { /* exhaust dv */
3483 size_t dvs = gm->dvsize;
3484 gm->dvsize = 0;
3485 gm->dv = 0;
3486 set_inuse_and_pinuse(gm, p, dvs);
3487 }
3488 mem = chunk2mem(p);
3489 check_malloced_chunk(gm, mem, nb);
3490 goto postaction;
3491 }
3492
3493 else if (nb < gm->topsize) { /* Split top */
3494 size_t rsize = gm->topsize -= nb;
3495 mchunkptr p = gm->top;
3496 mchunkptr r = gm->top = chunk_plus_offset(p, nb);
3497 r->head = rsize | PINUSE_BIT;
3498 set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
3499 mem = chunk2mem(p);
3500 check_top_chunk(gm, gm->top);
3501 check_malloced_chunk(gm, mem, nb);
3502 goto postaction;
3503 }
3504
3505 mem = sys_alloc(gm, nb);
3506
3507 postaction:
3508 POSTACTION(gm);
3509 return mem;
3510 }
3511
3512 return 0;
3513}
3514
3515void dlfree(void* mem) {
3516 /*
3517 Consolidate freed chunks with preceeding or succeeding bordering
3518 free chunks, if they exist, and then place in a bin. Intermixed
3519 with special cases for top, dv, mmapped chunks, and usage errors.
3520 */
3521
3522 if (mem != 0) {
3523 mchunkptr p = mem2chunk(mem);
3524#if FOOTERS
3525 mstate fm = get_mstate_for(p);
3526 if (!ok_magic(fm)) {
3527 USAGE_ERROR_ACTION(fm, p);
3528 return;
3529 }
3530#else /* FOOTERS */
3531#define fm gm
3532#endif /* FOOTERS */
3533 if (!PREACTION(fm)) {
3534 check_inuse_chunk(fm, p);
3535 if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) {
3536 size_t psize = chunksize(p);
3537 mchunkptr next = chunk_plus_offset(p, psize);
3538 if (!pinuse(p)) {
3539 size_t prevsize = p->prev_foot;
3540 if ((prevsize & IS_MMAPPED_BIT) != 0) {
3541 prevsize &= ~IS_MMAPPED_BIT;
3542 psize += prevsize + MMAP_FOOT_PAD;
3543 if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
3544 fm->footprint -= psize;
3545 goto postaction;
3546 }
3547 else {
3548 mchunkptr prev = chunk_minus_offset(p, prevsize);
3549 psize += prevsize;
3550 p = prev;
3551 if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
3552 if (p != fm->dv) {
3553 unlink_chunk(fm, p, prevsize);
3554 }
3555 else if ((next->head & INUSE_BITS) == INUSE_BITS) {
3556 fm->dvsize = psize;
3557 set_free_with_pinuse(p, psize, next);
3558 goto postaction;
3559 }
3560 }
3561 else
3562 goto erroraction;
3563 }
3564 }
3565
3566 if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
3567 if (!cinuse(next)) { /* consolidate forward */
3568 if (next == fm->top) {
3569 size_t tsize = fm->topsize += psize;
3570 fm->top = p;
3571 p->head = tsize | PINUSE_BIT;
3572 if (p == fm->dv) {
3573 fm->dv = 0;
3574 fm->dvsize = 0;
3575 }
3576 if (should_trim(fm, tsize))
3577 sys_trim(fm, 0);
3578 goto postaction;
3579 }
3580 else if (next == fm->dv) {
3581 size_t dsize = fm->dvsize += psize;
3582 fm->dv = p;
3583 set_size_and_pinuse_of_free_chunk(p, dsize);
3584 goto postaction;
3585 }
3586 else {
3587 size_t nsize = chunksize(next);
3588 psize += nsize;
3589 unlink_chunk(fm, next, nsize);
3590 set_size_and_pinuse_of_free_chunk(p, psize);
3591 if (p == fm->dv) {
3592 fm->dvsize = psize;
3593 goto postaction;
3594 }
3595 }
3596 }
3597 else
3598 set_free_with_pinuse(p, psize, next);
3599 insert_chunk(fm, p, psize);
3600 check_free_chunk(fm, p);
3601 goto postaction;
3602 }
3603 }
3604 erroraction:
3605 USAGE_ERROR_ACTION(fm, p);
3606 postaction:
3607 POSTACTION(fm);
3608 }
3609 }
3610#if !FOOTERS
3611#undef fm
3612#endif /* FOOTERS */
3613}
3614
3615void* dlcalloc(size_t n_elements, size_t elem_size) {
3616 void* mem;
3617 size_t req = 0;
3618 if (n_elements != 0) {
3619 req = n_elements * elem_size;
3620 if (((n_elements | elem_size) & ~(size_t)0xffff) &&
3621 (req / n_elements != elem_size))
3622 req = MAX_SIZE_T; /* force downstream failure on overflow */
3623 }
3624 mem = dlmalloc(req);
3625 if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
3626 memset(mem, 0, req);
3627 return mem;
3628}
3629
3630void* dlrealloc(void* oldmem, size_t bytes) {
3631 if (oldmem == 0)
3632 return dlmalloc(bytes);
3633#ifdef REALLOC_ZERO_BYTES_FREES
3634 if (bytes == 0) {
3635 dlfree(oldmem);
3636 return 0;
3637 }
3638#endif /* REALLOC_ZERO_BYTES_FREES */
3639 else {
3640#if ! FOOTERS
3641 mstate m = gm;
3642#else /* FOOTERS */
3643 mstate m = get_mstate_for(mem2chunk(oldmem));
3644 if (!ok_magic(m)) {
3645 USAGE_ERROR_ACTION(m, oldmem);
3646 return 0;
3647 }
3648#endif /* FOOTERS */
3649 return internal_realloc(m, oldmem, bytes);
3650 }
3651}
3652
3653void* dlmemalign(size_t alignment, size_t bytes) {
3654 return internal_memalign(gm, alignment, bytes);
3655}
3656
3657void** dlindependent_calloc(size_t n_elements, size_t elem_size,
3658 void* chunks[]) {
3659 size_t sz = elem_size; /* serves as 1-element array */
3660 return ialloc(gm, n_elements, &sz, 3, chunks);
3661}
3662
3663void** dlindependent_comalloc(size_t n_elements, size_t sizes[],
3664 void* chunks[]) {
3665 return ialloc(gm, n_elements, sizes, 0, chunks);
3666}
3667
3668void* dlvalloc(size_t bytes) {
3669 size_t pagesz;
3670 init_mparams();
3671 pagesz = mparams.page_size;
3672 return dlmemalign(pagesz, bytes);
3673}
3674
3675void* dlpvalloc(size_t bytes) {
3676 size_t pagesz;
3677 init_mparams();
3678 pagesz = mparams.page_size;
3679 return dlmemalign(pagesz, (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE));
3680}
3681
3682int dlmalloc_trim(size_t pad) {
3683 int result = 0;
3684 if (!PREACTION(gm)) {
3685 result = sys_trim(gm, pad);
3686 POSTACTION(gm);
3687 }
3688 return result;
3689}
3690
3691size_t dlmalloc_footprint(void) {
3692 return gm->footprint;
3693}
3694
3695size_t dlmalloc_max_footprint(void) {
3696 return gm->max_footprint;
3697}
3698
3699#if !NO_MALLINFO
3700struct mallinfo dlmallinfo(void) {
3701 return internal_mallinfo(gm);
3702}
3703#endif /* NO_MALLINFO */
3704
3705void dlmalloc_stats() {
3706 internal_malloc_stats(gm);
3707}
3708
3709size_t dlmalloc_usable_size(void* mem) {
3710 if (mem != 0) {
3711 mchunkptr p = mem2chunk(mem);
3712 if (cinuse(p))
3713 return chunksize(p) - overhead_for(p);
3714 }
3715 return 0;
3716}
3717
3718int dlmallopt(int param_number, int value) {
3719 return change_mparam(param_number, value);
3720}
3721
3722#endif /* !ONLY_MSPACES */
3723
3724/* ----------------------------- user mspaces ---------------------------- */
3725
3726#if MSPACES
3727
3728static mstate init_user_mstate(char* tbase, size_t tsize) {
3729 size_t msize = pad_request(sizeof(struct malloc_state));
3730 mchunkptr mn;
3731 mchunkptr msp = align_as_chunk(tbase);
3732 mstate m = (mstate)(chunk2mem(msp));
3733 memset(m, 0, msize);
3734 INITIAL_LOCK(&m->mutex);
3735 msp->head = (msize|PINUSE_BIT|CINUSE_BIT);
3736 m->seg.base = m->least_addr = tbase;
3737 m->seg.size = m->footprint = m->max_footprint = tsize;
3738 m->magic = mparams.magic;
3739 m->mflags = mparams.default_mflags;
3740 disable_contiguous(m);
3741 init_bins(m);
3742 mn = next_chunk(mem2chunk(m));
3743 init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE);
3744 check_top_chunk(m, m->top);
3745 return m;
3746}
3747
3748mspace create_mspace(size_t capacity, int locked) {
3749 mstate m = 0;
3750 size_t msize = pad_request(sizeof(struct malloc_state));
3751 init_mparams(); /* Ensure pagesize etc initialized */
3752
3753 if (capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
3754 size_t rs = ((capacity == 0)? mparams.granularity :
3755 (capacity + TOP_FOOT_SIZE + msize));
3756 size_t tsize = granularity_align(rs);
3757 char* tbase = (char*)(CALL_MMAP(tsize));
3758 if (tbase != CMFAIL) {
3759 m = init_user_mstate(tbase, tsize);
3760 m->seg.sflags = IS_MMAPPED_BIT;
3761 set_lock(m, locked);
3762 }
3763 }
3764 return (mspace)m;
3765}
3766
3767mspace create_mspace_with_base(void* base, size_t capacity, int locked) {
3768 mstate m = 0;
3769 size_t msize = pad_request(sizeof(struct malloc_state));
3770 init_mparams(); /* Ensure pagesize etc initialized */
3771
3772 if (capacity > msize + TOP_FOOT_SIZE &&
3773 capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
3774 m = init_user_mstate((char*)base, capacity);
3775 m->seg.sflags = EXTERN_BIT;
3776 set_lock(m, locked);
3777 }
3778 return (mspace)m;
3779}
3780
3781size_t destroy_mspace(mspace msp) {
3782 size_t freed = 0;
3783 mstate ms = (mstate)msp;
3784 if (ok_magic(ms)) {
3785 msegmentptr sp = &ms->seg;
3786 while (sp != 0) {
3787 char* base = sp->base;
3788 size_t size = sp->size;
3789 flag_t flag = sp->sflags;
3790 sp = sp->next;
3791 if ((flag & IS_MMAPPED_BIT) && !(flag & EXTERN_BIT) &&
3792 CALL_MUNMAP(base, size) == 0)
3793 freed += size;
3794 }
3795 }
3796 else {
3797 USAGE_ERROR_ACTION(ms,ms);
3798 }
3799 return freed;
3800}
3801
3802/*
3803 mspace versions of routines are near-clones of the global
3804 versions. This is not so nice but better than the alternatives.
3805*/
3806
3807
3808void* mspace_malloc(mspace msp, size_t bytes) {
3809 mstate ms = (mstate)msp;
3810 if (!ok_magic(ms)) {
3811 USAGE_ERROR_ACTION(ms,ms);
3812 return 0;
3813 }
3814 if (!PREACTION(ms)) {
3815 void* mem;
3816 size_t nb;
3817 if (bytes <= MAX_SMALL_REQUEST) {
3818 bindex_t idx;
3819 binmap_t smallbits;
3820 nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
3821 idx = small_index(nb);
3822 smallbits = ms->smallmap >> idx;
3823
3824 if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
3825 mchunkptr b, p;
3826 idx += ~smallbits & 1; /* Uses next bin if idx empty */
3827 b = smallbin_at(ms, idx);
3828 p = b->fd;
3829 assert(chunksize(p) == small_index2size(idx));
3830 unlink_first_small_chunk(ms, b, p, idx);
3831 set_inuse_and_pinuse(ms, p, small_index2size(idx));
3832 mem = chunk2mem(p);
3833 check_malloced_chunk(ms, mem, nb);
3834 goto postaction;
3835 }
3836
3837 else if (nb > ms->dvsize) {
3838 if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
3839 mchunkptr b, p, r;
3840 size_t rsize;
3841 bindex_t i;
3842 binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
3843 binmap_t leastbit = least_bit(leftbits);
3844 compute_bit2idx(leastbit, i);
3845 b = smallbin_at(ms, i);
3846 p = b->fd;
3847 assert(chunksize(p) == small_index2size(i));
3848 unlink_first_small_chunk(ms, b, p, i);
3849 rsize = small_index2size(i) - nb;
3850 /* Fit here cannot be remainderless if 4byte sizes */
3851 if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
3852 set_inuse_and_pinuse(ms, p, small_index2size(i));
3853 else {
3854 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
3855 r = chunk_plus_offset(p, nb);
3856 set_size_and_pinuse_of_free_chunk(r, rsize);
3857 replace_dv(ms, r, rsize);
3858 }
3859 mem = chunk2mem(p);
3860 check_malloced_chunk(ms, mem, nb);
3861 goto postaction;
3862 }
3863
3864 else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) {
3865 check_malloced_chunk(ms, mem, nb);
3866 goto postaction;
3867 }
3868 }
3869 }
3870 else if (bytes >= MAX_REQUEST)
3871 nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
3872 else {
3873 nb = pad_request(bytes);
3874 if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) {
3875 check_malloced_chunk(ms, mem, nb);
3876 goto postaction;
3877 }
3878 }
3879
3880 if (nb <= ms->dvsize) {
3881 size_t rsize = ms->dvsize - nb;
3882 mchunkptr p = ms->dv;
3883 if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
3884 mchunkptr r = ms->dv = chunk_plus_offset(p, nb);
3885 ms->dvsize = rsize;
3886 set_size_and_pinuse_of_free_chunk(r, rsize);
3887 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
3888 }
3889 else { /* exhaust dv */
3890 size_t dvs = ms->dvsize;
3891 ms->dvsize = 0;
3892 ms->dv = 0;
3893 set_inuse_and_pinuse(ms, p, dvs);
3894 }
3895 mem = chunk2mem(p);
3896 check_malloced_chunk(ms, mem, nb);
3897 goto postaction;
3898 }
3899
3900 else if (nb < ms->topsize) { /* Split top */
3901 size_t rsize = ms->topsize -= nb;
3902 mchunkptr p = ms->top;
3903 mchunkptr r = ms->top = chunk_plus_offset(p, nb);
3904 r->head = rsize | PINUSE_BIT;
3905 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
3906 mem = chunk2mem(p);
3907 check_top_chunk(ms, ms->top);
3908 check_malloced_chunk(ms, mem, nb);
3909 goto postaction;
3910 }
3911
3912 mem = sys_alloc(ms, nb);
3913
3914 postaction:
3915 POSTACTION(ms);
3916 return mem;
3917 }
3918
3919 return 0;
3920}
3921
3922void mspace_free(mspace msp, void* mem) {
3923 if (mem != 0) {
3924 mchunkptr p = mem2chunk(mem);
3925#if FOOTERS
3926 mstate fm = get_mstate_for(p);
3927#else /* FOOTERS */
3928 mstate fm = (mstate)msp;
3929#endif /* FOOTERS */
3930 if (!ok_magic(fm)) {
3931 USAGE_ERROR_ACTION(fm, p);
3932 return;
3933 }
3934 if (!PREACTION(fm)) {
3935 check_inuse_chunk(fm, p);
3936 if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) {
3937 size_t psize = chunksize(p);
3938 mchunkptr next = chunk_plus_offset(p, psize);
3939 if (!pinuse(p)) {
3940 size_t prevsize = p->prev_foot;
3941 if ((prevsize & IS_MMAPPED_BIT) != 0) {
3942 prevsize &= ~IS_MMAPPED_BIT;
3943 psize += prevsize + MMAP_FOOT_PAD;
3944 if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
3945 fm->footprint -= psize;
3946 goto postaction;
3947 }
3948 else {
3949 mchunkptr prev = chunk_minus_offset(p, prevsize);
3950 psize += prevsize;
3951 p = prev;
3952 if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
3953 if (p != fm->dv) {
3954 unlink_chunk(fm, p, prevsize);
3955 }
3956 else if ((next->head & INUSE_BITS) == INUSE_BITS) {
3957 fm->dvsize = psize;
3958 set_free_with_pinuse(p, psize, next);
3959 goto postaction;
3960 }
3961 }
3962 else
3963 goto erroraction;
3964 }
3965 }
3966
3967 if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
3968 if (!cinuse(next)) { /* consolidate forward */
3969 if (next == fm->top) {
3970 size_t tsize = fm->topsize += psize;
3971 fm->top = p;
3972 p->head = tsize | PINUSE_BIT;
3973 if (p == fm->dv) {
3974 fm->dv = 0;
3975 fm->dvsize = 0;
3976 }
3977 if (should_trim(fm, tsize))
3978 sys_trim(fm, 0);
3979 goto postaction;
3980 }
3981 else if (next == fm->dv) {
3982 size_t dsize = fm->dvsize += psize;
3983 fm->dv = p;
3984 set_size_and_pinuse_of_free_chunk(p, dsize);
3985 goto postaction;
3986 }
3987 else {
3988 size_t nsize = chunksize(next);
3989 psize += nsize;
3990 unlink_chunk(fm, next, nsize);
3991 set_size_and_pinuse_of_free_chunk(p, psize);
3992 if (p == fm->dv) {
3993 fm->dvsize = psize;
3994 goto postaction;
3995 }
3996 }
3997 }
3998 else
3999 set_free_with_pinuse(p, psize, next);
4000 insert_chunk(fm, p, psize);
4001 check_free_chunk(fm, p);
4002 goto postaction;
4003 }
4004 }
4005 erroraction:
4006 USAGE_ERROR_ACTION(fm, p);
4007 postaction:
4008 POSTACTION(fm);
4009 }
4010 }
4011}
4012
4013void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size) {
4014 void* mem;
4015 size_t req = 0;
4016 mstate ms = (mstate)msp;
4017 if (!ok_magic(ms)) {
4018 USAGE_ERROR_ACTION(ms,ms);
4019 return 0;
4020 }
4021 if (n_elements != 0) {
4022 req = n_elements * elem_size;
4023 if (((n_elements | elem_size) & ~(size_t)0xffff) &&
4024 (req / n_elements != elem_size))
4025 req = MAX_SIZE_T; /* force downstream failure on overflow */
4026 }
4027 mem = internal_malloc(ms, req);
4028 if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
4029 memset(mem, 0, req);
4030 return mem;
4031}
4032
4033void* mspace_realloc(mspace msp, void* oldmem, size_t bytes) {
4034 if (oldmem == 0)
4035 return mspace_malloc(msp, bytes);
4036#ifdef REALLOC_ZERO_BYTES_FREES
4037 if (bytes == 0) {
4038 mspace_free(msp, oldmem);
4039 return 0;
4040 }
4041#endif /* REALLOC_ZERO_BYTES_FREES */
4042 else {
4043#if FOOTERS
4044 mchunkptr p = mem2chunk(oldmem);
4045 mstate ms = get_mstate_for(p);
4046#else /* FOOTERS */
4047 mstate ms = (mstate)msp;
4048#endif /* FOOTERS */
4049 if (!ok_magic(ms)) {
4050 USAGE_ERROR_ACTION(ms,ms);
4051 return 0;
4052 }
4053 return internal_realloc(ms, oldmem, bytes);
4054 }
4055}
4056
4057void* mspace_memalign(mspace msp, size_t alignment, size_t bytes) {
4058 mstate ms = (mstate)msp;
4059 if (!ok_magic(ms)) {
4060 USAGE_ERROR_ACTION(ms,ms);
4061 return 0;
4062 }
4063 return internal_memalign(ms, alignment, bytes);
4064}
4065
4066void** mspace_independent_calloc(mspace msp, size_t n_elements,
4067 size_t elem_size, void* chunks[]) {
4068 size_t sz = elem_size; /* serves as 1-element array */
4069 mstate ms = (mstate)msp;
4070 if (!ok_magic(ms)) {
4071 USAGE_ERROR_ACTION(ms,ms);
4072 return 0;
4073 }
4074 return ialloc(ms, n_elements, &sz, 3, chunks);
4075}
4076
4077void** mspace_independent_comalloc(mspace msp, size_t n_elements,
4078 size_t sizes[], void* chunks[]) {
4079 mstate ms = (mstate)msp;
4080 if (!ok_magic(ms)) {
4081 USAGE_ERROR_ACTION(ms,ms);
4082 return 0;
4083 }
4084 return ialloc(ms, n_elements, sizes, 0, chunks);
4085}
4086
4087int mspace_trim(mspace msp, size_t pad) {
4088 int result = 0;
4089 mstate ms = (mstate)msp;
4090 if (ok_magic(ms)) {
4091 if (!PREACTION(ms)) {
4092 result = sys_trim(ms, pad);
4093 POSTACTION(ms);
4094 }
4095 }
4096 else {
4097 USAGE_ERROR_ACTION(ms,ms);
4098 }
4099 return result;
4100}
4101
4102void mspace_malloc_stats(mspace msp) {
4103 mstate ms = (mstate)msp;
4104 if (ok_magic(ms)) {
4105 internal_malloc_stats(ms);
4106 }
4107 else {
4108 USAGE_ERROR_ACTION(ms,ms);
4109 }
4110}
4111
4112size_t mspace_footprint(mspace msp) {
4113 size_t result;
4114 mstate ms = (mstate)msp;
4115 if (ok_magic(ms)) {
4116 result = ms->footprint;
4117 }
4118 USAGE_ERROR_ACTION(ms,ms);
4119 return result;
4120}
4121
4122
4123size_t mspace_max_footprint(mspace msp) {
4124 size_t result;
4125 mstate ms = (mstate)msp;
4126 if (ok_magic(ms)) {
4127 result = ms->max_footprint;
4128 }
4129 USAGE_ERROR_ACTION(ms,ms);
4130 return result;
4131}
4132
4133
4134#if !NO_MALLINFO
4135struct mallinfo mspace_mallinfo(mspace msp) {
4136 mstate ms = (mstate)msp;
4137 if (!ok_magic(ms)) {
4138 USAGE_ERROR_ACTION(ms,ms);
4139 }
4140 return internal_mallinfo(ms);
4141}
4142#endif /* NO_MALLINFO */
4143
4144int mspace_mallopt(int param_number, int value) {
4145 return change_mparam(param_number, value);
4146}
4147
4148#endif /* MSPACES */
4149
4150/* -------------------- Alternative MORECORE functions ------------------- */
4151
4152/*
4153 Guidelines for creating a custom version of MORECORE:
4154
4155 * For best performance, MORECORE should allocate in multiples of pagesize.
4156 * MORECORE may allocate more memory than requested. (Or even less,
4157 but this will usually result in a malloc failure.)
4158 * MORECORE must not allocate memory when given argument zero, but
4159 instead return one past the end address of memory from previous
4160 nonzero call.
4161 * For best performance, consecutive calls to MORECORE with positive
4162 arguments should return increasing addresses, indicating that
4163 space has been contiguously extended.
4164 * Even though consecutive calls to MORECORE need not return contiguous
4165 addresses, it must be OK for malloc'ed chunks to span multiple
4166 regions in those cases where they do happen to be contiguous.
4167 * MORECORE need not handle negative arguments -- it may instead
4168 just return MFAIL when given negative arguments.
4169 Negative arguments are always multiples of pagesize. MORECORE
4170 must not misinterpret negative args as large positive unsigned
4171 args. You can suppress all such calls from even occurring by defining
4172 MORECORE_CANNOT_TRIM,
4173
4174 As an example alternative MORECORE, here is a custom allocator
4175 kindly contributed for pre-OSX macOS. It uses virtually but not
4176 necessarily physically contiguous non-paged memory (locked in,
4177 present and won't get swapped out). You can use it by uncommenting
4178 this section, adding some #includes, and setting up the appropriate
4179 defines above:
4180
4181 #define MORECORE osMoreCore
4182
4183 There is also a shutdown routine that should somehow be called for
4184 cleanup upon program exit.
4185
4186 #define MAX_POOL_ENTRIES 100
4187 #define MINIMUM_MORECORE_SIZE (64 * 1024U)
4188 static int next_os_pool;
4189 void *our_os_pools[MAX_POOL_ENTRIES];
4190
4191 void *osMoreCore(int size)
4192 {
4193 void *ptr = 0;
4194 static void *sbrk_top = 0;
4195
4196 if (size > 0)
4197 {
4198 if (size < MINIMUM_MORECORE_SIZE)
4199 size = MINIMUM_MORECORE_SIZE;
4200 if (CurrentExecutionLevel() == kTaskLevel)
4201 ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
4202 if (ptr == 0)
4203 {
4204 return (void *) MFAIL;
4205 }
4206 // save ptrs so they can be freed during cleanup
4207 our_os_pools[next_os_pool] = ptr;
4208 next_os_pool++;
4209 ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
4210 sbrk_top = (char *) ptr + size;
4211 return ptr;
4212 }
4213 else if (size < 0)
4214 {
4215 // we don't currently support shrink behavior
4216 return (void *) MFAIL;
4217 }
4218 else
4219 {
4220 return sbrk_top;
4221 }
4222 }
4223
4224 // cleanup any allocated memory pools
4225 // called as last thing before shutting down driver
4226
4227 void osCleanupMem(void)
4228 {
4229 void **ptr;
4230
4231 for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
4232 if (*ptr)
4233 {
4234 PoolDeallocate(*ptr);
4235 *ptr = 0;
4236 }
4237 }
4238
4239*/
4240
4241
4242/* -----------------------------------------------------------------------
4243History:
4244 V2.8.3 Thu Sep 22 11:16:32 2005 Doug Lea (dl at gee)
4245 * Add max_footprint functions
4246 * Ensure all appropriate literals are size_t
4247 * Fix conditional compilation problem for some #define settings
4248 * Avoid concatenating segments with the one provided
4249 in create_mspace_with_base
4250 * Rename some variables to avoid compiler shadowing warnings
4251 * Use explicit lock initialization.
4252 * Better handling of sbrk interference.
4253 * Simplify and fix segment insertion, trimming and mspace_destroy
4254 * Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x
4255 * Thanks especially to Dennis Flanagan for help on these.
4256
4257 V2.8.2 Sun Jun 12 16:01:10 2005 Doug Lea (dl at gee)
4258 * Fix memalign brace error.
4259
4260 V2.8.1 Wed Jun 8 16:11:46 2005 Doug Lea (dl at gee)
4261 * Fix improper #endif nesting in C++
4262 * Add explicit casts needed for C++
4263
4264 V2.8.0 Mon May 30 14:09:02 2005 Doug Lea (dl at gee)
4265 * Use trees for large bins
4266 * Support mspaces
4267 * Use segments to unify sbrk-based and mmap-based system allocation,
4268 removing need for emulation on most platforms without sbrk.
4269 * Default safety checks
4270 * Optional footer checks. Thanks to William Robertson for the idea.
4271 * Internal code refactoring
4272 * Incorporate suggestions and platform-specific changes.
4273 Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas,
4274 Aaron Bachmann, Emery Berger, and others.
4275 * Speed up non-fastbin processing enough to remove fastbins.
4276 * Remove useless cfree() to avoid conflicts with other apps.
4277 * Remove internal memcpy, memset. Compilers handle builtins better.
4278 * Remove some options that no one ever used and rename others.
4279
4280 V2.7.2 Sat Aug 17 09:07:30 2002 Doug Lea (dl at gee)
4281 * Fix malloc_state bitmap array misdeclaration
4282
4283 V2.7.1 Thu Jul 25 10:58:03 2002 Doug Lea (dl at gee)
4284 * Allow tuning of FIRST_SORTED_BIN_SIZE
4285 * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte.
4286 * Better detection and support for non-contiguousness of MORECORE.
4287 Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger
4288 * Bypass most of malloc if no frees. Thanks To Emery Berger.
4289 * Fix freeing of old top non-contiguous chunk im sysmalloc.
4290 * Raised default trim and map thresholds to 256K.
4291 * Fix mmap-related #defines. Thanks to Lubos Lunak.
4292 * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield.
4293 * Branch-free bin calculation
4294 * Default trim and mmap thresholds now 256K.
4295
4296 V2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
4297 * Introduce independent_comalloc and independent_calloc.
4298 Thanks to Michael Pachos for motivation and help.
4299 * Make optional .h file available
4300 * Allow > 2GB requests on 32bit systems.
4301 * new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>.
4302 Thanks also to Andreas Mueller <a.mueller at paradatec.de>,
4303 and Anonymous.
4304 * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for
4305 helping test this.)
4306 * memalign: check alignment arg
4307 * realloc: don't try to shift chunks backwards, since this
4308 leads to more fragmentation in some programs and doesn't
4309 seem to help in any others.
4310 * Collect all cases in malloc requiring system memory into sysmalloc
4311 * Use mmap as backup to sbrk
4312 * Place all internal state in malloc_state
4313 * Introduce fastbins (although similar to 2.5.1)
4314 * Many minor tunings and cosmetic improvements
4315 * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK
4316 * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS
4317 Thanks to Tony E. Bennett <tbennett@nvidia.com> and others.
4318 * Include errno.h to support default failure action.
4319
4320 V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee)
4321 * return null for negative arguments
4322 * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com>
4323 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
4324 (e.g. WIN32 platforms)
4325 * Cleanup header file inclusion for WIN32 platforms
4326 * Cleanup code to avoid Microsoft Visual C++ compiler complaints
4327 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
4328 memory allocation routines
4329 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
4330 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
4331 usage of 'assert' in non-WIN32 code
4332 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
4333 avoid infinite loop
4334 * Always call 'fREe()' rather than 'free()'
4335
4336 V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee)
4337 * Fixed ordering problem with boundary-stamping
4338
4339 V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)
4340 * Added pvalloc, as recommended by H.J. Liu
4341 * Added 64bit pointer support mainly from Wolfram Gloger
4342 * Added anonymously donated WIN32 sbrk emulation
4343 * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
4344 * malloc_extend_top: fix mask error that caused wastage after
4345 foreign sbrks
4346 * Add linux mremap support code from HJ Liu
4347
4348 V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)
4349 * Integrated most documentation with the code.
4350 * Add support for mmap, with help from
4351 Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
4352 * Use last_remainder in more cases.
4353 * Pack bins using idea from colin@nyx10.cs.du.edu
4354 * Use ordered bins instead of best-fit threshhold
4355 * Eliminate block-local decls to simplify tracing and debugging.
4356 * Support another case of realloc via move into top
4357 * Fix error occuring when initial sbrk_base not word-aligned.
4358 * Rely on page size for units instead of SBRK_UNIT to
4359 avoid surprises about sbrk alignment conventions.
4360 * Add mallinfo, mallopt. Thanks to Raymond Nijssen
4361 (raymond@es.ele.tue.nl) for the suggestion.
4362 * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
4363 * More precautions for cases where other routines call sbrk,
4364 courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
4365 * Added macros etc., allowing use in linux libc from
4366 H.J. Lu (hjl@gnu.ai.mit.edu)
4367 * Inverted this history list
4368
4369 V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)
4370 * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
4371 * Removed all preallocation code since under current scheme
4372 the work required to undo bad preallocations exceeds
4373 the work saved in good cases for most test programs.
4374 * No longer use return list or unconsolidated bins since
4375 no scheme using them consistently outperforms those that don't
4376 given above changes.
4377 * Use best fit for very large chunks to prevent some worst-cases.
4378 * Added some support for debugging
4379
4380 V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)
4381 * Removed footers when chunks are in use. Thanks to
4382 Paul Wilson (wilson@cs.texas.edu) for the suggestion.
4383
4384 V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)
4385 * Added malloc_trim, with help from Wolfram Gloger
4386 (wmglo@Dent.MED.Uni-Muenchen.DE).
4387
4388 V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)
4389
4390 V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)
4391 * realloc: try to expand in both directions
4392 * malloc: swap order of clean-bin strategy;
4393 * realloc: only conditionally expand backwards
4394 * Try not to scavenge used bins
4395 * Use bin counts as a guide to preallocation
4396 * Occasionally bin return list chunks in first scan
4397 * Add a few optimizations from colin@nyx10.cs.du.edu
4398
4399 V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)
4400 * faster bin computation & slightly different binning
4401 * merged all consolidations to one part of malloc proper
4402 (eliminating old malloc_find_space & malloc_clean_bin)
4403 * Scan 2 returns chunks (not just 1)
4404 * Propagate failure in realloc if malloc returns 0
4405 * Add stuff to allow compilation on non-ANSI compilers
4406 from kpv@research.att.com
4407
4408 V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)
4409 * removed potential for odd address access in prev_chunk
4410 * removed dependency on getpagesize.h
4411 * misc cosmetics and a bit more internal documentation
4412 * anticosmetics: mangled names in macros to evade debugger strangeness
4413 * tested on sparc, hp-700, dec-mips, rs6000
4414 with gcc & native cc (hp, dec only) allowing
4415 Detlefs & Zorn comparison study (in SIGPLAN Notices.)
4416
4417 Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)
4418 * Based loosely on libg++-1.2X malloc. (It retains some of the overall
4419 structure of old version, but most details differ.)
4420
4421*/
4422
4423/** @}
4424 */
4425
Note: See TracBrowser for help on using the repository browser.