1 | /*
|
---|
2 | * Copyright (c) 2015 Jan Kolarik
|
---|
3 | * All rights reserved.
|
---|
4 | *
|
---|
5 | * Redistribution and use in source and binary forms, with or without
|
---|
6 | * modification, are permitted provided that the following conditions
|
---|
7 | * are met:
|
---|
8 | *
|
---|
9 | * - Redistributions of source code must retain the above copyright
|
---|
10 | * notice, this list of conditions and the following disclaimer.
|
---|
11 | * - Redistributions in binary form must reproduce the above copyright
|
---|
12 | * notice, this list of conditions and the following disclaimer in the
|
---|
13 | * documentation and/or other materials provided with the distribution.
|
---|
14 | * - The name of the author may not be used to endorse or promote products
|
---|
15 | * derived from this software without specific prior written permission.
|
---|
16 | *
|
---|
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
27 | */
|
---|
28 |
|
---|
29 | /** @addtogroup libieee80211
|
---|
30 | * @{
|
---|
31 | */
|
---|
32 |
|
---|
33 | /** @file ieee80211_impl.c
|
---|
34 | *
|
---|
35 | * IEEE 802.11 default device functions implementation.
|
---|
36 | */
|
---|
37 |
|
---|
38 | #include <stdio.h>
|
---|
39 | #include <crypto.h>
|
---|
40 | #include <stdlib.h>
|
---|
41 | #include <errno.h>
|
---|
42 |
|
---|
43 | #include <ieee80211_impl.h>
|
---|
44 |
|
---|
45 | /**
|
---|
46 | * Default implementation of IEEE802.11 start function.
|
---|
47 | *
|
---|
48 | * @param ieee80211_dev Structure of IEEE802.11 device.
|
---|
49 | *
|
---|
50 | * @return EOK.
|
---|
51 | */
|
---|
52 | int ieee80211_start_impl(ieee80211_dev_t *ieee80211_dev)
|
---|
53 | {
|
---|
54 | return EOK;
|
---|
55 | }
|
---|
56 |
|
---|
57 | /**
|
---|
58 | * Default implementation of IEEE802.11 TX handler function.
|
---|
59 | *
|
---|
60 | * @param ieee80211_dev Structure of IEEE802.11 device.
|
---|
61 | * @param buffer Buffer with data to send.
|
---|
62 | * @param buffer_size Size of buffer.
|
---|
63 | *
|
---|
64 | * @return EOK.
|
---|
65 | */
|
---|
66 | int ieee80211_tx_handler_impl(ieee80211_dev_t *ieee80211_dev, void *buffer,
|
---|
67 | size_t buffer_size)
|
---|
68 | {
|
---|
69 | return EOK;
|
---|
70 | }
|
---|
71 |
|
---|
72 | /**
|
---|
73 | * Default implementation of IEEE802.11 set frequency function.
|
---|
74 | *
|
---|
75 | * @param ieee80211_dev Structure of IEEE802.11 device.
|
---|
76 | * @param freq Value of frequency to be switched on.
|
---|
77 | *
|
---|
78 | * @return EOK.
|
---|
79 | */
|
---|
80 | int ieee80211_set_freq_impl(ieee80211_dev_t *ieee80211_dev, uint16_t freq)
|
---|
81 | {
|
---|
82 | return EOK;
|
---|
83 | }
|
---|
84 |
|
---|
85 | /**
|
---|
86 | * Default implementation of IEEE802.11 BSSID change function.
|
---|
87 | *
|
---|
88 | * @param ieee80211_dev Structure of IEEE802.11 device.
|
---|
89 | *
|
---|
90 | * @return EOK.
|
---|
91 | */
|
---|
92 | int ieee80211_bssid_change_impl(ieee80211_dev_t *ieee80211_dev)
|
---|
93 | {
|
---|
94 | return EOK;
|
---|
95 | }
|
---|
96 |
|
---|
97 | /**
|
---|
98 | * Default implementation of IEEE802.11 key config function.
|
---|
99 | *
|
---|
100 | * @param ieee80211_dev Structure of IEEE802.11 device.
|
---|
101 | *
|
---|
102 | * @return EOK.
|
---|
103 | */
|
---|
104 | int ieee80211_key_config_impl(ieee80211_dev_t *ieee80211_dev,
|
---|
105 | ieee80211_key_config_t *key_conf, bool insert)
|
---|
106 | {
|
---|
107 | return EOK;
|
---|
108 | }
|
---|
109 |
|
---|
110 | /**
|
---|
111 | * Default implementation of IEEE802.11 scan function.
|
---|
112 | *
|
---|
113 | * @param ieee80211_dev Structure of IEEE802.11 device.
|
---|
114 | * @param clear Whether to clear current scan results.
|
---|
115 | *
|
---|
116 | * @return EOK if succeed, negative error code otherwise.
|
---|
117 | */
|
---|
118 | int ieee80211_scan_impl(ieee80211_dev_t *ieee80211_dev)
|
---|
119 | {
|
---|
120 | if(ieee80211_is_connected(ieee80211_dev))
|
---|
121 | return EOK;
|
---|
122 |
|
---|
123 | fibril_mutex_lock(&ieee80211_dev->ap_list.scan_mutex);
|
---|
124 |
|
---|
125 | /* Remove old entries we don't receive beacons from. */
|
---|
126 | ieee80211_scan_result_list_t *result_list =
|
---|
127 | &ieee80211_dev->ap_list;
|
---|
128 | list_foreach_safe(result_list->list, cur_link, next_link) {
|
---|
129 | ieee80211_scan_result_link_t *cur_result =
|
---|
130 | list_get_instance(cur_link,
|
---|
131 | ieee80211_scan_result_link_t,
|
---|
132 | link);
|
---|
133 | if((time(NULL) - cur_result->last_beacon) >
|
---|
134 | MAX_KEEP_SCAN_SPAN_SEC) {
|
---|
135 | ieee80211_scan_result_list_remove(result_list,
|
---|
136 | cur_result);
|
---|
137 | }
|
---|
138 | }
|
---|
139 |
|
---|
140 | fibril_mutex_unlock(&ieee80211_dev->ap_list.scan_mutex);
|
---|
141 |
|
---|
142 | uint16_t orig_freq = ieee80211_dev->current_freq;
|
---|
143 |
|
---|
144 | for(uint16_t freq = IEEE80211_FIRST_FREQ;
|
---|
145 | freq <= IEEE80211_MAX_FREQ;
|
---|
146 | freq += IEEE80211_CHANNEL_GAP) {
|
---|
147 | ieee80211_dev->ops->set_freq(ieee80211_dev, freq);
|
---|
148 | ieee80211_probe_request(ieee80211_dev, NULL);
|
---|
149 |
|
---|
150 | /* Wait for probe responses. */
|
---|
151 | usleep(100000);
|
---|
152 | }
|
---|
153 |
|
---|
154 | ieee80211_dev->ops->set_freq(ieee80211_dev, orig_freq);
|
---|
155 |
|
---|
156 | fibril_mutex_lock(&ieee80211_dev->ap_list.scan_mutex);
|
---|
157 | time(&ieee80211_dev->ap_list.last_scan);
|
---|
158 | fibril_mutex_unlock(&ieee80211_dev->ap_list.scan_mutex);
|
---|
159 |
|
---|
160 | return EOK;
|
---|
161 | }
|
---|
162 |
|
---|
163 | /**
|
---|
164 | * Pseudorandom function used for IEEE 802.11 pairwise key computation.
|
---|
165 | *
|
---|
166 | * @param key Key with PBKDF2 encrypted passphrase.
|
---|
167 | * @param data Concatenated sequence of both mac addresses and nonces.
|
---|
168 | * @param hash Output parameter for result hash (48 byte value).
|
---|
169 | * @param hash_sel Hash function selector.
|
---|
170 | *
|
---|
171 | * @return EINVAL when key or data not specified, ENOMEM when pointer for
|
---|
172 | * output hash result is not allocated, otherwise EOK.
|
---|
173 | */
|
---|
174 | int ieee80211_prf(uint8_t *key, uint8_t *data, uint8_t *hash,
|
---|
175 | hash_func_t hash_sel)
|
---|
176 | {
|
---|
177 | if(!key || !data)
|
---|
178 | return EINVAL;
|
---|
179 |
|
---|
180 | if(!hash)
|
---|
181 | return ENOMEM;
|
---|
182 |
|
---|
183 | size_t hash_length, result_length;
|
---|
184 | switch(hash_sel) {
|
---|
185 | case HASH_MD5:
|
---|
186 | hash_length = MD5_HASH_LENGTH;
|
---|
187 | result_length = IEEE80211_PTK_TKIP_LENGTH;
|
---|
188 | break;
|
---|
189 | case HASH_SHA1:
|
---|
190 | hash_length = SHA1_HASH_LENGTH;
|
---|
191 | result_length = IEEE80211_PTK_CCMP_LENGTH;
|
---|
192 | break;
|
---|
193 | default:
|
---|
194 | hash_length = 0;
|
---|
195 | result_length = 0;
|
---|
196 | }
|
---|
197 |
|
---|
198 | size_t iters = ((result_length * 8) + 159) / 160;
|
---|
199 |
|
---|
200 | const char *a = "Pairwise key expansion";
|
---|
201 | uint8_t result[hash_length*iters];
|
---|
202 | uint8_t temp[hash_length];
|
---|
203 | size_t data_size = PRF_CRYPT_DATA_LENGTH + str_size(a) + 2;
|
---|
204 | uint8_t work_arr[data_size];
|
---|
205 | memset(work_arr, 0, data_size);
|
---|
206 |
|
---|
207 | memcpy(work_arr, a, str_size(a));
|
---|
208 | memcpy(work_arr + str_size(a) + 1, data, PRF_CRYPT_DATA_LENGTH);
|
---|
209 |
|
---|
210 | for(uint8_t i = 0; i < iters; i++) {
|
---|
211 | memcpy(work_arr + data_size - 1, &i, 1);
|
---|
212 | hmac(key, PBKDF2_KEY_LENGTH, work_arr, data_size, temp,
|
---|
213 | hash_sel);
|
---|
214 | memcpy(result + i*hash_length, temp, hash_length);
|
---|
215 | }
|
---|
216 |
|
---|
217 | memcpy(hash, result, result_length);
|
---|
218 |
|
---|
219 | return EOK;
|
---|
220 | }
|
---|
221 |
|
---|
222 | int ieee80211_aes_key_unwrap(uint8_t *kek, uint8_t *data, size_t data_size,
|
---|
223 | uint8_t *output)
|
---|
224 | {
|
---|
225 | if(!kek || !data)
|
---|
226 | return EINVAL;
|
---|
227 |
|
---|
228 | if(!output)
|
---|
229 | return ENOMEM;
|
---|
230 |
|
---|
231 | uint32_t n = data_size/8 - 1;
|
---|
232 | uint8_t work_data[n*8];
|
---|
233 | uint8_t work_input[AES_CIPHER_LENGTH];
|
---|
234 | uint8_t work_output[AES_CIPHER_LENGTH];
|
---|
235 | uint8_t *work_block;
|
---|
236 | uint8_t a[8];
|
---|
237 | memcpy(a, data, 8);
|
---|
238 | uint64_t mask = 0xFF;
|
---|
239 | uint8_t shift, shb;
|
---|
240 |
|
---|
241 | memcpy(work_data, data + 8, n*8);
|
---|
242 | for(int j = 5; j >=0; j--) {
|
---|
243 | for(int i = n; i > 0; i--) {
|
---|
244 | for(size_t k = 0; k < 8; k++) {
|
---|
245 | shift = 56 - 8*k;
|
---|
246 | shb = ((n*j+i) & (mask << shift)) >> shift;
|
---|
247 | a[k] ^= shb;
|
---|
248 | }
|
---|
249 | work_block = work_data + (i-1)*8;
|
---|
250 | memcpy(work_input, a, 8);
|
---|
251 | memcpy(work_input + 8, work_block, 8);
|
---|
252 | aes_decrypt(kek, work_input, work_output);
|
---|
253 | memcpy(a, work_output, 8);
|
---|
254 | memcpy(work_data + (i-1)*8, work_output + 8, 8);
|
---|
255 | }
|
---|
256 | }
|
---|
257 |
|
---|
258 | size_t it;
|
---|
259 | for(it = 0; it < 8; it++) {
|
---|
260 | if(a[it] != 0xA6)
|
---|
261 | break;
|
---|
262 | }
|
---|
263 |
|
---|
264 | if(it == 8) {
|
---|
265 | memcpy(output, work_data, n*8);
|
---|
266 | return EOK;
|
---|
267 | } else {
|
---|
268 | return EINVAL;
|
---|
269 | }
|
---|
270 | }
|
---|
271 |
|
---|
272 | int rnd_sequence(uint8_t *sequence, size_t length)
|
---|
273 | {
|
---|
274 | if(!sequence)
|
---|
275 | return ENOMEM;
|
---|
276 |
|
---|
277 | for(size_t i = 0; i < length; i++) {
|
---|
278 | sequence[i] = (uint8_t) rand();
|
---|
279 | }
|
---|
280 |
|
---|
281 | return EOK;
|
---|
282 | }
|
---|
283 |
|
---|
284 | uint8_t *min_sequence(uint8_t *seq1, uint8_t *seq2, size_t size)
|
---|
285 | {
|
---|
286 | if(!seq1 || !seq2)
|
---|
287 | return NULL;
|
---|
288 |
|
---|
289 | for(size_t i = 0; i < size; i++) {
|
---|
290 | if(seq1[i] < seq2[i]) {
|
---|
291 | return seq1;
|
---|
292 | } else if(seq1[i] > seq2[i]) {
|
---|
293 | return seq2;
|
---|
294 | }
|
---|
295 | }
|
---|
296 |
|
---|
297 | return seq1;
|
---|
298 | }
|
---|
299 |
|
---|
300 | uint8_t *max_sequence(uint8_t *seq1, uint8_t *seq2, size_t size)
|
---|
301 | {
|
---|
302 | uint8_t *min = min_sequence(seq1, seq2, size);
|
---|
303 | if(min == seq1) {
|
---|
304 | return seq2;
|
---|
305 | } else {
|
---|
306 | return seq1;
|
---|
307 | }
|
---|
308 | }
|
---|
309 |
|
---|
310 | /** @}
|
---|
311 | */ |
---|