/* * Copyright (c) 2012 Frantisek Princ * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * - The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** @addtogroup libext4 * @{ */ /** * @file libext4_extent.c * @brief Ext4 extent structures operations. */ #include #include #include #include "libext4.h" /** Get logical number of the block covered by extent. * * @param extent Extent to load number from * * @return Logical number of the first block covered by extent * */ uint32_t ext4_extent_get_first_block(ext4_extent_t *extent) { return uint32_t_le2host(extent->first_block); } /** Set logical number of the first block covered by extent. * * @param extent Extent to set number to * @param iblock Logical number of the first block covered by extent * */ void ext4_extent_set_first_block(ext4_extent_t *extent, uint32_t iblock) { extent->first_block = host2uint32_t_le(iblock); } /** Get number of blocks covered by extent. * * @param extent Extent to load count from * * @return Number of blocks covered by extent * */ uint16_t ext4_extent_get_block_count(ext4_extent_t *extent) { return uint16_t_le2host(extent->block_count); } /** Set number of blocks covered by extent. * * @param extent Extent to load count from * @param count Number of blocks covered by extent * */ void ext4_extent_set_block_count(ext4_extent_t *extent, uint16_t count) { extent->block_count = host2uint16_t_le(count); } /** Get physical number of the first block covered by extent. * * @param extent Extent to load number * * @return Physical number of the first block covered by extent * */ uint64_t ext4_extent_get_start(ext4_extent_t *extent) { return ((uint64_t)uint16_t_le2host(extent->start_hi)) << 32 | ((uint64_t)uint32_t_le2host(extent->start_lo)); } /** Set physical number of the first block covered by extent. * * @param extent Extent to load number * @param fblock Physical number of the first block covered by extent * */ void ext4_extent_set_start(ext4_extent_t *extent, uint64_t fblock) { extent->start_lo = host2uint32_t_le((fblock << 32) >> 32); extent->start_hi = host2uint16_t_le((uint16_t)(fblock >> 32)); } /** Get logical number of the block covered by extent index. * * @param index Extent index to load number from * * @return Logical number of the first block covered by extent index * */ uint32_t ext4_extent_index_get_first_block(ext4_extent_index_t *index) { return uint32_t_le2host(index->first_block); } /** Set logical number of the block covered by extent index. * * @param index Extent index to set number to * @param iblock Logical number of the first block covered by extent index * */ void ext4_extent_index_set_first_block(ext4_extent_index_t *index, uint32_t iblock) { index->first_block = host2uint32_t_le(iblock); } /** Get physical number of block where the child node is located. * * @param index Extent index to load number from * * @return Physical number of the block with child node * */ uint64_t ext4_extent_index_get_leaf(ext4_extent_index_t *index) { return ((uint64_t) uint16_t_le2host(index->leaf_hi)) << 32 | ((uint64_t)uint32_t_le2host(index->leaf_lo)); } /** Set physical number of block where the child node is located. * * @param index Extent index to set number to * @param fblock Ohysical number of the block with child node * */ void ext4_extent_index_set_leaf(ext4_extent_index_t *index, uint64_t fblock) { index->leaf_lo = host2uint32_t_le((fblock << 32) >> 32); index->leaf_hi = host2uint16_t_le((uint16_t) (fblock >> 32)); } /** Get magic value from extent header. * * @param header Extent header to load value from * * @return Magic value of extent header * */ uint16_t ext4_extent_header_get_magic(ext4_extent_header_t *header) { return uint16_t_le2host(header->magic); } /** Set magic value to extent header. * * @param header Extent header to set value to * @param magic Magic value of extent header * */ void ext4_extent_header_set_magic(ext4_extent_header_t *header, uint16_t magic) { header->magic = host2uint16_t_le(magic); } /** Get number of entries from extent header * * @param header Extent header to get value from * * @return Number of entries covered by extent header * */ uint16_t ext4_extent_header_get_entries_count(ext4_extent_header_t *header) { return uint16_t_le2host(header->entries_count); } /** Set number of entries to extent header * * @param header Extent header to set value to * @param count Number of entries covered by extent header * */ void ext4_extent_header_set_entries_count(ext4_extent_header_t *header, uint16_t count) { header->entries_count = host2uint16_t_le(count); } /** Get maximum number of entries from extent header * * @param header Extent header to get value from * * @return Maximum number of entries covered by extent header * */ uint16_t ext4_extent_header_get_max_entries_count(ext4_extent_header_t *header) { return uint16_t_le2host(header->max_entries_count); } /** Set maximum number of entries to extent header * * @param header Extent header to set value to * @param max_count Maximum number of entries covered by extent header * */ void ext4_extent_header_set_max_entries_count(ext4_extent_header_t *header, uint16_t max_count) { header->max_entries_count = host2uint16_t_le(max_count); } /** Get depth of extent subtree. * * @param header Extent header to get value from * * @return Depth of extent subtree * */ uint16_t ext4_extent_header_get_depth(ext4_extent_header_t *header) { return uint16_t_le2host(header->depth); } /** Set depth of extent subtree. * * @param header Extent header to set value to * @param depth Depth of extent subtree * */ void ext4_extent_header_set_depth(ext4_extent_header_t *header, uint16_t depth) { header->depth = host2uint16_t_le(depth); } /** Get generation from extent header * * @param header Extent header to get value from * * @return Generation * */ uint32_t ext4_extent_header_get_generation(ext4_extent_header_t *header) { return uint32_t_le2host(header->generation); } /** Set generation to extent header * * @param header Extent header to set value to * @param generation Generation * */ void ext4_extent_header_set_generation(ext4_extent_header_t *header, uint32_t generation) { header->generation = host2uint32_t_le(generation); } /** Binary search in extent index node. * * @param header Extent header of index node * @param index Output value - found index will be set here * @param iblock Logical block number to find in index node * */ static void ext4_extent_binsearch_idx(ext4_extent_header_t *header, ext4_extent_index_t **index, uint32_t iblock) { ext4_extent_index_t *r; ext4_extent_index_t *l; ext4_extent_index_t *m; uint16_t entries_count = ext4_extent_header_get_entries_count(header); /* Initialize bounds */ l = EXT4_EXTENT_FIRST_INDEX(header) + 1; r = EXT4_EXTENT_FIRST_INDEX(header) + entries_count - 1; /* Do binary search */ while (l <= r) { m = l + (r - l) / 2; uint32_t first_block = ext4_extent_index_get_first_block(m); if (iblock < first_block) r = m - 1; else l = m + 1; } /* Set output value */ *index = l - 1; } /** Binary search in extent leaf node. * * @param header Extent header of leaf node * @param extent Output value - found extent will be set here, * or NULL if node is empty * @param iblock Logical block number to find in leaf node * */ static void ext4_extent_binsearch(ext4_extent_header_t *header, ext4_extent_t **extent, uint32_t iblock) { ext4_extent_t *r; ext4_extent_t *l; ext4_extent_t *m; uint16_t entries_count = ext4_extent_header_get_entries_count(header); if (entries_count == 0) { /* this leaf is empty */ *extent = NULL; return; } /* Initialize bounds */ l = EXT4_EXTENT_FIRST(header) + 1; r = EXT4_EXTENT_FIRST(header) + entries_count - 1; /* Do binary search */ while (l <= r) { m = l + (r - l) / 2; uint32_t first_block = ext4_extent_get_first_block(m); if (iblock < first_block) r = m - 1; else l = m + 1; } /* Set output value */ *extent = l - 1; } /** Find physical block in the extent tree by logical block number. * * There is no need to save path in the tree during this algorithm. * * @param inode_ref I-node to load block from * @param iblock Logical block number to find * @param fblock Output value for physical block number * * @return Error code * */ int ext4_extent_find_block(ext4_inode_ref_t *inode_ref, uint32_t iblock, uint32_t *fblock) { int rc; /* Compute bound defined by i-node size */ uint64_t inode_size = ext4_inode_get_size(inode_ref->fs->superblock, inode_ref->inode); uint32_t block_size = ext4_superblock_get_block_size(inode_ref->fs->superblock); uint32_t last_idx = (inode_size - 1) / block_size; /* Check if requested iblock is not over size of i-node */ if (iblock > last_idx) { *fblock = 0; return EOK; } block_t *block = NULL; /* Walk through extent tree */ ext4_extent_header_t *header = ext4_inode_get_extent_header(inode_ref->inode); while (ext4_extent_header_get_depth(header) != 0) { /* Search index in node */ ext4_extent_index_t *index; ext4_extent_binsearch_idx(header, &index, iblock); /* Load child node and set values for the next iteration */ uint64_t child = ext4_extent_index_get_leaf(index); if (block != NULL) { rc = block_put(block); if (rc != EOK) return rc; } rc = block_get(&block, inode_ref->fs->device, child, BLOCK_FLAGS_NONE); if (rc != EOK) return rc; header = (ext4_extent_header_t *)block->data; } /* Search extent in the leaf block */ ext4_extent_t* extent = NULL; ext4_extent_binsearch(header, &extent, iblock); /* Prevent empty leaf */ if (extent == NULL) { *fblock = 0; } else { /* Compute requested physical block address */ uint32_t phys_block; uint32_t first = ext4_extent_get_first_block(extent); phys_block = ext4_extent_get_start(extent) + iblock - first; *fblock = phys_block; } /* Cleanup */ if (block != NULL) rc = block_put(block); return rc; } /** Find extent for specified iblock. * * This function is used for finding block in the extent tree with * saving the path through the tree for possible future modifications. * * @param inode_ref I-node to read extent tree from * @param iblock Iblock to find extent for * @param ret_path Output value for loaded path from extent tree * * @return Error code * */ static int ext4_extent_find_extent(ext4_inode_ref_t *inode_ref, uint32_t iblock, ext4_extent_path_t **ret_path) { ext4_extent_header_t *eh = ext4_inode_get_extent_header(inode_ref->inode); uint16_t depth = ext4_extent_header_get_depth(eh); ext4_extent_path_t *tmp_path; /* Added 2 for possible tree growing */ tmp_path = malloc(sizeof(ext4_extent_path_t) * (depth + 2)); if (tmp_path == NULL) return ENOMEM; /* Initialize structure for algorithm start */ tmp_path[0].block = inode_ref->block; tmp_path[0].header = eh; /* Walk through the extent tree */ uint16_t pos = 0; int rc; while (ext4_extent_header_get_depth(eh) != 0) { /* Search index in index node by iblock */ ext4_extent_binsearch_idx(tmp_path[pos].header, &tmp_path[pos].index, iblock); tmp_path[pos].depth = depth; tmp_path[pos].extent = NULL; assert(tmp_path[pos].index != NULL); /* Load information for the next iteration */ uint64_t fblock = ext4_extent_index_get_leaf(tmp_path[pos].index); block_t *block; rc = block_get(&block, inode_ref->fs->device, fblock, BLOCK_FLAGS_NONE); if (rc != EOK) goto cleanup; pos++; eh = (ext4_extent_header_t *)block->data; tmp_path[pos].block = block; tmp_path[pos].header = eh; } tmp_path[pos].depth = 0; tmp_path[pos].extent = NULL; tmp_path[pos].index = NULL; /* Find extent in the leaf node */ ext4_extent_binsearch(tmp_path[pos].header, &tmp_path[pos].extent, iblock); *ret_path = tmp_path; return EOK; cleanup: ; int rc2 = EOK; /* * Put loaded blocks * From 1: 0 is a block with inode data */ for (uint16_t i = 1; i < tmp_path->depth; ++i) { if (tmp_path[i].block) { rc2 = block_put(tmp_path[i].block); if (rc == EOK && rc2 != EOK) rc = rc2; } } /* Destroy temporary data structure */ free(tmp_path); return rc; } /** Release extent and all data blocks covered by the extent. * * @param inode_ref I-node to release extent and block from * @param extent Extent to release * * @return Error code * */ static int ext4_extent_release(ext4_inode_ref_t *inode_ref, ext4_extent_t *extent) { /* Compute number of the first physical block to release */ uint64_t start = ext4_extent_get_start(extent); uint16_t block_count = ext4_extent_get_block_count(extent); return ext4_balloc_free_blocks(inode_ref, start, block_count); } /** Recursively release the whole branch of the extent tree. * * For each entry of the node release the subbranch and finally release * the node. In the leaf node all extents will be released. * * @param inode_ref I-node where the branch is released * @param index Index in the non-leaf node to be released * with the whole subtree * * @return Error code * */ static int ext4_extent_release_branch(ext4_inode_ref_t *inode_ref, ext4_extent_index_t *index) { uint32_t fblock = ext4_extent_index_get_leaf(index); block_t* block; int rc = block_get(&block, inode_ref->fs->device, fblock, BLOCK_FLAGS_NONE); if (rc != EOK) return rc; ext4_extent_header_t *header = block->data; if (ext4_extent_header_get_depth(header)) { /* The node is non-leaf, do recursion */ ext4_extent_index_t *idx = EXT4_EXTENT_FIRST_INDEX(header); /* Release all subbranches */ for (uint32_t i = 0; i < ext4_extent_header_get_entries_count(header); ++i, ++idx) { rc = ext4_extent_release_branch(inode_ref, idx); if (rc != EOK) return rc; } } else { /* Leaf node reached */ ext4_extent_t *ext = EXT4_EXTENT_FIRST(header); /* Release all extents and stop recursion */ for (uint32_t i = 0; i < ext4_extent_header_get_entries_count(header); ++i, ++ext) { rc = ext4_extent_release(inode_ref, ext); if (rc != EOK) return rc; } } /* Release data block where the node was stored */ rc = block_put(block); if (rc != EOK) return rc; return ext4_balloc_free_block(inode_ref, fblock); } /** Release all data blocks starting from specified logical block. * * @param inode_ref I-node to release blocks from * @param iblock_from First logical block to release * */ int ext4_extent_release_blocks_from(ext4_inode_ref_t *inode_ref, uint32_t iblock_from) { /* Find the first extent to modify */ ext4_extent_path_t *path; int rc = ext4_extent_find_extent(inode_ref, iblock_from, &path); if (rc != EOK) return rc; /* Jump to last item of the path (extent) */ ext4_extent_path_t *path_ptr = path; while (path_ptr->depth != 0) path_ptr++; assert(path_ptr->extent != NULL); /* First extent maybe released partially */ uint32_t first_iblock = ext4_extent_get_first_block(path_ptr->extent); uint32_t first_fblock = ext4_extent_get_start(path_ptr->extent) + iblock_from - first_iblock; uint16_t block_count = ext4_extent_get_block_count(path_ptr->extent); uint16_t delete_count = block_count - (ext4_extent_get_start(path_ptr->extent) - first_fblock); /* Release all blocks */ rc = ext4_balloc_free_blocks(inode_ref, first_fblock, delete_count); if (rc != EOK) goto cleanup; /* Correct counter */ block_count -= delete_count; ext4_extent_set_block_count(path_ptr->extent, block_count); /* Initialize the following loop */ uint16_t entries = ext4_extent_header_get_entries_count(path_ptr->header); ext4_extent_t *tmp_ext = path_ptr->extent + 1; ext4_extent_t *stop_ext = EXT4_EXTENT_FIRST(path_ptr->header) + entries; /* If first extent empty, release it */ if (block_count == 0) entries--; /* Release all successors of the first extent in the same node */ while (tmp_ext < stop_ext) { first_fblock = ext4_extent_get_start(tmp_ext); delete_count = ext4_extent_get_block_count(tmp_ext); rc = ext4_balloc_free_blocks(inode_ref, first_fblock, delete_count); if (rc != EOK) goto cleanup; entries--; tmp_ext++; } ext4_extent_header_set_entries_count(path_ptr->header, entries); path_ptr->block->dirty = true; /* If leaf node is empty, parent entry must be modified */ bool remove_parent_record = false; /* Don't release root block (including inode data) !!! */ if ((path_ptr != path) && (entries == 0)) { rc = ext4_balloc_free_block(inode_ref, path_ptr->block->lba); if (rc != EOK) goto cleanup; remove_parent_record = true; } /* Jump to the parent */ --path_ptr; /* Release all successors in all tree levels */ while (path_ptr >= path) { entries = ext4_extent_header_get_entries_count(path_ptr->header); ext4_extent_index_t *index = path_ptr->index + 1; ext4_extent_index_t *stop = EXT4_EXTENT_FIRST_INDEX(path_ptr->header) + entries; /* Correct entries count because of changes in the previous iteration */ if (remove_parent_record) entries--; /* Iterate over all entries and release the whole subtrees */ while (index < stop) { rc = ext4_extent_release_branch(inode_ref, index); if (rc != EOK) goto cleanup; ++index; --entries; } ext4_extent_header_set_entries_count(path_ptr->header, entries); path_ptr->block->dirty = true; /* Free the node if it is empty */ if ((entries == 0) && (path_ptr != path)) { rc = ext4_balloc_free_block(inode_ref, path_ptr->block->lba); if (rc != EOK) goto cleanup; /* Mark parent to be checked */ remove_parent_record = true; } else remove_parent_record = false; --path_ptr; } cleanup: ; int rc2 = EOK; /* * Put loaded blocks * starting from 1: 0 is a block with inode data */ for (uint16_t i = 1; i <= path->depth; ++i) { if (path[i].block) { rc2 = block_put(path[i].block); if (rc == EOK && rc2 != EOK) rc = rc2; } } /* Destroy temporary data structure */ free(path); return rc; } /** Append new extent to the i-node and do some splitting if necessary. * * @param inode_ref I-node to append extent to * @param path Path in the extent tree for possible splitting * @param last_path_item Input/output parameter for pointer to the last * valid item in the extent tree path * @param iblock Logical index of block to append extent for * * @return Error code * */ static int ext4_extent_append_extent(ext4_inode_ref_t *inode_ref, ext4_extent_path_t *path, uint32_t iblock) { ext4_extent_path_t *path_ptr = path + path->depth; uint32_t block_size = ext4_superblock_get_block_size(inode_ref->fs->superblock); /* Start splitting */ while (path_ptr > path) { uint16_t entries = ext4_extent_header_get_entries_count(path_ptr->header); uint16_t limit = ext4_extent_header_get_max_entries_count(path_ptr->header); if (entries == limit) { /* Full node - allocate block for new one */ uint32_t fblock; int rc = ext4_balloc_alloc_block(inode_ref, &fblock); if (rc != EOK) return rc; block_t *block; rc = block_get(&block, inode_ref->fs->device, fblock, BLOCK_FLAGS_NOREAD); if (rc != EOK) { ext4_balloc_free_block(inode_ref, fblock); return rc; } /* Put back not modified old block */ rc = block_put(path_ptr->block); if (rc != EOK) { ext4_balloc_free_block(inode_ref, fblock); block_put(block); return rc; } /* Initialize newly allocated block and remember it */ memset(block->data, 0, block_size); path_ptr->block = block; /* Update pointers in extent path structure */ path_ptr->header = block->data; if (path_ptr->depth) { path_ptr->index = EXT4_EXTENT_FIRST_INDEX(path_ptr->header); ext4_extent_index_set_first_block(path_ptr->index, iblock); ext4_extent_index_set_leaf(path_ptr->index, (path_ptr + 1)->block->lba); limit = (block_size - sizeof(ext4_extent_header_t)) / sizeof(ext4_extent_index_t); } else { path_ptr->extent = EXT4_EXTENT_FIRST(path_ptr->header); ext4_extent_set_first_block(path_ptr->extent, iblock); limit = (block_size - sizeof(ext4_extent_header_t)) / sizeof(ext4_extent_t); } /* Initialize on-disk structure (header) */ ext4_extent_header_set_entries_count(path_ptr->header, 1); ext4_extent_header_set_max_entries_count(path_ptr->header, limit); ext4_extent_header_set_magic(path_ptr->header, EXT4_EXTENT_MAGIC); ext4_extent_header_set_depth(path_ptr->header, path_ptr->depth); ext4_extent_header_set_generation(path_ptr->header, 0); path_ptr->block->dirty = true; /* Jump to the preceeding item */ path_ptr--; } else { /* Node with free space */ if (path_ptr->depth) { path_ptr->index = EXT4_EXTENT_FIRST_INDEX(path_ptr->header) + entries; ext4_extent_index_set_first_block(path_ptr->index, iblock); ext4_extent_index_set_leaf(path_ptr->index, (path_ptr + 1)->block->lba); } else { path_ptr->extent = EXT4_EXTENT_FIRST(path_ptr->header) + entries; ext4_extent_set_first_block(path_ptr->extent, iblock); } ext4_extent_header_set_entries_count(path_ptr->header, entries + 1); path_ptr->block->dirty = true; /* No more splitting needed */ return EOK; } } assert(path_ptr == path); /* Should be the root split too? */ uint16_t entries = ext4_extent_header_get_entries_count(path->header); uint16_t limit = ext4_extent_header_get_max_entries_count(path->header); if (entries == limit) { uint32_t new_fblock; int rc = ext4_balloc_alloc_block(inode_ref, &new_fblock); if (rc != EOK) return rc; block_t *block; rc = block_get(&block, inode_ref->fs->device, new_fblock, BLOCK_FLAGS_NOREAD); if (rc != EOK) return rc; /* Initialize newly allocated block */ memset(block->data, 0, block_size); /* Move data from root to the new block */ memcpy(block->data, inode_ref->inode->blocks, EXT4_INODE_BLOCKS * sizeof(uint32_t)); /* Data block is initialized */ block_t *root_block = path->block; uint16_t root_depth = path->depth; ext4_extent_header_t *root_header = path->header; /* Make space for tree growing */ ext4_extent_path_t *new_root = path; ext4_extent_path_t *old_root = path + 1; size_t nbytes = sizeof(ext4_extent_path_t) * (path->depth + 1); memmove(old_root, new_root, nbytes); memset(new_root, 0, sizeof(ext4_extent_path_t)); /* Update old root structure */ old_root->block = block; old_root->header = (ext4_extent_header_t *)block->data; /* Add new entry and update limit for entries */ if (old_root->depth) { limit = (block_size - sizeof(ext4_extent_header_t)) / sizeof(ext4_extent_index_t); old_root->index = EXT4_EXTENT_FIRST_INDEX(old_root->header) + entries; ext4_extent_index_set_first_block(old_root->index, iblock); ext4_extent_index_set_leaf(old_root->index, (old_root + 1)->block->lba); old_root->extent = NULL; } else { limit = (block_size - sizeof(ext4_extent_header_t)) / sizeof(ext4_extent_t); old_root->extent = EXT4_EXTENT_FIRST(old_root->header) + entries; ext4_extent_set_first_block(old_root->extent, iblock); old_root->index = NULL; } ext4_extent_header_set_entries_count(old_root->header, entries + 1); ext4_extent_header_set_max_entries_count(old_root->header, limit); old_root->block->dirty = true; /* Re-initialize new root metadata */ new_root->depth = root_depth + 1; new_root->block = root_block; new_root->header = root_header; new_root->extent = NULL; new_root->index = EXT4_EXTENT_FIRST_INDEX(new_root->header); ext4_extent_header_set_depth(new_root->header, new_root->depth); /* Create new entry in root */ ext4_extent_header_set_entries_count(new_root->header, 1); ext4_extent_index_set_first_block(new_root->index, 0); ext4_extent_index_set_leaf(new_root->index, new_fblock); new_root->block->dirty = true; } else { if (path->depth) { path->index = EXT4_EXTENT_FIRST_INDEX(path->header) + entries; ext4_extent_index_set_first_block(path->index, iblock); ext4_extent_index_set_leaf(path->index, (path + 1)->block->lba); } else { path->extent = EXT4_EXTENT_FIRST(path->header) + entries; ext4_extent_set_first_block(path->extent, iblock); } ext4_extent_header_set_entries_count(path->header, entries + 1); path->block->dirty = true; } return EOK; } /** Append data block to the i-node. * * This function allocates data block, tries to append it * to some existing extent or creates new extents. * It includes possible extent tree modifications (splitting). *< * @param inode_ref I-node to append block to * @param iblock Output logical number of newly allocated block * @param fblock Output physical block address of newly allocated block * * @return Error code * */ int ext4_extent_append_block(ext4_inode_ref_t *inode_ref, uint32_t *iblock, uint32_t *fblock, bool update_size) { ext4_superblock_t *sb = inode_ref->fs->superblock; uint64_t inode_size = ext4_inode_get_size(sb, inode_ref->inode); uint32_t block_size = ext4_superblock_get_block_size(sb); /* Calculate number of new logical block */ uint32_t new_block_idx = 0; if (inode_size > 0) { if ((inode_size % block_size) != 0) inode_size += block_size - (inode_size % block_size); new_block_idx = inode_size / block_size; } /* Load the nearest leaf (with extent) */ ext4_extent_path_t *path; int rc = ext4_extent_find_extent(inode_ref, new_block_idx, &path); if (rc != EOK) return rc; /* Jump to last item of the path (extent) */ ext4_extent_path_t *path_ptr = path; while (path_ptr->depth != 0) path_ptr++; /* Add new extent to the node if not present */ if (path_ptr->extent == NULL) goto append_extent; uint16_t block_count = ext4_extent_get_block_count(path_ptr->extent); uint16_t block_limit = (1 << 15); uint32_t phys_block = 0; if (block_count < block_limit) { /* There is space for new block in the extent */ if (block_count == 0) { /* Existing extent is empty */ rc = ext4_balloc_alloc_block(inode_ref, &phys_block); if (rc != EOK) goto finish; /* Initialize extent */ ext4_extent_set_first_block(path_ptr->extent, new_block_idx); ext4_extent_set_start(path_ptr->extent, phys_block); ext4_extent_set_block_count(path_ptr->extent, 1); /* Update i-node */ if (update_size) { ext4_inode_set_size(inode_ref->inode, inode_size + block_size); inode_ref->dirty = true; } path_ptr->block->dirty = true; goto finish; } else { /* Existing extent contains some blocks */ phys_block = ext4_extent_get_start(path_ptr->extent); phys_block += ext4_extent_get_block_count(path_ptr->extent); /* Check if the following block is free for allocation */ bool free; rc = ext4_balloc_try_alloc_block(inode_ref, phys_block, &free); if (rc != EOK) goto finish; if (!free) { /* Target is not free, new block must be appended to new extent */ goto append_extent; } /* Update extent */ ext4_extent_set_block_count(path_ptr->extent, block_count + 1); /* Update i-node */ if (update_size) { ext4_inode_set_size(inode_ref->inode, inode_size + block_size); inode_ref->dirty = true; } path_ptr->block->dirty = true; goto finish; } } append_extent: /* Append new extent to the tree */ phys_block = 0; /* Allocate new data block */ rc = ext4_balloc_alloc_block(inode_ref, &phys_block); if (rc != EOK) goto finish; /* Append extent for new block (includes tree splitting if needed) */ rc = ext4_extent_append_extent(inode_ref, path, new_block_idx); if (rc != EOK) { ext4_balloc_free_block(inode_ref, phys_block); goto finish; } uint32_t tree_depth = ext4_extent_header_get_depth(path->header); path_ptr = path + tree_depth; /* Initialize newly created extent */ ext4_extent_set_block_count(path_ptr->extent, 1); ext4_extent_set_first_block(path_ptr->extent, new_block_idx); ext4_extent_set_start(path_ptr->extent, phys_block); /* Update i-node */ if (update_size) { ext4_inode_set_size(inode_ref->inode, inode_size + block_size); inode_ref->dirty = true; } path_ptr->block->dirty = true; finish: ; int rc2 = EOK; /* Set return values */ *iblock = new_block_idx; *fblock = phys_block; /* * Put loaded blocks * starting from 1: 0 is a block with inode data */ for (uint16_t i = 1; i <= path->depth; ++i) { if (path[i].block) { rc2 = block_put(path[i].block); if (rc == EOK && rc2 != EOK) rc = rc2; } } /* Destroy temporary data structure */ free(path); return rc; } /** * @} */