source: mainline/uspace/lib/crypto/crypto.c@ d776329b

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since d776329b was 8a64320e, checked in by Martin Decky <martin@…>, 10 years ago

pre-merge coding style cleanup and code review

  • Property mode set to 100644
File size: 10.6 KB
Line 
1/*
2 * Copyright (c) 2015 Jan Kolarik
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @file crypto.c
30 *
31 * Cryptographic functions library.
32 */
33
34#include <unistd.h>
35#include <str.h>
36#include <macros.h>
37#include <errno.h>
38#include <byteorder.h>
39#include "crypto.h"
40
41/** Hash function procedure definition. */
42typedef void (*hash_fnc_t)(uint32_t *, uint32_t *);
43
44/** Length of HMAC block. */
45#define HMAC_BLOCK_LENGTH 64
46
47/** Ceiling for uint32_t. */
48#define ceil_uint32(val) \
49 (((val) - (uint32_t) (val)) > 0 ? \
50 (uint32_t) ((val) + 1) : (uint32_t) (val))
51
52/** Floor for uint32_t. */
53#define floor_uint32(val) \
54 (((val) - (uint32_t) (val)) < 0 ? \
55 (uint32_t) ((val) - 1) : (uint32_t) (val))
56
57/** Pick value at specified index from array or zero if out of bounds. */
58#define get_at(input, size, i) \
59 ((i) < (size) ? (input[i]) : 0)
60
61/** Init values used in SHA1 and MD5 functions. */
62static const uint32_t hash_init[] = {
63 0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0
64};
65
66/** Shift amount array for MD5 algorithm. */
67static const uint32_t md5_shift[] = {
68 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22,
69 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20,
70 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23,
71 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21
72};
73
74/** Substitution box for MD5 algorithm. */
75static const uint32_t md5_sbox[] = {
76 0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee,
77 0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501,
78 0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be,
79 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821,
80 0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa,
81 0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8,
82 0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed,
83 0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a,
84 0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c,
85 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70,
86 0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x04881d05,
87 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665,
88 0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039,
89 0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1,
90 0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1,
91 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391
92};
93
94/** Working procedure of MD5 cryptographic hash function.
95 *
96 * @param h Working array with interim hash parts values.
97 * @param sched_arr Input array with scheduled values from input string.
98 *
99 */
100static void md5_proc(uint32_t *h, uint32_t *sched_arr)
101{
102 uint32_t f, g, temp;
103 uint32_t w[HASH_MD5 / 4];
104
105 memcpy(w, h, (HASH_MD5 / 4) * sizeof(uint32_t));
106
107 for (size_t k = 0; k < 64; k++) {
108 if (k < 16) {
109 f = (w[1] & w[2]) | (~w[1] & w[3]);
110 g = k;
111 } else if ((k >= 16) && (k < 32)) {
112 f = (w[1] & w[3]) | (w[2] & ~w[3]);
113 g = (5 * k + 1) % 16;
114 } else if ((k >= 32) && (k < 48)) {
115 f = w[1] ^ w[2] ^ w[3];
116 g = (3 * k + 5) % 16;
117 } else {
118 f = w[2] ^ (w[1] | ~w[3]);
119 g = 7 * k % 16;
120 }
121
122 temp = w[3];
123 w[3] = w[2];
124 w[2] = w[1];
125 w[1] += rotl_uint32(w[0] + f + md5_sbox[k] +
126 uint32_t_byteorder_swap(sched_arr[g]),
127 md5_shift[k]);
128 w[0] = temp;
129 }
130
131 for (uint8_t k = 0; k < HASH_MD5 / 4; k++)
132 h[k] += w[k];
133}
134
135/** Working procedure of SHA-1 cryptographic hash function.
136 *
137 * @param h Working array with interim hash parts values.
138 * @param sched_arr Input array with scheduled values from input string.
139 *
140 */
141static void sha1_proc(uint32_t *h, uint32_t *sched_arr)
142{
143 uint32_t f, cf, temp;
144 uint32_t w[HASH_SHA1 / 4];
145
146 for (size_t k = 16; k < 80; k++) {
147 sched_arr[k] = rotl_uint32(
148 sched_arr[k-3] ^
149 sched_arr[k-8] ^
150 sched_arr[k-14] ^
151 sched_arr[k-16],
152 1);
153 }
154
155 memcpy(w, h, (HASH_SHA1 / 4) * sizeof(uint32_t));
156
157 for (size_t k = 0; k < 80; k++) {
158 if (k < 20) {
159 f = (w[1] & w[2]) | (~w[1] & w[3]);
160 cf = 0x5A827999;
161 } else if ((k >= 20) && (k < 40)) {
162 f = w[1] ^ w[2] ^ w[3];
163 cf = 0x6ed9eba1;
164 } else if ((k >= 40) && (k < 60)) {
165 f = (w[1] & w[2]) | (w[1] & w[3]) | (w[2] & w[3]);
166 cf = 0x8f1bbcdc;
167 } else {
168 f = w[1] ^ w[2] ^ w[3];
169 cf = 0xca62c1d6;
170 }
171
172 temp = rotl_uint32(w[0], 5) + f + w[4] + cf + sched_arr[k];
173
174 w[4] = w[3];
175 w[3] = w[2];
176 w[2] = rotl_uint32(w[1], 30);
177 w[1] = w[0];
178 w[0] = temp;
179 }
180
181 for (uint8_t k = 0; k < HASH_SHA1 / 4; k++)
182 h[k] += w[k];
183}
184
185/** Create hash based on selected algorithm.
186 *
187 * @param input Input message byte sequence.
188 * @param input_size Size of message sequence.
189 * @param output Result hash byte sequence.
190 * @param hash_sel Hash function selector.
191 *
192 * @return EINVAL when input not specified,
193 * ENOMEM when pointer for output hash result
194 * is not allocated, otherwise EOK.
195 *
196 */
197int create_hash(uint8_t *input, size_t input_size, uint8_t *output,
198 hash_func_t hash_sel)
199{
200 if (!input)
201 return EINVAL;
202
203 if (!output)
204 return ENOMEM;
205
206 hash_fnc_t hash_func = (hash_sel == HASH_MD5) ? md5_proc : sha1_proc;
207
208 /* Prepare scheduled input. */
209 uint8_t work_input[input_size + 1];
210 memcpy(work_input, input, input_size);
211 work_input[input_size] = 0x80;
212
213 // FIXME: double?
214 size_t blocks = ceil_uint32((((double) input_size + 1) / 4 + 2) / 16);
215 uint32_t work_arr[blocks * 16];
216 for (size_t i = 0; i < blocks; i++) {
217 for (size_t j = 0; j < 16; j++) {
218 work_arr[i*16 + j] =
219 (get_at(work_input, input_size + 1, i * 64 + j * 4) << 24) |
220 (get_at(work_input, input_size + 1, i * 64 + j * 4 + 1) << 16) |
221 (get_at(work_input, input_size + 1, i * 64 + j * 4 + 2) << 8) |
222 get_at(work_input, input_size + 1, i * 64 + j * 4 + 3);
223 }
224 }
225
226 uint64_t bits_size = (uint64_t) (input_size * 8);
227 if (hash_sel == HASH_MD5)
228 bits_size = uint64_t_byteorder_swap(bits_size);
229
230 work_arr[(blocks - 1) * 16 + 14] = bits_size >> 32;
231 work_arr[(blocks - 1) * 16 + 15] = bits_size & 0xffffffff;
232
233 /* Hash computation. */
234 uint32_t h[hash_sel / 4];
235 memcpy(h, hash_init, (hash_sel / 4) * sizeof(uint32_t));
236 uint32_t sched_arr[80];
237 for (size_t i = 0; i < blocks; i++) {
238 for (size_t k = 0; k < 16; k++)
239 sched_arr[k] = work_arr[i * 16 + k];
240
241 hash_func(h, sched_arr);
242 }
243
244 /* Copy hash parts into final result. */
245 for (size_t i = 0; i < hash_sel / 4; i++) {
246 if (hash_sel == HASH_SHA1)
247 h[i] = uint32_t_byteorder_swap(h[i]);
248
249 memcpy(output + i * sizeof(uint32_t), &h[i], sizeof(uint32_t));
250 }
251
252 return EOK;
253}
254
255/** Hash-based message authentication code.
256 *
257 * @param key Cryptographic key sequence.
258 * @param key_size Size of key sequence.
259 * @param msg Message sequence.
260 * @param msg_size Size of message sequence.
261 * @param hash Output parameter for result hash.
262 * @param hash_sel Hash function selector.
263 *
264 * @return EINVAL when key or message not specified,
265 * ENOMEM when pointer for output hash result
266 * is not allocated, otherwise EOK.
267 *
268 */
269int hmac(uint8_t *key, size_t key_size, uint8_t *msg, size_t msg_size,
270 uint8_t *hash, hash_func_t hash_sel)
271{
272 if ((!key) || (!msg))
273 return EINVAL;
274
275 if (!hash)
276 return ENOMEM;
277
278 uint8_t work_key[HMAC_BLOCK_LENGTH];
279 uint8_t o_key_pad[HMAC_BLOCK_LENGTH];
280 uint8_t i_key_pad[HMAC_BLOCK_LENGTH];
281 uint8_t temp_hash[hash_sel];
282 memset(work_key, 0, HMAC_BLOCK_LENGTH);
283
284 if(key_size > HMAC_BLOCK_LENGTH)
285 create_hash(key, key_size, work_key, hash_sel);
286 else
287 memcpy(work_key, key, key_size);
288
289 for (size_t i = 0; i < HMAC_BLOCK_LENGTH; i++) {
290 o_key_pad[i] = work_key[i] ^ 0x5c;
291 i_key_pad[i] = work_key[i] ^ 0x36;
292 }
293
294 uint8_t temp_work[HMAC_BLOCK_LENGTH + max(msg_size, hash_sel)];
295 memcpy(temp_work, i_key_pad, HMAC_BLOCK_LENGTH);
296 memcpy(temp_work + HMAC_BLOCK_LENGTH, msg, msg_size);
297
298 create_hash(temp_work, HMAC_BLOCK_LENGTH + msg_size, temp_hash,
299 hash_sel);
300
301 memcpy(temp_work, o_key_pad, HMAC_BLOCK_LENGTH);
302 memcpy(temp_work + HMAC_BLOCK_LENGTH, temp_hash, hash_sel);
303
304 create_hash(temp_work, HMAC_BLOCK_LENGTH + hash_sel, hash, hash_sel);
305
306 return EOK;
307}
308
309/** Password-Based Key Derivation Function 2.
310 *
311 * As defined in RFC 2898, using HMAC-SHA1 with 4096 iterations
312 * and 32 bytes key result used for WPA/WPA2.
313 *
314 * @param pass Password sequence.
315 * @param pass_size Password sequence length.
316 * @param salt Salt sequence to be used with password.
317 * @param salt_size Salt sequence length.
318 * @param hash Output parameter for result hash (32 byte value).
319 *
320 * @return EINVAL when pass or salt not specified,
321 * ENOMEM when pointer for output hash result
322 * is not allocated, otherwise EOK.
323 *
324 */
325int pbkdf2(uint8_t *pass, size_t pass_size, uint8_t *salt, size_t salt_size,
326 uint8_t *hash)
327{
328 if ((!pass) || (!salt))
329 return EINVAL;
330
331 if (!hash)
332 return ENOMEM;
333
334 uint8_t work_salt[salt_size + 4];
335 memcpy(work_salt, salt, salt_size);
336 uint8_t work_hmac[HASH_SHA1];
337 uint8_t temp_hmac[HASH_SHA1];
338 uint8_t xor_hmac[HASH_SHA1];
339 uint8_t temp_hash[HASH_SHA1 * 2];
340
341 for (size_t i = 0; i < 2; i++) {
342 uint32_t be_i = host2uint32_t_be(i + 1);
343
344 memcpy(work_salt + salt_size, &be_i, 4);
345 hmac(pass, pass_size, work_salt, salt_size + 4,
346 work_hmac, HASH_SHA1);
347 memcpy(xor_hmac, work_hmac, HASH_SHA1);
348
349 for (size_t k = 1; k < 4096; k++) {
350 memcpy(temp_hmac, work_hmac, HASH_SHA1);
351 hmac(pass, pass_size, temp_hmac, HASH_SHA1,
352 work_hmac, HASH_SHA1);
353
354 for (size_t t = 0; t < HASH_SHA1; t++)
355 xor_hmac[t] ^= work_hmac[t];
356 }
357
358 memcpy(temp_hash + i * HASH_SHA1, xor_hmac, HASH_SHA1);
359 }
360
361 memcpy(hash, temp_hash, PBKDF2_KEY_LENGTH);
362
363 return EOK;
364}
Note: See TracBrowser for help on using the repository browser.