source: mainline/uspace/lib/crypto/crypto.c@ 3faf90ad

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 3faf90ad was a4cf312, checked in by Jiří Zárevúcky <zarevucky.jiri@…>, 6 years ago

Fix build with -fsanitize=undefined

  • Property mode set to 100644
File size: 10.6 KB
Line 
1/*
2 * Copyright (c) 2015 Jan Kolarik
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @file crypto.c
30 *
31 * Cryptographic functions library.
32 */
33
34#include <assert.h>
35#include <str.h>
36#include <macros.h>
37#include <errno.h>
38#include <byteorder.h>
39#include <limits.h>
40#include "crypto.h"
41
42/** Hash function procedure definition. */
43typedef void (*hash_fnc_t)(uint32_t *, uint32_t *);
44
45/** Length of HMAC block. */
46#define HMAC_BLOCK_LENGTH 64
47
48/** Ceiling for uint32_t. */
49#define ceil_uint32(val) \
50 (((val) - (uint32_t) (val)) > 0 ? \
51 (uint32_t) ((val) + 1) : (uint32_t) (val))
52
53/** Floor for uint32_t. */
54#define floor_uint32(val) \
55 (((val) - (uint32_t) (val)) < 0 ? \
56 (uint32_t) ((val) - 1) : (uint32_t) (val))
57
58/** Pick value at specified index from array or zero if out of bounds. */
59#define get_at(input, size, i) \
60 ((i) < (size) ? (input[i]) : 0)
61
62/** Init values used in SHA1 and MD5 functions. */
63static const uint32_t hash_init[] = {
64 0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0
65};
66
67/** Shift amount array for MD5 algorithm. */
68static const uint32_t md5_shift[] = {
69 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22,
70 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20,
71 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23,
72 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21
73};
74
75/** Substitution box for MD5 algorithm. */
76static const uint32_t md5_sbox[] = {
77 0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee,
78 0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501,
79 0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be,
80 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821,
81 0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa,
82 0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8,
83 0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed,
84 0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a,
85 0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c,
86 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70,
87 0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x04881d05,
88 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665,
89 0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039,
90 0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1,
91 0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1,
92 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391
93};
94
95/** Working procedure of MD5 cryptographic hash function.
96 *
97 * @param h Working array with interim hash parts values.
98 * @param sched_arr Input array with scheduled values from input string.
99 *
100 */
101static void md5_proc(uint32_t *h, uint32_t *sched_arr)
102{
103 uint32_t f, g, temp;
104 uint32_t w[HASH_MD5 / 4];
105
106 memcpy(w, h, (HASH_MD5 / 4) * sizeof(uint32_t));
107
108 for (size_t k = 0; k < 64; k++) {
109 if (k < 16) {
110 f = (w[1] & w[2]) | (~w[1] & w[3]);
111 g = k;
112 } else if ((k >= 16) && (k < 32)) {
113 f = (w[1] & w[3]) | (w[2] & ~w[3]);
114 g = (5 * k + 1) % 16;
115 } else if ((k >= 32) && (k < 48)) {
116 f = w[1] ^ w[2] ^ w[3];
117 g = (3 * k + 5) % 16;
118 } else {
119 f = w[2] ^ (w[1] | ~w[3]);
120 g = 7 * k % 16;
121 }
122
123 temp = w[3];
124 w[3] = w[2];
125 w[2] = w[1];
126 w[1] += rotl_uint32(w[0] + f + md5_sbox[k] +
127 uint32_t_byteorder_swap(sched_arr[g]),
128 md5_shift[k]);
129 w[0] = temp;
130 }
131
132 for (uint8_t k = 0; k < HASH_MD5 / 4; k++)
133 h[k] += w[k];
134}
135
136/** Working procedure of SHA-1 cryptographic hash function.
137 *
138 * @param h Working array with interim hash parts values.
139 * @param sched_arr Input array with scheduled values from input string.
140 *
141 */
142static void sha1_proc(uint32_t *h, uint32_t *sched_arr)
143{
144 uint32_t f, cf, temp;
145 uint32_t w[HASH_SHA1 / 4];
146
147 for (size_t k = 16; k < 80; k++) {
148 sched_arr[k] = rotl_uint32(
149 sched_arr[k - 3] ^
150 sched_arr[k - 8] ^
151 sched_arr[k - 14] ^
152 sched_arr[k - 16],
153 1);
154 }
155
156 memcpy(w, h, (HASH_SHA1 / 4) * sizeof(uint32_t));
157
158 for (size_t k = 0; k < 80; k++) {
159 if (k < 20) {
160 f = (w[1] & w[2]) | (~w[1] & w[3]);
161 cf = 0x5A827999;
162 } else if ((k >= 20) && (k < 40)) {
163 f = w[1] ^ w[2] ^ w[3];
164 cf = 0x6ed9eba1;
165 } else if ((k >= 40) && (k < 60)) {
166 f = (w[1] & w[2]) | (w[1] & w[3]) | (w[2] & w[3]);
167 cf = 0x8f1bbcdc;
168 } else {
169 f = w[1] ^ w[2] ^ w[3];
170 cf = 0xca62c1d6;
171 }
172
173 temp = rotl_uint32(w[0], 5) + f + w[4] + cf + sched_arr[k];
174
175 w[4] = w[3];
176 w[3] = w[2];
177 w[2] = rotl_uint32(w[1], 30);
178 w[1] = w[0];
179 w[0] = temp;
180 }
181
182 for (uint8_t k = 0; k < HASH_SHA1 / 4; k++)
183 h[k] += w[k];
184}
185
186/** Create hash based on selected algorithm.
187 *
188 * @param input Input message byte sequence.
189 * @param input_size Size of message sequence.
190 * @param output Result hash byte sequence.
191 * @param hash_sel Hash function selector.
192 *
193 * @return EINVAL when input not specified,
194 * ENOMEM when pointer for output hash result
195 * is not allocated, otherwise EOK.
196 *
197 */
198errno_t create_hash(uint8_t *input, size_t input_size, uint8_t *output,
199 hash_func_t hash_sel)
200{
201 assert(input_size < SSIZE_MAX);
202
203 if (!input)
204 return EINVAL;
205
206 if (!output)
207 return ENOMEM;
208
209 hash_fnc_t hash_func = (hash_sel == HASH_MD5) ? md5_proc : sha1_proc;
210
211 /* Prepare scheduled input. */
212 uint8_t work_input[input_size + 1];
213 memcpy(work_input, input, input_size);
214 work_input[input_size] = 0x80;
215
216 // FIXME: double?
217 size_t blocks = ceil_uint32((((double) input_size + 1) / 4 + 2) / 16);
218 uint32_t work_arr[blocks * 16];
219 for (size_t i = 0; i < blocks; i++) {
220 for (size_t j = 0; j < 16; j++) {
221 work_arr[i * 16 + j] =
222 (get_at(work_input, input_size + 1, i * 64 + j * 4) << 24) |
223 (get_at(work_input, input_size + 1, i * 64 + j * 4 + 1) << 16) |
224 (get_at(work_input, input_size + 1, i * 64 + j * 4 + 2) << 8) |
225 get_at(work_input, input_size + 1, i * 64 + j * 4 + 3);
226 }
227 }
228
229 uint64_t bits_size = (uint64_t) (input_size * 8);
230 if (hash_sel == HASH_MD5)
231 bits_size = uint64_t_byteorder_swap(bits_size);
232
233 work_arr[(blocks - 1) * 16 + 14] = bits_size >> 32;
234 work_arr[(blocks - 1) * 16 + 15] = bits_size & 0xffffffff;
235
236 /* Hash computation. */
237 uint32_t h[hash_sel / 4];
238 memcpy(h, hash_init, (hash_sel / 4) * sizeof(uint32_t));
239 uint32_t sched_arr[80];
240 for (size_t i = 0; i < blocks; i++) {
241 for (size_t k = 0; k < 16; k++)
242 sched_arr[k] = work_arr[i * 16 + k];
243
244 hash_func(h, sched_arr);
245 }
246
247 /* Copy hash parts into final result. */
248 for (size_t i = 0; i < hash_sel / 4; i++) {
249 if (hash_sel == HASH_SHA1)
250 h[i] = uint32_t_byteorder_swap(h[i]);
251
252 memcpy(output + i * sizeof(uint32_t), &h[i], sizeof(uint32_t));
253 }
254
255 return EOK;
256}
257
258/** Hash-based message authentication code.
259 *
260 * @param key Cryptographic key sequence.
261 * @param key_size Size of key sequence.
262 * @param msg Message sequence.
263 * @param msg_size Size of message sequence.
264 * @param hash Output parameter for result hash.
265 * @param hash_sel Hash function selector.
266 *
267 * @return EINVAL when key or message not specified,
268 * ENOMEM when pointer for output hash result
269 * is not allocated, otherwise EOK.
270 *
271 */
272errno_t hmac(uint8_t *key, size_t key_size, uint8_t *msg, size_t msg_size,
273 uint8_t *hash, hash_func_t hash_sel)
274{
275 if ((!key) || (!msg))
276 return EINVAL;
277
278 if (!hash)
279 return ENOMEM;
280
281 uint8_t work_key[HMAC_BLOCK_LENGTH];
282 uint8_t o_key_pad[HMAC_BLOCK_LENGTH];
283 uint8_t i_key_pad[HMAC_BLOCK_LENGTH];
284 uint8_t temp_hash[hash_sel];
285 memset(work_key, 0, HMAC_BLOCK_LENGTH);
286
287 if (key_size > HMAC_BLOCK_LENGTH)
288 create_hash(key, key_size, work_key, hash_sel);
289 else
290 memcpy(work_key, key, key_size);
291
292 for (size_t i = 0; i < HMAC_BLOCK_LENGTH; i++) {
293 o_key_pad[i] = work_key[i] ^ 0x5c;
294 i_key_pad[i] = work_key[i] ^ 0x36;
295 }
296
297 uint8_t temp_work[HMAC_BLOCK_LENGTH + max(msg_size, hash_sel)];
298 memcpy(temp_work, i_key_pad, HMAC_BLOCK_LENGTH);
299 memcpy(temp_work + HMAC_BLOCK_LENGTH, msg, msg_size);
300
301 create_hash(temp_work, HMAC_BLOCK_LENGTH + msg_size, temp_hash,
302 hash_sel);
303
304 memcpy(temp_work, o_key_pad, HMAC_BLOCK_LENGTH);
305 memcpy(temp_work + HMAC_BLOCK_LENGTH, temp_hash, hash_sel);
306
307 create_hash(temp_work, HMAC_BLOCK_LENGTH + hash_sel, hash, hash_sel);
308
309 return EOK;
310}
311
312/** Password-Based Key Derivation Function 2.
313 *
314 * As defined in RFC 2898, using HMAC-SHA1 with 4096 iterations
315 * and 32 bytes key result used for WPA/WPA2.
316 *
317 * @param pass Password sequence.
318 * @param pass_size Password sequence length.
319 * @param salt Salt sequence to be used with password.
320 * @param salt_size Salt sequence length.
321 * @param hash Output parameter for result hash (32 byte value).
322 *
323 * @return EINVAL when pass or salt not specified,
324 * ENOMEM when pointer for output hash result
325 * is not allocated, otherwise EOK.
326 *
327 */
328errno_t pbkdf2(uint8_t *pass, size_t pass_size, uint8_t *salt, size_t salt_size,
329 uint8_t *hash)
330{
331 if ((!pass) || (!salt))
332 return EINVAL;
333
334 if (!hash)
335 return ENOMEM;
336
337 uint8_t work_salt[salt_size + 4];
338 memcpy(work_salt, salt, salt_size);
339 uint8_t work_hmac[HASH_SHA1];
340 uint8_t temp_hmac[HASH_SHA1];
341 uint8_t xor_hmac[HASH_SHA1];
342 uint8_t temp_hash[HASH_SHA1 * 2];
343
344 for (size_t i = 0; i < 2; i++) {
345 uint32_t be_i = host2uint32_t_be(i + 1);
346
347 memcpy(work_salt + salt_size, &be_i, 4);
348 hmac(pass, pass_size, work_salt, salt_size + 4,
349 work_hmac, HASH_SHA1);
350 memcpy(xor_hmac, work_hmac, HASH_SHA1);
351
352 for (size_t k = 1; k < 4096; k++) {
353 memcpy(temp_hmac, work_hmac, HASH_SHA1);
354 hmac(pass, pass_size, temp_hmac, HASH_SHA1,
355 work_hmac, HASH_SHA1);
356
357 for (size_t t = 0; t < HASH_SHA1; t++)
358 xor_hmac[t] ^= work_hmac[t];
359 }
360
361 memcpy(temp_hash + i * HASH_SHA1, xor_hmac, HASH_SHA1);
362 }
363
364 memcpy(hash, temp_hash, PBKDF2_KEY_LENGTH);
365
366 return EOK;
367}
Note: See TracBrowser for help on using the repository browser.