1 | /*
|
---|
2 | * Copyright (c) 2015 Jan Kolarik
|
---|
3 | * All rights reserved.
|
---|
4 | *
|
---|
5 | * Redistribution and use in source and binary forms, with or without
|
---|
6 | * modification, are permitted provided that the following conditions
|
---|
7 | * are met:
|
---|
8 | *
|
---|
9 | * - Redistributions of source code must retain the above copyright
|
---|
10 | * notice, this list of conditions and the following disclaimer.
|
---|
11 | * - Redistributions in binary form must reproduce the above copyright
|
---|
12 | * notice, this list of conditions and the following disclaimer in the
|
---|
13 | * documentation and/or other materials provided with the distribution.
|
---|
14 | * - The name of the author may not be used to endorse or promote products
|
---|
15 | * derived from this software without specific prior written permission.
|
---|
16 | *
|
---|
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
27 | */
|
---|
28 |
|
---|
29 | /** @file crypto.c
|
---|
30 | *
|
---|
31 | * Cryptographic functions library.
|
---|
32 | */
|
---|
33 |
|
---|
34 | #include <assert.h>
|
---|
35 | #include <str.h>
|
---|
36 | #include <macros.h>
|
---|
37 | #include <errno.h>
|
---|
38 | #include <byteorder.h>
|
---|
39 | #include <limits.h>
|
---|
40 | #include "crypto.h"
|
---|
41 |
|
---|
42 | /** Hash function procedure definition. */
|
---|
43 | typedef void (*hash_fnc_t)(uint32_t *, uint32_t *);
|
---|
44 |
|
---|
45 | /** Length of HMAC block. */
|
---|
46 | #define HMAC_BLOCK_LENGTH 64
|
---|
47 |
|
---|
48 | /** Ceiling for uint32_t. */
|
---|
49 | #define ceil_uint32(val) \
|
---|
50 | (((val) - (uint32_t) (val)) > 0 ? \
|
---|
51 | (uint32_t) ((val) + 1) : (uint32_t) (val))
|
---|
52 |
|
---|
53 | /** Floor for uint32_t. */
|
---|
54 | #define floor_uint32(val) \
|
---|
55 | (((val) - (uint32_t) (val)) < 0 ? \
|
---|
56 | (uint32_t) ((val) - 1) : (uint32_t) (val))
|
---|
57 |
|
---|
58 | /** Pick value at specified index from array or zero if out of bounds. */
|
---|
59 | #define get_at(input, size, i) \
|
---|
60 | ((i) < (size) ? (input[i]) : 0)
|
---|
61 |
|
---|
62 | /** Init values used in SHA1 and MD5 functions. */
|
---|
63 | static const uint32_t hash_init[] = {
|
---|
64 | 0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0
|
---|
65 | };
|
---|
66 |
|
---|
67 | /** Shift amount array for MD5 algorithm. */
|
---|
68 | static const uint32_t md5_shift[] = {
|
---|
69 | 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22,
|
---|
70 | 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20,
|
---|
71 | 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23,
|
---|
72 | 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21
|
---|
73 | };
|
---|
74 |
|
---|
75 | /** Substitution box for MD5 algorithm. */
|
---|
76 | static const uint32_t md5_sbox[] = {
|
---|
77 | 0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee,
|
---|
78 | 0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501,
|
---|
79 | 0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be,
|
---|
80 | 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821,
|
---|
81 | 0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa,
|
---|
82 | 0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8,
|
---|
83 | 0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed,
|
---|
84 | 0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a,
|
---|
85 | 0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c,
|
---|
86 | 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70,
|
---|
87 | 0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x04881d05,
|
---|
88 | 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665,
|
---|
89 | 0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039,
|
---|
90 | 0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1,
|
---|
91 | 0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1,
|
---|
92 | 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391
|
---|
93 | };
|
---|
94 |
|
---|
95 | /** Working procedure of MD5 cryptographic hash function.
|
---|
96 | *
|
---|
97 | * @param h Working array with interim hash parts values.
|
---|
98 | * @param sched_arr Input array with scheduled values from input string.
|
---|
99 | *
|
---|
100 | */
|
---|
101 | static void md5_proc(uint32_t *h, uint32_t *sched_arr)
|
---|
102 | {
|
---|
103 | uint32_t f, g, temp;
|
---|
104 | uint32_t w[HASH_MD5 / 4];
|
---|
105 |
|
---|
106 | memcpy(w, h, (HASH_MD5 / 4) * sizeof(uint32_t));
|
---|
107 |
|
---|
108 | for (size_t k = 0; k < 64; k++) {
|
---|
109 | if (k < 16) {
|
---|
110 | f = (w[1] & w[2]) | (~w[1] & w[3]);
|
---|
111 | g = k;
|
---|
112 | } else if ((k >= 16) && (k < 32)) {
|
---|
113 | f = (w[1] & w[3]) | (w[2] & ~w[3]);
|
---|
114 | g = (5 * k + 1) % 16;
|
---|
115 | } else if ((k >= 32) && (k < 48)) {
|
---|
116 | f = w[1] ^ w[2] ^ w[3];
|
---|
117 | g = (3 * k + 5) % 16;
|
---|
118 | } else {
|
---|
119 | f = w[2] ^ (w[1] | ~w[3]);
|
---|
120 | g = 7 * k % 16;
|
---|
121 | }
|
---|
122 |
|
---|
123 | temp = w[3];
|
---|
124 | w[3] = w[2];
|
---|
125 | w[2] = w[1];
|
---|
126 | w[1] += rotl_uint32(w[0] + f + md5_sbox[k] +
|
---|
127 | uint32_t_byteorder_swap(sched_arr[g]),
|
---|
128 | md5_shift[k]);
|
---|
129 | w[0] = temp;
|
---|
130 | }
|
---|
131 |
|
---|
132 | for (uint8_t k = 0; k < HASH_MD5 / 4; k++)
|
---|
133 | h[k] += w[k];
|
---|
134 | }
|
---|
135 |
|
---|
136 | /** Working procedure of SHA-1 cryptographic hash function.
|
---|
137 | *
|
---|
138 | * @param h Working array with interim hash parts values.
|
---|
139 | * @param sched_arr Input array with scheduled values from input string.
|
---|
140 | *
|
---|
141 | */
|
---|
142 | static void sha1_proc(uint32_t *h, uint32_t *sched_arr)
|
---|
143 | {
|
---|
144 | uint32_t f, cf, temp;
|
---|
145 | uint32_t w[HASH_SHA1 / 4];
|
---|
146 |
|
---|
147 | for (size_t k = 16; k < 80; k++) {
|
---|
148 | sched_arr[k] = rotl_uint32(
|
---|
149 | sched_arr[k - 3] ^
|
---|
150 | sched_arr[k - 8] ^
|
---|
151 | sched_arr[k - 14] ^
|
---|
152 | sched_arr[k - 16],
|
---|
153 | 1);
|
---|
154 | }
|
---|
155 |
|
---|
156 | memcpy(w, h, (HASH_SHA1 / 4) * sizeof(uint32_t));
|
---|
157 |
|
---|
158 | for (size_t k = 0; k < 80; k++) {
|
---|
159 | if (k < 20) {
|
---|
160 | f = (w[1] & w[2]) | (~w[1] & w[3]);
|
---|
161 | cf = 0x5A827999;
|
---|
162 | } else if ((k >= 20) && (k < 40)) {
|
---|
163 | f = w[1] ^ w[2] ^ w[3];
|
---|
164 | cf = 0x6ed9eba1;
|
---|
165 | } else if ((k >= 40) && (k < 60)) {
|
---|
166 | f = (w[1] & w[2]) | (w[1] & w[3]) | (w[2] & w[3]);
|
---|
167 | cf = 0x8f1bbcdc;
|
---|
168 | } else {
|
---|
169 | f = w[1] ^ w[2] ^ w[3];
|
---|
170 | cf = 0xca62c1d6;
|
---|
171 | }
|
---|
172 |
|
---|
173 | temp = rotl_uint32(w[0], 5) + f + w[4] + cf + sched_arr[k];
|
---|
174 |
|
---|
175 | w[4] = w[3];
|
---|
176 | w[3] = w[2];
|
---|
177 | w[2] = rotl_uint32(w[1], 30);
|
---|
178 | w[1] = w[0];
|
---|
179 | w[0] = temp;
|
---|
180 | }
|
---|
181 |
|
---|
182 | for (uint8_t k = 0; k < HASH_SHA1 / 4; k++)
|
---|
183 | h[k] += w[k];
|
---|
184 | }
|
---|
185 |
|
---|
186 | /** Create hash based on selected algorithm.
|
---|
187 | *
|
---|
188 | * @param input Input message byte sequence.
|
---|
189 | * @param input_size Size of message sequence.
|
---|
190 | * @param output Result hash byte sequence.
|
---|
191 | * @param hash_sel Hash function selector.
|
---|
192 | *
|
---|
193 | * @return EINVAL when input not specified,
|
---|
194 | * ENOMEM when pointer for output hash result
|
---|
195 | * is not allocated, otherwise EOK.
|
---|
196 | *
|
---|
197 | */
|
---|
198 | errno_t create_hash(uint8_t *input, size_t input_size, uint8_t *output,
|
---|
199 | hash_func_t hash_sel)
|
---|
200 | {
|
---|
201 | assert(input_size < SSIZE_MAX);
|
---|
202 |
|
---|
203 | if (!input)
|
---|
204 | return EINVAL;
|
---|
205 |
|
---|
206 | if (!output)
|
---|
207 | return ENOMEM;
|
---|
208 |
|
---|
209 | hash_fnc_t hash_func = (hash_sel == HASH_MD5) ? md5_proc : sha1_proc;
|
---|
210 |
|
---|
211 | /* Prepare scheduled input. */
|
---|
212 | uint8_t work_input[input_size + 1];
|
---|
213 | memcpy(work_input, input, input_size);
|
---|
214 | work_input[input_size] = 0x80;
|
---|
215 |
|
---|
216 | // FIXME: double?
|
---|
217 | size_t blocks = ceil_uint32((((double) input_size + 1) / 4 + 2) / 16);
|
---|
218 | uint32_t work_arr[blocks * 16];
|
---|
219 | for (size_t i = 0; i < blocks; i++) {
|
---|
220 | for (size_t j = 0; j < 16; j++) {
|
---|
221 | work_arr[i * 16 + j] =
|
---|
222 | (get_at(work_input, input_size + 1, i * 64 + j * 4) << 24) |
|
---|
223 | (get_at(work_input, input_size + 1, i * 64 + j * 4 + 1) << 16) |
|
---|
224 | (get_at(work_input, input_size + 1, i * 64 + j * 4 + 2) << 8) |
|
---|
225 | get_at(work_input, input_size + 1, i * 64 + j * 4 + 3);
|
---|
226 | }
|
---|
227 | }
|
---|
228 |
|
---|
229 | uint64_t bits_size = (uint64_t) (input_size * 8);
|
---|
230 | if (hash_sel == HASH_MD5)
|
---|
231 | bits_size = uint64_t_byteorder_swap(bits_size);
|
---|
232 |
|
---|
233 | work_arr[(blocks - 1) * 16 + 14] = bits_size >> 32;
|
---|
234 | work_arr[(blocks - 1) * 16 + 15] = bits_size & 0xffffffff;
|
---|
235 |
|
---|
236 | /* Hash computation. */
|
---|
237 | uint32_t h[hash_sel / 4];
|
---|
238 | memcpy(h, hash_init, (hash_sel / 4) * sizeof(uint32_t));
|
---|
239 | uint32_t sched_arr[80];
|
---|
240 | for (size_t i = 0; i < blocks; i++) {
|
---|
241 | for (size_t k = 0; k < 16; k++)
|
---|
242 | sched_arr[k] = work_arr[i * 16 + k];
|
---|
243 |
|
---|
244 | hash_func(h, sched_arr);
|
---|
245 | }
|
---|
246 |
|
---|
247 | /* Copy hash parts into final result. */
|
---|
248 | for (size_t i = 0; i < hash_sel / 4; i++) {
|
---|
249 | if (hash_sel == HASH_SHA1)
|
---|
250 | h[i] = uint32_t_byteorder_swap(h[i]);
|
---|
251 |
|
---|
252 | memcpy(output + i * sizeof(uint32_t), &h[i], sizeof(uint32_t));
|
---|
253 | }
|
---|
254 |
|
---|
255 | return EOK;
|
---|
256 | }
|
---|
257 |
|
---|
258 | /** Hash-based message authentication code.
|
---|
259 | *
|
---|
260 | * @param key Cryptographic key sequence.
|
---|
261 | * @param key_size Size of key sequence.
|
---|
262 | * @param msg Message sequence.
|
---|
263 | * @param msg_size Size of message sequence.
|
---|
264 | * @param hash Output parameter for result hash.
|
---|
265 | * @param hash_sel Hash function selector.
|
---|
266 | *
|
---|
267 | * @return EINVAL when key or message not specified,
|
---|
268 | * ENOMEM when pointer for output hash result
|
---|
269 | * is not allocated, otherwise EOK.
|
---|
270 | *
|
---|
271 | */
|
---|
272 | errno_t hmac(uint8_t *key, size_t key_size, uint8_t *msg, size_t msg_size,
|
---|
273 | uint8_t *hash, hash_func_t hash_sel)
|
---|
274 | {
|
---|
275 | if ((!key) || (!msg))
|
---|
276 | return EINVAL;
|
---|
277 |
|
---|
278 | if (!hash)
|
---|
279 | return ENOMEM;
|
---|
280 |
|
---|
281 | uint8_t work_key[HMAC_BLOCK_LENGTH];
|
---|
282 | uint8_t o_key_pad[HMAC_BLOCK_LENGTH];
|
---|
283 | uint8_t i_key_pad[HMAC_BLOCK_LENGTH];
|
---|
284 | uint8_t temp_hash[hash_sel];
|
---|
285 | memset(work_key, 0, HMAC_BLOCK_LENGTH);
|
---|
286 |
|
---|
287 | if (key_size > HMAC_BLOCK_LENGTH)
|
---|
288 | create_hash(key, key_size, work_key, hash_sel);
|
---|
289 | else
|
---|
290 | memcpy(work_key, key, key_size);
|
---|
291 |
|
---|
292 | for (size_t i = 0; i < HMAC_BLOCK_LENGTH; i++) {
|
---|
293 | o_key_pad[i] = work_key[i] ^ 0x5c;
|
---|
294 | i_key_pad[i] = work_key[i] ^ 0x36;
|
---|
295 | }
|
---|
296 |
|
---|
297 | uint8_t temp_work[HMAC_BLOCK_LENGTH + max(msg_size, hash_sel)];
|
---|
298 | memcpy(temp_work, i_key_pad, HMAC_BLOCK_LENGTH);
|
---|
299 | memcpy(temp_work + HMAC_BLOCK_LENGTH, msg, msg_size);
|
---|
300 |
|
---|
301 | create_hash(temp_work, HMAC_BLOCK_LENGTH + msg_size, temp_hash,
|
---|
302 | hash_sel);
|
---|
303 |
|
---|
304 | memcpy(temp_work, o_key_pad, HMAC_BLOCK_LENGTH);
|
---|
305 | memcpy(temp_work + HMAC_BLOCK_LENGTH, temp_hash, hash_sel);
|
---|
306 |
|
---|
307 | create_hash(temp_work, HMAC_BLOCK_LENGTH + hash_sel, hash, hash_sel);
|
---|
308 |
|
---|
309 | return EOK;
|
---|
310 | }
|
---|
311 |
|
---|
312 | /** Password-Based Key Derivation Function 2.
|
---|
313 | *
|
---|
314 | * As defined in RFC 2898, using HMAC-SHA1 with 4096 iterations
|
---|
315 | * and 32 bytes key result used for WPA/WPA2.
|
---|
316 | *
|
---|
317 | * @param pass Password sequence.
|
---|
318 | * @param pass_size Password sequence length.
|
---|
319 | * @param salt Salt sequence to be used with password.
|
---|
320 | * @param salt_size Salt sequence length.
|
---|
321 | * @param hash Output parameter for result hash (32 byte value).
|
---|
322 | *
|
---|
323 | * @return EINVAL when pass or salt not specified,
|
---|
324 | * ENOMEM when pointer for output hash result
|
---|
325 | * is not allocated, otherwise EOK.
|
---|
326 | *
|
---|
327 | */
|
---|
328 | errno_t pbkdf2(uint8_t *pass, size_t pass_size, uint8_t *salt, size_t salt_size,
|
---|
329 | uint8_t *hash)
|
---|
330 | {
|
---|
331 | if ((!pass) || (!salt))
|
---|
332 | return EINVAL;
|
---|
333 |
|
---|
334 | if (!hash)
|
---|
335 | return ENOMEM;
|
---|
336 |
|
---|
337 | uint8_t work_salt[salt_size + 4];
|
---|
338 | memcpy(work_salt, salt, salt_size);
|
---|
339 | uint8_t work_hmac[HASH_SHA1];
|
---|
340 | uint8_t temp_hmac[HASH_SHA1];
|
---|
341 | uint8_t xor_hmac[HASH_SHA1];
|
---|
342 | uint8_t temp_hash[HASH_SHA1 * 2];
|
---|
343 |
|
---|
344 | for (size_t i = 0; i < 2; i++) {
|
---|
345 | uint32_t be_i = host2uint32_t_be(i + 1);
|
---|
346 |
|
---|
347 | memcpy(work_salt + salt_size, &be_i, 4);
|
---|
348 | hmac(pass, pass_size, work_salt, salt_size + 4,
|
---|
349 | work_hmac, HASH_SHA1);
|
---|
350 | memcpy(xor_hmac, work_hmac, HASH_SHA1);
|
---|
351 |
|
---|
352 | for (size_t k = 1; k < 4096; k++) {
|
---|
353 | memcpy(temp_hmac, work_hmac, HASH_SHA1);
|
---|
354 | hmac(pass, pass_size, temp_hmac, HASH_SHA1,
|
---|
355 | work_hmac, HASH_SHA1);
|
---|
356 |
|
---|
357 | for (size_t t = 0; t < HASH_SHA1; t++)
|
---|
358 | xor_hmac[t] ^= work_hmac[t];
|
---|
359 | }
|
---|
360 |
|
---|
361 | memcpy(temp_hash + i * HASH_SHA1, xor_hmac, HASH_SHA1);
|
---|
362 | }
|
---|
363 |
|
---|
364 | memcpy(hash, temp_hash, PBKDF2_KEY_LENGTH);
|
---|
365 |
|
---|
366 | return EOK;
|
---|
367 | }
|
---|