/* * Copyright (c) 2015 Jan Kolarik * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * - The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** @file crypto.c * * Cryptographic functions library. */ #include #include #include #include #include #include #include "crypto.h" /** Hash function procedure definition. */ typedef void (*hash_fnc_t)(uint32_t *, uint32_t *); /** Length of HMAC block. */ #define HMAC_BLOCK_LENGTH 64 /** Ceiling for uint32_t. */ #define ceil_uint32(val) \ (((val) - (uint32_t) (val)) > 0 ? \ (uint32_t) ((val) + 1) : (uint32_t) (val)) /** Floor for uint32_t. */ #define floor_uint32(val) \ (((val) - (uint32_t) (val)) < 0 ? \ (uint32_t) ((val) - 1) : (uint32_t) (val)) /** Pick value at specified index from array or zero if out of bounds. */ #define get_at(input, size, i) \ ((i) < (size) ? (input[i]) : 0) /** Init values used in SHA1 and MD5 functions. */ static const uint32_t hash_init[] = { 0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0 }; /** Shift amount array for MD5 algorithm. */ static const uint32_t md5_shift[] = { 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21 }; /** Substitution box for MD5 algorithm. */ static const uint32_t md5_sbox[] = { 0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee, 0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501, 0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be, 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821, 0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa, 0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8, 0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed, 0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a, 0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c, 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70, 0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x04881d05, 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665, 0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039, 0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1, 0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1, 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391 }; /** Working procedure of MD5 cryptographic hash function. * * @param h Working array with interim hash parts values. * @param sched_arr Input array with scheduled values from input string. * */ static void md5_proc(uint32_t *h, uint32_t *sched_arr) { uint32_t f, g, temp; uint32_t w[HASH_MD5 / 4]; memcpy(w, h, (HASH_MD5 / 4) * sizeof(uint32_t)); for (size_t k = 0; k < 64; k++) { if (k < 16) { f = (w[1] & w[2]) | (~w[1] & w[3]); g = k; } else if ((k >= 16) && (k < 32)) { f = (w[1] & w[3]) | (w[2] & ~w[3]); g = (5 * k + 1) % 16; } else if ((k >= 32) && (k < 48)) { f = w[1] ^ w[2] ^ w[3]; g = (3 * k + 5) % 16; } else { f = w[2] ^ (w[1] | ~w[3]); g = 7 * k % 16; } temp = w[3]; w[3] = w[2]; w[2] = w[1]; w[1] += rotl_uint32(w[0] + f + md5_sbox[k] + uint32_t_byteorder_swap(sched_arr[g]), md5_shift[k]); w[0] = temp; } for (uint8_t k = 0; k < HASH_MD5 / 4; k++) h[k] += w[k]; } /** Working procedure of SHA-1 cryptographic hash function. * * @param h Working array with interim hash parts values. * @param sched_arr Input array with scheduled values from input string. * */ static void sha1_proc(uint32_t *h, uint32_t *sched_arr) { uint32_t f, cf, temp; uint32_t w[HASH_SHA1 / 4]; for (size_t k = 16; k < 80; k++) { sched_arr[k] = rotl_uint32( sched_arr[k - 3] ^ sched_arr[k - 8] ^ sched_arr[k - 14] ^ sched_arr[k - 16], 1); } memcpy(w, h, (HASH_SHA1 / 4) * sizeof(uint32_t)); for (size_t k = 0; k < 80; k++) { if (k < 20) { f = (w[1] & w[2]) | (~w[1] & w[3]); cf = 0x5A827999; } else if ((k >= 20) && (k < 40)) { f = w[1] ^ w[2] ^ w[3]; cf = 0x6ed9eba1; } else if ((k >= 40) && (k < 60)) { f = (w[1] & w[2]) | (w[1] & w[3]) | (w[2] & w[3]); cf = 0x8f1bbcdc; } else { f = w[1] ^ w[2] ^ w[3]; cf = 0xca62c1d6; } temp = rotl_uint32(w[0], 5) + f + w[4] + cf + sched_arr[k]; w[4] = w[3]; w[3] = w[2]; w[2] = rotl_uint32(w[1], 30); w[1] = w[0]; w[0] = temp; } for (uint8_t k = 0; k < HASH_SHA1 / 4; k++) h[k] += w[k]; } /** Create hash based on selected algorithm. * * @param input Input message byte sequence. * @param input_size Size of message sequence. * @param output Result hash byte sequence. * @param hash_sel Hash function selector. * * @return EINVAL when input not specified, * ENOMEM when pointer for output hash result * is not allocated, otherwise EOK. * */ errno_t create_hash(uint8_t *input, size_t input_size, uint8_t *output, hash_func_t hash_sel) { assert(input_size < SSIZE_MAX); if (!input) return EINVAL; if (!output) return ENOMEM; hash_fnc_t hash_func = (hash_sel == HASH_MD5) ? md5_proc : sha1_proc; /* Prepare scheduled input. */ uint8_t work_input[input_size + 1]; memcpy(work_input, input, input_size); work_input[input_size] = 0x80; // FIXME: double? size_t blocks = ceil_uint32((((double) input_size + 1) / 4 + 2) / 16); uint32_t work_arr[blocks * 16]; for (size_t i = 0; i < blocks; i++) { for (size_t j = 0; j < 16; j++) { work_arr[i * 16 + j] = (get_at(work_input, input_size + 1, i * 64 + j * 4) << 24) | (get_at(work_input, input_size + 1, i * 64 + j * 4 + 1) << 16) | (get_at(work_input, input_size + 1, i * 64 + j * 4 + 2) << 8) | get_at(work_input, input_size + 1, i * 64 + j * 4 + 3); } } uint64_t bits_size = (uint64_t) (input_size * 8); if (hash_sel == HASH_MD5) bits_size = uint64_t_byteorder_swap(bits_size); work_arr[(blocks - 1) * 16 + 14] = bits_size >> 32; work_arr[(blocks - 1) * 16 + 15] = bits_size & 0xffffffff; /* Hash computation. */ uint32_t h[hash_sel / 4]; memcpy(h, hash_init, (hash_sel / 4) * sizeof(uint32_t)); uint32_t sched_arr[80]; for (size_t i = 0; i < blocks; i++) { for (size_t k = 0; k < 16; k++) sched_arr[k] = work_arr[i * 16 + k]; hash_func(h, sched_arr); } /* Copy hash parts into final result. */ for (size_t i = 0; i < hash_sel / 4; i++) { if (hash_sel == HASH_SHA1) h[i] = uint32_t_byteorder_swap(h[i]); memcpy(output + i * sizeof(uint32_t), &h[i], sizeof(uint32_t)); } return EOK; } /** Hash-based message authentication code. * * @param key Cryptographic key sequence. * @param key_size Size of key sequence. * @param msg Message sequence. * @param msg_size Size of message sequence. * @param hash Output parameter for result hash. * @param hash_sel Hash function selector. * * @return EINVAL when key or message not specified, * ENOMEM when pointer for output hash result * is not allocated, otherwise EOK. * */ errno_t hmac(uint8_t *key, size_t key_size, uint8_t *msg, size_t msg_size, uint8_t *hash, hash_func_t hash_sel) { if ((!key) || (!msg)) return EINVAL; if (!hash) return ENOMEM; uint8_t work_key[HMAC_BLOCK_LENGTH]; uint8_t o_key_pad[HMAC_BLOCK_LENGTH]; uint8_t i_key_pad[HMAC_BLOCK_LENGTH]; uint8_t temp_hash[hash_sel]; memset(work_key, 0, HMAC_BLOCK_LENGTH); if (key_size > HMAC_BLOCK_LENGTH) create_hash(key, key_size, work_key, hash_sel); else memcpy(work_key, key, key_size); for (size_t i = 0; i < HMAC_BLOCK_LENGTH; i++) { o_key_pad[i] = work_key[i] ^ 0x5c; i_key_pad[i] = work_key[i] ^ 0x36; } uint8_t temp_work[HMAC_BLOCK_LENGTH + max(msg_size, hash_sel)]; memcpy(temp_work, i_key_pad, HMAC_BLOCK_LENGTH); memcpy(temp_work + HMAC_BLOCK_LENGTH, msg, msg_size); create_hash(temp_work, HMAC_BLOCK_LENGTH + msg_size, temp_hash, hash_sel); memcpy(temp_work, o_key_pad, HMAC_BLOCK_LENGTH); memcpy(temp_work + HMAC_BLOCK_LENGTH, temp_hash, hash_sel); create_hash(temp_work, HMAC_BLOCK_LENGTH + hash_sel, hash, hash_sel); return EOK; } /** Password-Based Key Derivation Function 2. * * As defined in RFC 2898, using HMAC-SHA1 with 4096 iterations * and 32 bytes key result used for WPA/WPA2. * * @param pass Password sequence. * @param pass_size Password sequence length. * @param salt Salt sequence to be used with password. * @param salt_size Salt sequence length. * @param hash Output parameter for result hash (32 byte value). * * @return EINVAL when pass or salt not specified, * ENOMEM when pointer for output hash result * is not allocated, otherwise EOK. * */ errno_t pbkdf2(uint8_t *pass, size_t pass_size, uint8_t *salt, size_t salt_size, uint8_t *hash) { if ((!pass) || (!salt)) return EINVAL; if (!hash) return ENOMEM; uint8_t work_salt[salt_size + 4]; memcpy(work_salt, salt, salt_size); uint8_t work_hmac[HASH_SHA1]; uint8_t temp_hmac[HASH_SHA1]; uint8_t xor_hmac[HASH_SHA1]; uint8_t temp_hash[HASH_SHA1 * 2]; for (size_t i = 0; i < 2; i++) { uint32_t be_i = host2uint32_t_be(i + 1); memcpy(work_salt + salt_size, &be_i, 4); hmac(pass, pass_size, work_salt, salt_size + 4, work_hmac, HASH_SHA1); memcpy(xor_hmac, work_hmac, HASH_SHA1); for (size_t k = 1; k < 4096; k++) { memcpy(temp_hmac, work_hmac, HASH_SHA1); hmac(pass, pass_size, temp_hmac, HASH_SHA1, work_hmac, HASH_SHA1); for (size_t t = 0; t < HASH_SHA1; t++) xor_hmac[t] ^= work_hmac[t]; } memcpy(temp_hash + i * HASH_SHA1, xor_hmac, HASH_SHA1); } memcpy(hash, temp_hash, PBKDF2_KEY_LENGTH); return EOK; }