source: mainline/uspace/lib/crypto/crypto.c@ cc575ef9

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since cc575ef9 was cc575ef9, checked in by Jan Kolarik <kolarik@…>, 10 years ago

Appending Michael MIC footer in TKIP communication, tested MIC algorithm itself, but needs testing on real data transmission

  • Property mode set to 100644
File size: 10.3 KB
RevLine 
[1dcc0b9]1/*
2 * Copyright (c) 2015 Jan Kolarik
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @file crypto.c
30 *
31 * Cryptographic functions library.
32 */
33
34#include <unistd.h>
35#include <str.h>
36#include <macros.h>
37#include <errno.h>
38#include <byteorder.h>
39
40#include "crypto.h"
41
[d7dadcb4]42/* Hash function procedure definition. */
43typedef void (*HASH_FUNC)(uint32_t*, uint32_t*);
[1dcc0b9]44
[d7dadcb4]45/* Length of HMAC block. */
46#define HMAC_BLOCK_LENGTH 64
47
48/* Ceiling for UINT32. */
[1dcc0b9]49#define ceil_uint32(val) (((val) - (uint32_t)(val)) > 0 ? \
50 (uint32_t)((val) + 1) : (uint32_t)(val))
[d7dadcb4]51
52/* Floor for UINT32. */
[1dcc0b9]53#define floor_uint32(val) (((val) - (uint32_t)(val)) < 0 ? \
54 (uint32_t)((val) - 1) : (uint32_t)(val))
[d7dadcb4]55
56/* Pick value at specified index from array or zero if out of bounds. */
[1dcc0b9]57#define get_at(input, size, i) (i < size ? input[i] : 0)
58
[d7dadcb4]59/* Init values used in SHA1 and MD5 functions. */
60static const uint32_t hash_init[] = {
61 0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0
62};
63
64/* Shift amount array for MD5 algorithm. */
65static const uint32_t md5_shift[] = {
66 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22,
67 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20,
68 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23,
69 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21
70};
71
72/* Substitution box for MD5 algorithm. */
73static const uint32_t md5_sbox[] = {
74 0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee,
75 0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501,
76 0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be,
77 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821,
78 0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa,
79 0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8,
80 0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed,
81 0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a,
82 0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c,
83 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70,
84 0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x04881d05,
85 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665,
86 0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039,
87 0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1,
88 0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1,
89 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391
90};
91
[1dcc0b9]92/**
[d7dadcb4]93 * Working procedure of MD5 cryptographic hash function.
[1dcc0b9]94 *
[d7dadcb4]95 * @param h Working array with interim hash parts values.
96 * @param sched_arr Input array with scheduled values from input string.
[1dcc0b9]97 */
[d7dadcb4]98static void md5_proc(uint32_t *h, uint32_t *sched_arr)
[1dcc0b9]99{
[d7dadcb4]100 uint32_t f, g, temp;
101 uint32_t w[HASH_MD5/4];
102
103 memcpy(w, h, (HASH_MD5/4) * sizeof(uint32_t));
104
105 for(size_t k = 0; k < 64; k++) {
106 if(k < 16) {
107 f = (w[1] & w[2]) | (~w[1] & w[3]);
108 g = k;
109 } else if(k >= 16 && k < 32) {
110 f = (w[1] & w[3]) | (w[2] & ~w[3]);
111 g = (5*k + 1) % 16;
112 } else if(k >= 32 && k < 48) {
113 f = w[1] ^ w[2] ^ w[3];
114 g = (3*k + 5) % 16;
115 } else {
116 f = w[2] ^ (w[1] | ~w[3]);
117 g = 7*k % 16;
118 }
119 temp = w[3];
120 w[3] = w[2];
121 w[2] = w[1];
122 w[1] += rotl_uint32(w[0] + f + md5_sbox[k] +
123 uint32_t_byteorder_swap(sched_arr[g]),
124 md5_shift[k]);
125 w[0] = temp;
[1dcc0b9]126 }
[d7dadcb4]127
128 for(uint8_t k = 0; k < HASH_MD5/4; k++)
129 h[k] += w[k];
[1dcc0b9]130}
131
132/**
[d7dadcb4]133 * Working procedure of SHA-1 cryptographic hash function.
[1dcc0b9]134 *
[d7dadcb4]135 * @param h Working array with interim hash parts values.
136 * @param sched_arr Input array with scheduled values from input string.
[1dcc0b9]137 */
[d7dadcb4]138static void sha1_proc(uint32_t *h, uint32_t *sched_arr)
[1dcc0b9]139{
[d7dadcb4]140 uint32_t f, cf, temp;
141 uint32_t w[HASH_SHA1/4];
[1dcc0b9]142
[d7dadcb4]143 for(size_t k = 16; k < 80; k++) {
144 sched_arr[k] = rotl_uint32(
145 sched_arr[k-3] ^
146 sched_arr[k-8] ^
147 sched_arr[k-14] ^
148 sched_arr[k-16],
149 1);
150 }
151
152 memcpy(w, h, (HASH_SHA1/4) * sizeof(uint32_t));
[1dcc0b9]153
[d7dadcb4]154 for(size_t k = 0; k < 80; k++) {
155 if(k < 20) {
156 f = (w[1] & w[2]) | (~w[1] & w[3]);
157 cf = 0x5A827999;
158 } else if(k >= 20 && k < 40) {
159 f = w[1] ^ w[2] ^ w[3];
160 cf = 0x6ED9EBA1;
161 } else if(k >= 40 && k < 60) {
162 f = (w[1] & w[2]) | (w[1] & w[3]) | (w[2] & w[3]);
163 cf = 0x8F1BBCDC;
164 } else {
165 f = w[1] ^ w[2] ^ w[3];
166 cf = 0xCA62C1D6;
167 }
168
169 temp = rotl_uint32(w[0], 5) + f + w[4] + cf + sched_arr[k];
170
171 w[4] = w[3];
172 w[3] = w[2];
173 w[2] = rotl_uint32(w[1], 30);
174 w[1] = w[0];
175 w[0] = temp;
176 }
177
178 for(uint8_t k = 0; k < HASH_SHA1/4; k++)
179 h[k] += w[k];
[1dcc0b9]180}
181
182/**
[d7dadcb4]183 * Create hash based on selected algorithm.
[1dcc0b9]184 *
[d7dadcb4]185 * @param input Input message byte sequence.
186 * @param input_size Size of message sequence.
187 * @param output Result hash byte sequence.
188 * @param hash_sel Hash function selector.
[1dcc0b9]189 *
[d7dadcb4]190 * @return EINVAL when input not specified, ENOMEM when pointer for
191 * output hash result is not allocated, otherwise EOK.
[1dcc0b9]192 */
[d7dadcb4]193int create_hash(uint8_t *input, size_t input_size, uint8_t *output,
194 hash_func_t hash_sel)
[1dcc0b9]195{
196 if(!input)
197 return EINVAL;
198
[d7dadcb4]199 if(!output)
[1dcc0b9]200 return ENOMEM;
201
[d7dadcb4]202 HASH_FUNC hash_func = (hash_sel == HASH_MD5) ? md5_proc : sha1_proc;
[1dcc0b9]203
[d7dadcb4]204 /* Prepare scheduled input. */
[1dcc0b9]205 uint8_t work_input[input_size + 1];
206 memcpy(work_input, input, input_size);
207 work_input[input_size] = 0x80;
208
209 size_t blocks = ceil_uint32((((double)input_size + 1) / 4 + 2) / 16);
[d7dadcb4]210 uint32_t work_arr[blocks * 16];
[1dcc0b9]211 for(size_t i = 0; i < blocks; i++) {
212 for(size_t j = 0; j < 16; j++) {
213 work_arr[i*16 + j] =
214 (get_at(work_input, input_size+1, i*64+j*4) << 24) |
215 (get_at(work_input, input_size+1, i*64+j*4+1) << 16) |
216 (get_at(work_input, input_size+1, i*64+j*4+2) << 8) |
217 get_at(work_input, input_size+1, i*64+j*4+3);
218 }
219 }
220
[d7dadcb4]221 uint64_t bits_size = (uint64_t)(input_size * 8);
222 if(hash_sel == HASH_MD5)
223 bits_size = uint64_t_byteorder_swap(bits_size);
224
225 work_arr[(blocks - 1) * 16 + 14] = bits_size >> 32;
226 work_arr[(blocks - 1) * 16 + 15] = bits_size & 0xFFFFFFFF;
227
228 /* Hash computation. */
229 uint32_t h[hash_sel/4];
230 memcpy(h, hash_init, (hash_sel/4) * sizeof(uint32_t));
231 uint32_t sched_arr[80];
[1dcc0b9]232 for(size_t i = 0; i < blocks; i++) {
233 for(size_t k = 0; k < 16; k++) {
234 sched_arr[k] = work_arr[i*16 + k];
235 }
236
[d7dadcb4]237 hash_func(h, sched_arr);
[1dcc0b9]238 }
239
[d7dadcb4]240 /* Copy hash parts into final result. */
241 for(size_t i = 0; i < hash_sel/4; i++) {
242 if(hash_sel == HASH_SHA1)
243 h[i] = uint32_t_byteorder_swap(h[i]);
244 memcpy(output + i*sizeof(uint32_t), &h[i], sizeof(uint32_t));
[1dcc0b9]245 }
246
247 return EOK;
248}
249
250/**
[a931b7b]251 * Hash-based message authentication code.
[1dcc0b9]252 *
253 * @param key Cryptographic key sequence.
254 * @param key_size Size of key sequence.
255 * @param msg Message sequence.
256 * @param msg_size Size of message sequence.
257 * @param hash Output parameter for result hash.
258 * @param hash_sel Hash function selector.
259 *
260 * @return EINVAL when key or message not specified, ENOMEM when pointer for
261 * output hash result is not allocated, otherwise EOK.
262 */
263int hmac(uint8_t *key, size_t key_size, uint8_t *msg, size_t msg_size,
264 uint8_t *hash, hash_func_t hash_sel)
265{
266 if(!key || !msg)
267 return EINVAL;
268
269 if(!hash)
270 return ENOMEM;
271
272 uint8_t work_key[HMAC_BLOCK_LENGTH];
273 uint8_t o_key_pad[HMAC_BLOCK_LENGTH];
274 uint8_t i_key_pad[HMAC_BLOCK_LENGTH];
[d7dadcb4]275 uint8_t temp_hash[hash_sel];
[1dcc0b9]276 memset(work_key, 0, HMAC_BLOCK_LENGTH);
277
278 if(key_size > HMAC_BLOCK_LENGTH) {
[d7dadcb4]279 create_hash(key, key_size, work_key, hash_sel);
[1dcc0b9]280 } else {
281 memcpy(work_key, key, key_size);
282 }
283
284 for(size_t i = 0; i < HMAC_BLOCK_LENGTH; i++) {
285 o_key_pad[i] = work_key[i] ^ 0x5C;
286 i_key_pad[i] = work_key[i] ^ 0x36;
287 }
288
[cc575ef9]289 uint8_t temp_work[HMAC_BLOCK_LENGTH + max(msg_size, hash_sel)];
[1dcc0b9]290 memcpy(temp_work, i_key_pad, HMAC_BLOCK_LENGTH);
291 memcpy(temp_work + HMAC_BLOCK_LENGTH, msg, msg_size);
292
[d7dadcb4]293 create_hash(temp_work, HMAC_BLOCK_LENGTH + msg_size, temp_hash,
294 hash_sel);
[1dcc0b9]295
296 memcpy(temp_work, o_key_pad, HMAC_BLOCK_LENGTH);
[d7dadcb4]297 memcpy(temp_work + HMAC_BLOCK_LENGTH, temp_hash, hash_sel);
[1dcc0b9]298
[d7dadcb4]299 create_hash(temp_work, HMAC_BLOCK_LENGTH + hash_sel, hash, hash_sel);
[1dcc0b9]300
301 return EOK;
302}
303
304/**
305 * Password-Based Key Derivation Function 2 as defined in RFC 2898,
306 * using HMAC-SHA1 with 4096 iterations and 32 bytes key result used
[a931b7b]307 * for WPA/WPA2.
[1dcc0b9]308 *
309 * @param pass Password sequence.
310 * @param pass_size Password sequence length.
311 * @param salt Salt sequence to be used with password.
312 * @param salt_size Salt sequence length.
313 * @param hash Output parameter for result hash (32 byte value).
314 *
315 * @return EINVAL when pass or salt not specified, ENOMEM when pointer for
316 * output hash result is not allocated, otherwise EOK.
317 */
318int pbkdf2(uint8_t *pass, size_t pass_size, uint8_t *salt, size_t salt_size,
[a931b7b]319 uint8_t *hash)
[1dcc0b9]320{
321 if(!pass || !salt)
322 return EINVAL;
323
324 if(!hash)
325 return ENOMEM;
326
[cc575ef9]327 uint8_t work_salt[salt_size + 4];
[1dcc0b9]328 memcpy(work_salt, salt, salt_size);
[a931b7b]329 uint8_t work_hmac[HASH_SHA1];
330 uint8_t temp_hmac[HASH_SHA1];
331 uint8_t xor_hmac[HASH_SHA1];
332 uint8_t temp_hash[HASH_SHA1*2];
[1dcc0b9]333
334 for(size_t i = 0; i < 2; i++) {
[cc575ef9]335 uint32_t be_i = host2uint32_t_be(i+1);
336 memcpy(work_salt + salt_size, &be_i, 4);
337 hmac(pass, pass_size, work_salt, salt_size + 4,
[a931b7b]338 work_hmac, HASH_SHA1);
339 memcpy(xor_hmac, work_hmac, HASH_SHA1);
[cc575ef9]340
[1dcc0b9]341 for(size_t k = 1; k < 4096; k++) {
[a931b7b]342 memcpy(temp_hmac, work_hmac, HASH_SHA1);
343 hmac(pass, pass_size, temp_hmac, HASH_SHA1,
344 work_hmac, HASH_SHA1);
345 for(size_t t = 0; t < HASH_SHA1; t++) {
[1dcc0b9]346 xor_hmac[t] ^= work_hmac[t];
347 }
348 }
[a931b7b]349 memcpy(temp_hash + i*HASH_SHA1, xor_hmac, HASH_SHA1);
[1dcc0b9]350 }
351
352 memcpy(hash, temp_hash, PBKDF2_KEY_LENGTH);
353
354 return EOK;
355}
Note: See TracBrowser for help on using the repository browser.