[1dcc0b9] | 1 | /*
|
---|
| 2 | * Copyright (c) 2015 Jan Kolarik
|
---|
| 3 | * All rights reserved.
|
---|
| 4 | *
|
---|
| 5 | * Redistribution and use in source and binary forms, with or without
|
---|
| 6 | * modification, are permitted provided that the following conditions
|
---|
| 7 | * are met:
|
---|
| 8 | *
|
---|
| 9 | * - Redistributions of source code must retain the above copyright
|
---|
| 10 | * notice, this list of conditions and the following disclaimer.
|
---|
| 11 | * - Redistributions in binary form must reproduce the above copyright
|
---|
| 12 | * notice, this list of conditions and the following disclaimer in the
|
---|
| 13 | * documentation and/or other materials provided with the distribution.
|
---|
| 14 | * - The name of the author may not be used to endorse or promote products
|
---|
| 15 | * derived from this software without specific prior written permission.
|
---|
| 16 | *
|
---|
| 17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
| 18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
| 19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
| 20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
| 21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
| 22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
| 23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
| 24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
| 25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
| 26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
| 27 | */
|
---|
| 28 |
|
---|
| 29 | /** @file crypto.c
|
---|
| 30 | *
|
---|
| 31 | * Cryptographic functions library.
|
---|
| 32 | */
|
---|
| 33 |
|
---|
| 34 | #include <unistd.h>
|
---|
| 35 | #include <str.h>
|
---|
| 36 | #include <macros.h>
|
---|
| 37 | #include <errno.h>
|
---|
| 38 | #include <byteorder.h>
|
---|
| 39 |
|
---|
| 40 | #include "crypto.h"
|
---|
| 41 |
|
---|
[d7dadcb4] | 42 | /* Hash function procedure definition. */
|
---|
| 43 | typedef void (*HASH_FUNC)(uint32_t*, uint32_t*);
|
---|
[1dcc0b9] | 44 |
|
---|
[d7dadcb4] | 45 | /* Length of HMAC block. */
|
---|
| 46 | #define HMAC_BLOCK_LENGTH 64
|
---|
| 47 |
|
---|
| 48 | /* Ceiling for UINT32. */
|
---|
[1dcc0b9] | 49 | #define ceil_uint32(val) (((val) - (uint32_t)(val)) > 0 ? \
|
---|
| 50 | (uint32_t)((val) + 1) : (uint32_t)(val))
|
---|
[d7dadcb4] | 51 |
|
---|
| 52 | /* Floor for UINT32. */
|
---|
[1dcc0b9] | 53 | #define floor_uint32(val) (((val) - (uint32_t)(val)) < 0 ? \
|
---|
| 54 | (uint32_t)((val) - 1) : (uint32_t)(val))
|
---|
[d7dadcb4] | 55 |
|
---|
| 56 | /* Pick value at specified index from array or zero if out of bounds. */
|
---|
[1dcc0b9] | 57 | #define get_at(input, size, i) (i < size ? input[i] : 0)
|
---|
| 58 |
|
---|
[d7dadcb4] | 59 | /* Init values used in SHA1 and MD5 functions. */
|
---|
| 60 | static const uint32_t hash_init[] = {
|
---|
| 61 | 0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0
|
---|
| 62 | };
|
---|
| 63 |
|
---|
| 64 | /* Shift amount array for MD5 algorithm. */
|
---|
| 65 | static const uint32_t md5_shift[] = {
|
---|
| 66 | 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22,
|
---|
| 67 | 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20,
|
---|
| 68 | 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23,
|
---|
| 69 | 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21
|
---|
| 70 | };
|
---|
| 71 |
|
---|
| 72 | /* Substitution box for MD5 algorithm. */
|
---|
| 73 | static const uint32_t md5_sbox[] = {
|
---|
| 74 | 0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee,
|
---|
| 75 | 0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501,
|
---|
| 76 | 0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be,
|
---|
| 77 | 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821,
|
---|
| 78 | 0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa,
|
---|
| 79 | 0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8,
|
---|
| 80 | 0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed,
|
---|
| 81 | 0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a,
|
---|
| 82 | 0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c,
|
---|
| 83 | 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70,
|
---|
| 84 | 0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x04881d05,
|
---|
| 85 | 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665,
|
---|
| 86 | 0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039,
|
---|
| 87 | 0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1,
|
---|
| 88 | 0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1,
|
---|
| 89 | 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391
|
---|
| 90 | };
|
---|
| 91 |
|
---|
[1dcc0b9] | 92 | /**
|
---|
[d7dadcb4] | 93 | * Working procedure of MD5 cryptographic hash function.
|
---|
[1dcc0b9] | 94 | *
|
---|
[d7dadcb4] | 95 | * @param h Working array with interim hash parts values.
|
---|
| 96 | * @param sched_arr Input array with scheduled values from input string.
|
---|
[1dcc0b9] | 97 | */
|
---|
[d7dadcb4] | 98 | static void md5_proc(uint32_t *h, uint32_t *sched_arr)
|
---|
[1dcc0b9] | 99 | {
|
---|
[d7dadcb4] | 100 | uint32_t f, g, temp;
|
---|
| 101 | uint32_t w[HASH_MD5/4];
|
---|
| 102 |
|
---|
| 103 | memcpy(w, h, (HASH_MD5/4) * sizeof(uint32_t));
|
---|
| 104 |
|
---|
| 105 | for(size_t k = 0; k < 64; k++) {
|
---|
| 106 | if(k < 16) {
|
---|
| 107 | f = (w[1] & w[2]) | (~w[1] & w[3]);
|
---|
| 108 | g = k;
|
---|
| 109 | } else if(k >= 16 && k < 32) {
|
---|
| 110 | f = (w[1] & w[3]) | (w[2] & ~w[3]);
|
---|
| 111 | g = (5*k + 1) % 16;
|
---|
| 112 | } else if(k >= 32 && k < 48) {
|
---|
| 113 | f = w[1] ^ w[2] ^ w[3];
|
---|
| 114 | g = (3*k + 5) % 16;
|
---|
| 115 | } else {
|
---|
| 116 | f = w[2] ^ (w[1] | ~w[3]);
|
---|
| 117 | g = 7*k % 16;
|
---|
| 118 | }
|
---|
| 119 | temp = w[3];
|
---|
| 120 | w[3] = w[2];
|
---|
| 121 | w[2] = w[1];
|
---|
| 122 | w[1] += rotl_uint32(w[0] + f + md5_sbox[k] +
|
---|
| 123 | uint32_t_byteorder_swap(sched_arr[g]),
|
---|
| 124 | md5_shift[k]);
|
---|
| 125 | w[0] = temp;
|
---|
[1dcc0b9] | 126 | }
|
---|
[d7dadcb4] | 127 |
|
---|
| 128 | for(uint8_t k = 0; k < HASH_MD5/4; k++)
|
---|
| 129 | h[k] += w[k];
|
---|
[1dcc0b9] | 130 | }
|
---|
| 131 |
|
---|
| 132 | /**
|
---|
[d7dadcb4] | 133 | * Working procedure of SHA-1 cryptographic hash function.
|
---|
[1dcc0b9] | 134 | *
|
---|
[d7dadcb4] | 135 | * @param h Working array with interim hash parts values.
|
---|
| 136 | * @param sched_arr Input array with scheduled values from input string.
|
---|
[1dcc0b9] | 137 | */
|
---|
[d7dadcb4] | 138 | static void sha1_proc(uint32_t *h, uint32_t *sched_arr)
|
---|
[1dcc0b9] | 139 | {
|
---|
[d7dadcb4] | 140 | uint32_t f, cf, temp;
|
---|
| 141 | uint32_t w[HASH_SHA1/4];
|
---|
[1dcc0b9] | 142 |
|
---|
[d7dadcb4] | 143 | for(size_t k = 16; k < 80; k++) {
|
---|
| 144 | sched_arr[k] = rotl_uint32(
|
---|
| 145 | sched_arr[k-3] ^
|
---|
| 146 | sched_arr[k-8] ^
|
---|
| 147 | sched_arr[k-14] ^
|
---|
| 148 | sched_arr[k-16],
|
---|
| 149 | 1);
|
---|
| 150 | }
|
---|
| 151 |
|
---|
| 152 | memcpy(w, h, (HASH_SHA1/4) * sizeof(uint32_t));
|
---|
[1dcc0b9] | 153 |
|
---|
[d7dadcb4] | 154 | for(size_t k = 0; k < 80; k++) {
|
---|
| 155 | if(k < 20) {
|
---|
| 156 | f = (w[1] & w[2]) | (~w[1] & w[3]);
|
---|
| 157 | cf = 0x5A827999;
|
---|
| 158 | } else if(k >= 20 && k < 40) {
|
---|
| 159 | f = w[1] ^ w[2] ^ w[3];
|
---|
| 160 | cf = 0x6ED9EBA1;
|
---|
| 161 | } else if(k >= 40 && k < 60) {
|
---|
| 162 | f = (w[1] & w[2]) | (w[1] & w[3]) | (w[2] & w[3]);
|
---|
| 163 | cf = 0x8F1BBCDC;
|
---|
| 164 | } else {
|
---|
| 165 | f = w[1] ^ w[2] ^ w[3];
|
---|
| 166 | cf = 0xCA62C1D6;
|
---|
| 167 | }
|
---|
| 168 |
|
---|
| 169 | temp = rotl_uint32(w[0], 5) + f + w[4] + cf + sched_arr[k];
|
---|
| 170 |
|
---|
| 171 | w[4] = w[3];
|
---|
| 172 | w[3] = w[2];
|
---|
| 173 | w[2] = rotl_uint32(w[1], 30);
|
---|
| 174 | w[1] = w[0];
|
---|
| 175 | w[0] = temp;
|
---|
| 176 | }
|
---|
| 177 |
|
---|
| 178 | for(uint8_t k = 0; k < HASH_SHA1/4; k++)
|
---|
| 179 | h[k] += w[k];
|
---|
[1dcc0b9] | 180 | }
|
---|
| 181 |
|
---|
| 182 | /**
|
---|
[d7dadcb4] | 183 | * Create hash based on selected algorithm.
|
---|
[1dcc0b9] | 184 | *
|
---|
[d7dadcb4] | 185 | * @param input Input message byte sequence.
|
---|
| 186 | * @param input_size Size of message sequence.
|
---|
| 187 | * @param output Result hash byte sequence.
|
---|
| 188 | * @param hash_sel Hash function selector.
|
---|
[1dcc0b9] | 189 | *
|
---|
[d7dadcb4] | 190 | * @return EINVAL when input not specified, ENOMEM when pointer for
|
---|
| 191 | * output hash result is not allocated, otherwise EOK.
|
---|
[1dcc0b9] | 192 | */
|
---|
[d7dadcb4] | 193 | int create_hash(uint8_t *input, size_t input_size, uint8_t *output,
|
---|
| 194 | hash_func_t hash_sel)
|
---|
[1dcc0b9] | 195 | {
|
---|
| 196 | if(!input)
|
---|
| 197 | return EINVAL;
|
---|
| 198 |
|
---|
[d7dadcb4] | 199 | if(!output)
|
---|
[1dcc0b9] | 200 | return ENOMEM;
|
---|
| 201 |
|
---|
[d7dadcb4] | 202 | HASH_FUNC hash_func = (hash_sel == HASH_MD5) ? md5_proc : sha1_proc;
|
---|
[1dcc0b9] | 203 |
|
---|
[d7dadcb4] | 204 | /* Prepare scheduled input. */
|
---|
[1dcc0b9] | 205 | uint8_t work_input[input_size + 1];
|
---|
| 206 | memcpy(work_input, input, input_size);
|
---|
| 207 | work_input[input_size] = 0x80;
|
---|
| 208 |
|
---|
| 209 | size_t blocks = ceil_uint32((((double)input_size + 1) / 4 + 2) / 16);
|
---|
[d7dadcb4] | 210 | uint32_t work_arr[blocks * 16];
|
---|
[1dcc0b9] | 211 | for(size_t i = 0; i < blocks; i++) {
|
---|
| 212 | for(size_t j = 0; j < 16; j++) {
|
---|
| 213 | work_arr[i*16 + j] =
|
---|
| 214 | (get_at(work_input, input_size+1, i*64+j*4) << 24) |
|
---|
| 215 | (get_at(work_input, input_size+1, i*64+j*4+1) << 16) |
|
---|
| 216 | (get_at(work_input, input_size+1, i*64+j*4+2) << 8) |
|
---|
| 217 | get_at(work_input, input_size+1, i*64+j*4+3);
|
---|
| 218 | }
|
---|
| 219 | }
|
---|
| 220 |
|
---|
[d7dadcb4] | 221 | uint64_t bits_size = (uint64_t)(input_size * 8);
|
---|
| 222 | if(hash_sel == HASH_MD5)
|
---|
| 223 | bits_size = uint64_t_byteorder_swap(bits_size);
|
---|
| 224 |
|
---|
| 225 | work_arr[(blocks - 1) * 16 + 14] = bits_size >> 32;
|
---|
| 226 | work_arr[(blocks - 1) * 16 + 15] = bits_size & 0xFFFFFFFF;
|
---|
| 227 |
|
---|
| 228 | /* Hash computation. */
|
---|
| 229 | uint32_t h[hash_sel/4];
|
---|
| 230 | memcpy(h, hash_init, (hash_sel/4) * sizeof(uint32_t));
|
---|
| 231 | uint32_t sched_arr[80];
|
---|
[1dcc0b9] | 232 | for(size_t i = 0; i < blocks; i++) {
|
---|
| 233 | for(size_t k = 0; k < 16; k++) {
|
---|
| 234 | sched_arr[k] = work_arr[i*16 + k];
|
---|
| 235 | }
|
---|
| 236 |
|
---|
[d7dadcb4] | 237 | hash_func(h, sched_arr);
|
---|
[1dcc0b9] | 238 | }
|
---|
| 239 |
|
---|
[d7dadcb4] | 240 | /* Copy hash parts into final result. */
|
---|
| 241 | for(size_t i = 0; i < hash_sel/4; i++) {
|
---|
| 242 | if(hash_sel == HASH_SHA1)
|
---|
| 243 | h[i] = uint32_t_byteorder_swap(h[i]);
|
---|
| 244 | memcpy(output + i*sizeof(uint32_t), &h[i], sizeof(uint32_t));
|
---|
[1dcc0b9] | 245 | }
|
---|
| 246 |
|
---|
| 247 | return EOK;
|
---|
| 248 | }
|
---|
| 249 |
|
---|
| 250 | /**
|
---|
[a931b7b] | 251 | * Hash-based message authentication code.
|
---|
[1dcc0b9] | 252 | *
|
---|
| 253 | * @param key Cryptographic key sequence.
|
---|
| 254 | * @param key_size Size of key sequence.
|
---|
| 255 | * @param msg Message sequence.
|
---|
| 256 | * @param msg_size Size of message sequence.
|
---|
| 257 | * @param hash Output parameter for result hash.
|
---|
| 258 | * @param hash_sel Hash function selector.
|
---|
| 259 | *
|
---|
| 260 | * @return EINVAL when key or message not specified, ENOMEM when pointer for
|
---|
| 261 | * output hash result is not allocated, otherwise EOK.
|
---|
| 262 | */
|
---|
| 263 | int hmac(uint8_t *key, size_t key_size, uint8_t *msg, size_t msg_size,
|
---|
| 264 | uint8_t *hash, hash_func_t hash_sel)
|
---|
| 265 | {
|
---|
| 266 | if(!key || !msg)
|
---|
| 267 | return EINVAL;
|
---|
| 268 |
|
---|
| 269 | if(!hash)
|
---|
| 270 | return ENOMEM;
|
---|
| 271 |
|
---|
| 272 | uint8_t work_key[HMAC_BLOCK_LENGTH];
|
---|
| 273 | uint8_t o_key_pad[HMAC_BLOCK_LENGTH];
|
---|
| 274 | uint8_t i_key_pad[HMAC_BLOCK_LENGTH];
|
---|
[d7dadcb4] | 275 | uint8_t temp_hash[hash_sel];
|
---|
[1dcc0b9] | 276 | memset(work_key, 0, HMAC_BLOCK_LENGTH);
|
---|
| 277 |
|
---|
| 278 | if(key_size > HMAC_BLOCK_LENGTH) {
|
---|
[d7dadcb4] | 279 | create_hash(key, key_size, work_key, hash_sel);
|
---|
[1dcc0b9] | 280 | } else {
|
---|
| 281 | memcpy(work_key, key, key_size);
|
---|
| 282 | }
|
---|
| 283 |
|
---|
| 284 | for(size_t i = 0; i < HMAC_BLOCK_LENGTH; i++) {
|
---|
| 285 | o_key_pad[i] = work_key[i] ^ 0x5C;
|
---|
| 286 | i_key_pad[i] = work_key[i] ^ 0x36;
|
---|
| 287 | }
|
---|
| 288 |
|
---|
[cc575ef9] | 289 | uint8_t temp_work[HMAC_BLOCK_LENGTH + max(msg_size, hash_sel)];
|
---|
[1dcc0b9] | 290 | memcpy(temp_work, i_key_pad, HMAC_BLOCK_LENGTH);
|
---|
| 291 | memcpy(temp_work + HMAC_BLOCK_LENGTH, msg, msg_size);
|
---|
| 292 |
|
---|
[d7dadcb4] | 293 | create_hash(temp_work, HMAC_BLOCK_LENGTH + msg_size, temp_hash,
|
---|
| 294 | hash_sel);
|
---|
[1dcc0b9] | 295 |
|
---|
| 296 | memcpy(temp_work, o_key_pad, HMAC_BLOCK_LENGTH);
|
---|
[d7dadcb4] | 297 | memcpy(temp_work + HMAC_BLOCK_LENGTH, temp_hash, hash_sel);
|
---|
[1dcc0b9] | 298 |
|
---|
[d7dadcb4] | 299 | create_hash(temp_work, HMAC_BLOCK_LENGTH + hash_sel, hash, hash_sel);
|
---|
[1dcc0b9] | 300 |
|
---|
| 301 | return EOK;
|
---|
| 302 | }
|
---|
| 303 |
|
---|
| 304 | /**
|
---|
| 305 | * Password-Based Key Derivation Function 2 as defined in RFC 2898,
|
---|
| 306 | * using HMAC-SHA1 with 4096 iterations and 32 bytes key result used
|
---|
[a931b7b] | 307 | * for WPA/WPA2.
|
---|
[1dcc0b9] | 308 | *
|
---|
| 309 | * @param pass Password sequence.
|
---|
| 310 | * @param pass_size Password sequence length.
|
---|
| 311 | * @param salt Salt sequence to be used with password.
|
---|
| 312 | * @param salt_size Salt sequence length.
|
---|
| 313 | * @param hash Output parameter for result hash (32 byte value).
|
---|
| 314 | *
|
---|
| 315 | * @return EINVAL when pass or salt not specified, ENOMEM when pointer for
|
---|
| 316 | * output hash result is not allocated, otherwise EOK.
|
---|
| 317 | */
|
---|
| 318 | int pbkdf2(uint8_t *pass, size_t pass_size, uint8_t *salt, size_t salt_size,
|
---|
[a931b7b] | 319 | uint8_t *hash)
|
---|
[1dcc0b9] | 320 | {
|
---|
| 321 | if(!pass || !salt)
|
---|
| 322 | return EINVAL;
|
---|
| 323 |
|
---|
| 324 | if(!hash)
|
---|
| 325 | return ENOMEM;
|
---|
| 326 |
|
---|
[cc575ef9] | 327 | uint8_t work_salt[salt_size + 4];
|
---|
[1dcc0b9] | 328 | memcpy(work_salt, salt, salt_size);
|
---|
[a931b7b] | 329 | uint8_t work_hmac[HASH_SHA1];
|
---|
| 330 | uint8_t temp_hmac[HASH_SHA1];
|
---|
| 331 | uint8_t xor_hmac[HASH_SHA1];
|
---|
| 332 | uint8_t temp_hash[HASH_SHA1*2];
|
---|
[1dcc0b9] | 333 |
|
---|
| 334 | for(size_t i = 0; i < 2; i++) {
|
---|
[cc575ef9] | 335 | uint32_t be_i = host2uint32_t_be(i+1);
|
---|
| 336 | memcpy(work_salt + salt_size, &be_i, 4);
|
---|
| 337 | hmac(pass, pass_size, work_salt, salt_size + 4,
|
---|
[a931b7b] | 338 | work_hmac, HASH_SHA1);
|
---|
| 339 | memcpy(xor_hmac, work_hmac, HASH_SHA1);
|
---|
[cc575ef9] | 340 |
|
---|
[1dcc0b9] | 341 | for(size_t k = 1; k < 4096; k++) {
|
---|
[a931b7b] | 342 | memcpy(temp_hmac, work_hmac, HASH_SHA1);
|
---|
| 343 | hmac(pass, pass_size, temp_hmac, HASH_SHA1,
|
---|
| 344 | work_hmac, HASH_SHA1);
|
---|
| 345 | for(size_t t = 0; t < HASH_SHA1; t++) {
|
---|
[1dcc0b9] | 346 | xor_hmac[t] ^= work_hmac[t];
|
---|
| 347 | }
|
---|
| 348 | }
|
---|
[a931b7b] | 349 | memcpy(temp_hash + i*HASH_SHA1, xor_hmac, HASH_SHA1);
|
---|
[1dcc0b9] | 350 | }
|
---|
| 351 |
|
---|
| 352 | memcpy(hash, temp_hash, PBKDF2_KEY_LENGTH);
|
---|
| 353 |
|
---|
| 354 | return EOK;
|
---|
| 355 | }
|
---|