[1dcc0b9] | 1 | /*
|
---|
| 2 | * Copyright (c) 2015 Jan Kolarik
|
---|
| 3 | * All rights reserved.
|
---|
| 4 | *
|
---|
| 5 | * Redistribution and use in source and binary forms, with or without
|
---|
| 6 | * modification, are permitted provided that the following conditions
|
---|
| 7 | * are met:
|
---|
| 8 | *
|
---|
| 9 | * - Redistributions of source code must retain the above copyright
|
---|
| 10 | * notice, this list of conditions and the following disclaimer.
|
---|
| 11 | * - Redistributions in binary form must reproduce the above copyright
|
---|
| 12 | * notice, this list of conditions and the following disclaimer in the
|
---|
| 13 | * documentation and/or other materials provided with the distribution.
|
---|
| 14 | * - The name of the author may not be used to endorse or promote products
|
---|
| 15 | * derived from this software without specific prior written permission.
|
---|
| 16 | *
|
---|
| 17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
| 18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
| 19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
| 20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
| 21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
| 22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
| 23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
| 24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
| 25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
| 26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
| 27 | */
|
---|
| 28 |
|
---|
| 29 | /** @file crypto.c
|
---|
| 30 | *
|
---|
| 31 | * Cryptographic functions library.
|
---|
| 32 | */
|
---|
| 33 |
|
---|
| 34 | #include <unistd.h>
|
---|
| 35 | #include <str.h>
|
---|
| 36 | #include <macros.h>
|
---|
| 37 | #include <errno.h>
|
---|
| 38 | #include <byteorder.h>
|
---|
| 39 |
|
---|
| 40 | #include "crypto.h"
|
---|
| 41 |
|
---|
| 42 | typedef int (*HASH_FUNC)(uint8_t*, size_t, uint8_t*);
|
---|
| 43 |
|
---|
| 44 | #define ceil_uint32(val) (((val) - (uint32_t)(val)) > 0 ? \
|
---|
| 45 | (uint32_t)((val) + 1) : (uint32_t)(val))
|
---|
| 46 | #define floor_uint32(val) (((val) - (uint32_t)(val)) < 0 ? \
|
---|
| 47 | (uint32_t)((val) - 1) : (uint32_t)(val))
|
---|
| 48 | #define rotl_uint32(val, shift) (((val) << shift) | ((val) >> (32 - shift)))
|
---|
| 49 | #define get_at(input, size, i) (i < size ? input[i] : 0)
|
---|
| 50 |
|
---|
| 51 | /**
|
---|
| 52 | * Setup hash function properties for use in crypto functions.
|
---|
| 53 | *
|
---|
| 54 | * @param hash_sel Hash function selector.
|
---|
| 55 | * @param hash_func Output parameter where hash function pointer is stored.
|
---|
| 56 | * @param hash_length Output parameter for setup result hash length.
|
---|
| 57 | */
|
---|
| 58 | static void config_hash_func(hash_func_t hash_sel, HASH_FUNC *hash_func,
|
---|
| 59 | size_t *hash_length)
|
---|
| 60 | {
|
---|
| 61 | switch(hash_sel) {
|
---|
| 62 | case HASH_MD5:
|
---|
| 63 | if(hash_func) *hash_func = md5;
|
---|
| 64 | *hash_length = MD5_HASH_LENGTH;
|
---|
| 65 | break;
|
---|
| 66 | case HASH_SHA1:
|
---|
| 67 | if(hash_func) *hash_func = sha1;
|
---|
| 68 | *hash_length = SHA1_HASH_LENGTH;
|
---|
| 69 | break;
|
---|
| 70 | }
|
---|
| 71 | }
|
---|
| 72 |
|
---|
| 73 | /**
|
---|
| 74 | * MD5 cryptographic hash function.
|
---|
| 75 | *
|
---|
| 76 | * @param input Input sequence to be encrypted.
|
---|
| 77 | * @param input_size Size of input sequence.
|
---|
| 78 | * @param hash Output parameter for result hash (32 byte value).
|
---|
| 79 | *
|
---|
| 80 | * @return EINVAL when input not specified, ENOMEM when pointer for output
|
---|
| 81 | * hash result is not allocated, otherwise EOK.
|
---|
| 82 | */
|
---|
| 83 | int md5(uint8_t *input, size_t input_size, uint8_t *hash)
|
---|
| 84 | {
|
---|
| 85 | if(!input)
|
---|
| 86 | return EINVAL;
|
---|
| 87 |
|
---|
| 88 | if(!hash)
|
---|
| 89 | return ENOMEM;
|
---|
| 90 |
|
---|
| 91 | // TODO
|
---|
| 92 |
|
---|
| 93 | return EOK;
|
---|
| 94 | }
|
---|
| 95 |
|
---|
| 96 | /**
|
---|
| 97 | * SHA-1 cryptographic hash function.
|
---|
| 98 | *
|
---|
| 99 | * @param input Input sequence to be encrypted.
|
---|
| 100 | * @param input_size Size of input sequence.
|
---|
| 101 | * @param hash Output parameter for result hash (20 byte value).
|
---|
| 102 | *
|
---|
| 103 | * @return EINVAL when input not specified, ENOMEM when pointer for output
|
---|
| 104 | * hash result is not allocated, otherwise EOK.
|
---|
| 105 | */
|
---|
| 106 | int sha1(uint8_t *input, size_t input_size, uint8_t *hash)
|
---|
| 107 | {
|
---|
| 108 | if(!input)
|
---|
| 109 | return EINVAL;
|
---|
| 110 |
|
---|
| 111 | if(!hash)
|
---|
| 112 | return ENOMEM;
|
---|
| 113 |
|
---|
| 114 | uint32_t a, b, c, d, e, f, cf, temp;
|
---|
| 115 | uint32_t h[5] = {
|
---|
| 116 | 0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0
|
---|
| 117 | };
|
---|
| 118 |
|
---|
| 119 | uint8_t work_input[input_size + 1];
|
---|
| 120 | memcpy(work_input, input, input_size);
|
---|
| 121 | work_input[input_size] = 0x80;
|
---|
| 122 |
|
---|
| 123 | size_t blocks = ceil_uint32((((double)input_size + 1) / 4 + 2) / 16);
|
---|
| 124 |
|
---|
| 125 | uint32_t work_arr[blocks * 16 * sizeof(uint32_t)];
|
---|
| 126 | for(size_t i = 0; i < blocks; i++) {
|
---|
| 127 | for(size_t j = 0; j < 16; j++) {
|
---|
| 128 | work_arr[i*16 + j] =
|
---|
| 129 | (get_at(work_input, input_size+1, i*64+j*4) << 24) |
|
---|
| 130 | (get_at(work_input, input_size+1, i*64+j*4+1) << 16) |
|
---|
| 131 | (get_at(work_input, input_size+1, i*64+j*4+2) << 8) |
|
---|
| 132 | get_at(work_input, input_size+1, i*64+j*4+3);
|
---|
| 133 | }
|
---|
| 134 | }
|
---|
| 135 |
|
---|
| 136 | work_arr[(blocks - 1) * 16 + 14] = (uint64_t)(input_size * 8) >> 32;
|
---|
| 137 | work_arr[(blocks - 1) * 16 + 15] = (input_size * 8) & 0xFFFFFFFF;
|
---|
| 138 |
|
---|
| 139 | uint32_t sched_arr[80 * sizeof(uint32_t)];
|
---|
| 140 | for(size_t i = 0; i < blocks; i++) {
|
---|
| 141 | for(size_t k = 0; k < 16; k++) {
|
---|
| 142 | sched_arr[k] = work_arr[i*16 + k];
|
---|
| 143 | }
|
---|
| 144 |
|
---|
| 145 | for(size_t k = 16; k < 80; k++) {
|
---|
| 146 | sched_arr[k] =
|
---|
| 147 | rotl_uint32(
|
---|
| 148 | sched_arr[k-3] ^
|
---|
| 149 | sched_arr[k-8] ^
|
---|
| 150 | sched_arr[k-14] ^
|
---|
| 151 | sched_arr[k-16],
|
---|
| 152 | 1);
|
---|
| 153 | }
|
---|
| 154 |
|
---|
| 155 | a = h[0]; b = h[1]; c = h[2]; d = h[3]; e = h[4];
|
---|
| 156 |
|
---|
| 157 | for(size_t k = 0; k < 80; k++) {
|
---|
| 158 | if(k < 20) {
|
---|
| 159 | f = (b & c) | (~b & d);
|
---|
| 160 | cf = 0x5A827999;
|
---|
| 161 | } else if(k >= 20 && k < 40) {
|
---|
| 162 | f = b ^ c ^ d;
|
---|
| 163 | cf = 0x6ED9EBA1;
|
---|
| 164 | } else if(k >= 40 && k < 60) {
|
---|
| 165 | f = (b & c) | (b & d) | (c & d);
|
---|
| 166 | cf = 0x8F1BBCDC;
|
---|
| 167 | } else {
|
---|
| 168 | f = b ^ c ^ d;
|
---|
| 169 | cf = 0xCA62C1D6;
|
---|
| 170 | }
|
---|
| 171 |
|
---|
| 172 | temp = (rotl_uint32(a, 5) + f + e + cf + sched_arr[k]) &
|
---|
| 173 | 0xFFFFFFFF;
|
---|
| 174 |
|
---|
| 175 | e = d;
|
---|
| 176 | d = c;
|
---|
| 177 | c = rotl_uint32(b, 30);
|
---|
| 178 | b = a;
|
---|
| 179 | a = temp;
|
---|
| 180 | }
|
---|
| 181 |
|
---|
| 182 | h[0] = (h[0] + a) & 0xFFFFFFFF;
|
---|
| 183 | h[1] = (h[1] + b) & 0xFFFFFFFF;
|
---|
| 184 | h[2] = (h[2] + c) & 0xFFFFFFFF;
|
---|
| 185 | h[3] = (h[3] + d) & 0xFFFFFFFF;
|
---|
| 186 | h[4] = (h[4] + e) & 0xFFFFFFFF;
|
---|
| 187 | }
|
---|
| 188 |
|
---|
| 189 | for(size_t i = 0; i < 5; i++) {
|
---|
| 190 | h[i] = uint32_t_be2host(h[i]);
|
---|
| 191 | memcpy(hash + i*sizeof(uint32_t), &h[i], sizeof(uint32_t));
|
---|
| 192 | }
|
---|
| 193 |
|
---|
| 194 | return EOK;
|
---|
| 195 | }
|
---|
| 196 |
|
---|
| 197 | /**
|
---|
| 198 | * Hash-based message authentication code using SHA-1 algorithm.
|
---|
| 199 | *
|
---|
| 200 | * @param key Cryptographic key sequence.
|
---|
| 201 | * @param key_size Size of key sequence.
|
---|
| 202 | * @param msg Message sequence.
|
---|
| 203 | * @param msg_size Size of message sequence.
|
---|
| 204 | * @param hash Output parameter for result hash.
|
---|
| 205 | * @param hash_sel Hash function selector.
|
---|
| 206 | *
|
---|
| 207 | * @return EINVAL when key or message not specified, ENOMEM when pointer for
|
---|
| 208 | * output hash result is not allocated, otherwise EOK.
|
---|
| 209 | */
|
---|
| 210 | int hmac(uint8_t *key, size_t key_size, uint8_t *msg, size_t msg_size,
|
---|
| 211 | uint8_t *hash, hash_func_t hash_sel)
|
---|
| 212 | {
|
---|
| 213 | if(!key || !msg)
|
---|
| 214 | return EINVAL;
|
---|
| 215 |
|
---|
| 216 | if(!hash)
|
---|
| 217 | return ENOMEM;
|
---|
| 218 |
|
---|
| 219 | size_t hash_length = 0;
|
---|
| 220 | HASH_FUNC hash_func = NULL;
|
---|
| 221 | config_hash_func(hash_sel, &hash_func, &hash_length);
|
---|
| 222 |
|
---|
| 223 | uint8_t work_key[HMAC_BLOCK_LENGTH];
|
---|
| 224 | uint8_t o_key_pad[HMAC_BLOCK_LENGTH];
|
---|
| 225 | uint8_t i_key_pad[HMAC_BLOCK_LENGTH];
|
---|
| 226 | uint8_t temp_hash[hash_length];
|
---|
| 227 | memset(work_key, 0, HMAC_BLOCK_LENGTH);
|
---|
| 228 |
|
---|
| 229 | if(key_size > HMAC_BLOCK_LENGTH) {
|
---|
| 230 | hash_func(key, key_size, work_key);
|
---|
| 231 | } else {
|
---|
| 232 | memcpy(work_key, key, key_size);
|
---|
| 233 | }
|
---|
| 234 |
|
---|
| 235 | for(size_t i = 0; i < HMAC_BLOCK_LENGTH; i++) {
|
---|
| 236 | o_key_pad[i] = work_key[i] ^ 0x5C;
|
---|
| 237 | i_key_pad[i] = work_key[i] ^ 0x36;
|
---|
| 238 | }
|
---|
| 239 |
|
---|
| 240 | uint8_t temp_work[HMAC_BLOCK_LENGTH + msg_size];
|
---|
| 241 | memcpy(temp_work, i_key_pad, HMAC_BLOCK_LENGTH);
|
---|
| 242 | memcpy(temp_work + HMAC_BLOCK_LENGTH, msg, msg_size);
|
---|
| 243 |
|
---|
| 244 | hash_func(temp_work, HMAC_BLOCK_LENGTH + msg_size, temp_hash);
|
---|
| 245 |
|
---|
| 246 | memcpy(temp_work, o_key_pad, HMAC_BLOCK_LENGTH);
|
---|
| 247 | memcpy(temp_work + HMAC_BLOCK_LENGTH, temp_hash, hash_length);
|
---|
| 248 |
|
---|
| 249 | hash_func(temp_work, HMAC_BLOCK_LENGTH + hash_length, hash);
|
---|
| 250 |
|
---|
| 251 | return EOK;
|
---|
| 252 | }
|
---|
| 253 |
|
---|
| 254 | /**
|
---|
| 255 | * Password-Based Key Derivation Function 2 as defined in RFC 2898,
|
---|
| 256 | * using HMAC-SHA1 with 4096 iterations and 32 bytes key result used
|
---|
| 257 | * for WPA2.
|
---|
| 258 | *
|
---|
| 259 | * @param pass Password sequence.
|
---|
| 260 | * @param pass_size Password sequence length.
|
---|
| 261 | * @param salt Salt sequence to be used with password.
|
---|
| 262 | * @param salt_size Salt sequence length.
|
---|
| 263 | * @param hash Output parameter for result hash (32 byte value).
|
---|
| 264 | * @param hash_sel Hash function selector.
|
---|
| 265 | *
|
---|
| 266 | * @return EINVAL when pass or salt not specified, ENOMEM when pointer for
|
---|
| 267 | * output hash result is not allocated, otherwise EOK.
|
---|
| 268 | */
|
---|
| 269 | int pbkdf2(uint8_t *pass, size_t pass_size, uint8_t *salt, size_t salt_size,
|
---|
| 270 | uint8_t *hash, hash_func_t hash_sel)
|
---|
| 271 | {
|
---|
| 272 | if(!pass || !salt)
|
---|
| 273 | return EINVAL;
|
---|
| 274 |
|
---|
| 275 | if(!hash)
|
---|
| 276 | return ENOMEM;
|
---|
| 277 |
|
---|
| 278 | size_t hash_length = 0;
|
---|
| 279 | config_hash_func(hash_sel, NULL, &hash_length);
|
---|
| 280 |
|
---|
| 281 | uint8_t work_salt[salt_size + sizeof(uint32_t)];
|
---|
| 282 | memcpy(work_salt, salt, salt_size);
|
---|
| 283 | uint8_t work_hmac[hash_length];
|
---|
| 284 | uint8_t temp_hmac[hash_length];
|
---|
| 285 | uint8_t xor_hmac[hash_length];
|
---|
| 286 | uint8_t temp_hash[hash_length*2];
|
---|
| 287 |
|
---|
| 288 | for(size_t i = 0; i < 2; i++) {
|
---|
| 289 | uint32_t big_i = host2uint32_t_be(i+1);
|
---|
| 290 | memcpy(work_salt + salt_size, &big_i, sizeof(uint32_t));
|
---|
| 291 | hmac(pass, pass_size, work_salt, salt_size + sizeof(uint32_t),
|
---|
| 292 | work_hmac, hash_sel);
|
---|
| 293 | memcpy(xor_hmac, work_hmac, hash_length);
|
---|
| 294 | for(size_t k = 1; k < 4096; k++) {
|
---|
| 295 | memcpy(temp_hmac, work_hmac, hash_length);
|
---|
| 296 | hmac(pass, pass_size, temp_hmac, hash_length,
|
---|
| 297 | work_hmac, hash_sel);
|
---|
| 298 | for(size_t t = 0; t < hash_length; t++) {
|
---|
| 299 | xor_hmac[t] ^= work_hmac[t];
|
---|
| 300 | }
|
---|
| 301 | }
|
---|
| 302 | memcpy(temp_hash + i*hash_length, xor_hmac, hash_length);
|
---|
| 303 | }
|
---|
| 304 |
|
---|
| 305 | memcpy(hash, temp_hash, PBKDF2_KEY_LENGTH);
|
---|
| 306 |
|
---|
| 307 | return EOK;
|
---|
| 308 | }
|
---|