1 | /*
|
---|
2 | * Copyright (c) 2015 Jan Kolarik
|
---|
3 | * All rights reserved.
|
---|
4 | *
|
---|
5 | * Redistribution and use in source and binary forms, with or without
|
---|
6 | * modification, are permitted provided that the following conditions
|
---|
7 | * are met:
|
---|
8 | *
|
---|
9 | * - Redistributions of source code must retain the above copyright
|
---|
10 | * notice, this list of conditions and the following disclaimer.
|
---|
11 | * - Redistributions in binary form must reproduce the above copyright
|
---|
12 | * notice, this list of conditions and the following disclaimer in the
|
---|
13 | * documentation and/or other materials provided with the distribution.
|
---|
14 | * - The name of the author may not be used to endorse or promote products
|
---|
15 | * derived from this software without specific prior written permission.
|
---|
16 | *
|
---|
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
27 | */
|
---|
28 |
|
---|
29 | /** @file aes.c
|
---|
30 | *
|
---|
31 | * Implementation of AES-128 symmetric cipher cryptographic algorithm.
|
---|
32 | *
|
---|
33 | * Based on FIPS 197.
|
---|
34 | */
|
---|
35 |
|
---|
36 | #include <stdbool.h>
|
---|
37 | #include <errno.h>
|
---|
38 | #include <mem.h>
|
---|
39 | #include "crypto.h"
|
---|
40 |
|
---|
41 | /* Number of elements in rows/columns in AES arrays. */
|
---|
42 | #define ELEMS 4
|
---|
43 |
|
---|
44 | /* Number of elements (words) in cipher. */
|
---|
45 | #define CIPHER_ELEMS 4
|
---|
46 |
|
---|
47 | /* Length of AES block. */
|
---|
48 | #define BLOCK_LEN 16
|
---|
49 |
|
---|
50 | /* Number of iterations in AES algorithm. */
|
---|
51 | #define ROUNDS 10
|
---|
52 |
|
---|
53 | /** Irreducible polynomial used in AES algorithm.
|
---|
54 | *
|
---|
55 | * NOTE: x^8 + x^4 + x^3 + x + 1.
|
---|
56 | *
|
---|
57 | */
|
---|
58 | #define AES_IP 0x1b
|
---|
59 |
|
---|
60 | /** Precomputed values for AES sub_byte transformation. */
|
---|
61 | static const uint8_t sbox[BLOCK_LEN][BLOCK_LEN] = {
|
---|
62 | {
|
---|
63 | 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5,
|
---|
64 | 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76
|
---|
65 | },
|
---|
66 | {
|
---|
67 | 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
|
---|
68 | 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0
|
---|
69 | },
|
---|
70 | {
|
---|
71 | 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc,
|
---|
72 | 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15
|
---|
73 | },
|
---|
74 | {
|
---|
75 | 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a,
|
---|
76 | 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75
|
---|
77 | },
|
---|
78 | {
|
---|
79 | 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
|
---|
80 | 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84
|
---|
81 | },
|
---|
82 | {
|
---|
83 | 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
|
---|
84 | 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf
|
---|
85 | },
|
---|
86 | {
|
---|
87 | 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85,
|
---|
88 | 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8
|
---|
89 | },
|
---|
90 | {
|
---|
91 | 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
|
---|
92 | 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2
|
---|
93 | },
|
---|
94 | {
|
---|
95 | 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17,
|
---|
96 | 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73
|
---|
97 | },
|
---|
98 | {
|
---|
99 | 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88,
|
---|
100 | 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb
|
---|
101 | },
|
---|
102 | {
|
---|
103 | 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
|
---|
104 | 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79
|
---|
105 | },
|
---|
106 | {
|
---|
107 | 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9,
|
---|
108 | 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08
|
---|
109 | },
|
---|
110 | {
|
---|
111 | 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6,
|
---|
112 | 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a
|
---|
113 | },
|
---|
114 | {
|
---|
115 | 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
|
---|
116 | 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e
|
---|
117 | },
|
---|
118 | {
|
---|
119 | 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94,
|
---|
120 | 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf
|
---|
121 | },
|
---|
122 | {
|
---|
123 | 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68,
|
---|
124 | 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
|
---|
125 | }
|
---|
126 | };
|
---|
127 |
|
---|
128 | /** Precomputed values for AES inv_sub_byte transformation. */
|
---|
129 | static uint8_t inv_sbox[BLOCK_LEN][BLOCK_LEN] = {
|
---|
130 | {
|
---|
131 | 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38,
|
---|
132 | 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb
|
---|
133 | },
|
---|
134 | {
|
---|
135 | 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87,
|
---|
136 | 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb
|
---|
137 | },
|
---|
138 | {
|
---|
139 | 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d,
|
---|
140 | 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e
|
---|
141 | },
|
---|
142 | {
|
---|
143 | 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2,
|
---|
144 | 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25
|
---|
145 | },
|
---|
146 | {
|
---|
147 | 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16,
|
---|
148 | 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92
|
---|
149 | },
|
---|
150 | {
|
---|
151 | 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda,
|
---|
152 | 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84
|
---|
153 | },
|
---|
154 | {
|
---|
155 | 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a,
|
---|
156 | 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06
|
---|
157 | },
|
---|
158 | {
|
---|
159 | 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02,
|
---|
160 | 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b
|
---|
161 | },
|
---|
162 | {
|
---|
163 | 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea,
|
---|
164 | 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73
|
---|
165 | },
|
---|
166 | {
|
---|
167 | 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85,
|
---|
168 | 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e
|
---|
169 | },
|
---|
170 | {
|
---|
171 | 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89,
|
---|
172 | 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b
|
---|
173 | },
|
---|
174 | {
|
---|
175 | 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20,
|
---|
176 | 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4
|
---|
177 | },
|
---|
178 | {
|
---|
179 | 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31,
|
---|
180 | 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f
|
---|
181 | },
|
---|
182 | {
|
---|
183 | 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d,
|
---|
184 | 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef
|
---|
185 | },
|
---|
186 | {
|
---|
187 | 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0,
|
---|
188 | 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61
|
---|
189 | },
|
---|
190 | {
|
---|
191 | 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26,
|
---|
192 | 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d
|
---|
193 | }
|
---|
194 | };
|
---|
195 |
|
---|
196 | /** Precomputed values of powers of 2 in GF(2^8) left shifted by 24b. */
|
---|
197 | static const uint32_t r_con_array[] = {
|
---|
198 | 0x01000000, 0x02000000, 0x04000000, 0x08000000,
|
---|
199 | 0x10000000, 0x20000000, 0x40000000, 0x80000000,
|
---|
200 | 0x1b000000, 0x36000000
|
---|
201 | };
|
---|
202 |
|
---|
203 | /** Perform substitution transformation on given byte.
|
---|
204 | *
|
---|
205 | * @param byte Input byte.
|
---|
206 | * @param inv Flag indicating whether to use inverse table.
|
---|
207 | *
|
---|
208 | * @return Substituted value.
|
---|
209 | *
|
---|
210 | */
|
---|
211 | static uint8_t sub_byte(uint8_t byte, bool inv)
|
---|
212 | {
|
---|
213 | uint8_t i = byte >> 4;
|
---|
214 | uint8_t j = byte & 0xF;
|
---|
215 |
|
---|
216 | if (!inv)
|
---|
217 | return sbox[i][j];
|
---|
218 |
|
---|
219 | return inv_sbox[i][j];
|
---|
220 | }
|
---|
221 |
|
---|
222 | /** Perform substitution transformation on state table.
|
---|
223 | *
|
---|
224 | * @param state State table to be modified.
|
---|
225 | * @param inv Flag indicating whether to use inverse table.
|
---|
226 | *
|
---|
227 | */
|
---|
228 | static void sub_bytes(uint8_t state[ELEMS][ELEMS], bool inv)
|
---|
229 | {
|
---|
230 | uint8_t val;
|
---|
231 |
|
---|
232 | for (size_t i = 0; i < ELEMS; i++) {
|
---|
233 | for (size_t j = 0; j < ELEMS; j++) {
|
---|
234 | val = state[i][j];
|
---|
235 | state[i][j] = sub_byte(val, inv);
|
---|
236 | }
|
---|
237 | }
|
---|
238 | }
|
---|
239 |
|
---|
240 | /** Perform shift rows transformation on state table.
|
---|
241 | *
|
---|
242 | * @param state State table to be modified.
|
---|
243 | *
|
---|
244 | */
|
---|
245 | static void shift_rows(uint8_t state[ELEMS][ELEMS])
|
---|
246 | {
|
---|
247 | uint8_t temp[ELEMS];
|
---|
248 |
|
---|
249 | for (size_t i = 1; i < ELEMS; i++) {
|
---|
250 | memcpy(temp, state[i], i);
|
---|
251 | memcpy(state[i], state[i] + i, ELEMS - i);
|
---|
252 | memcpy(state[i] + ELEMS - i, temp, i);
|
---|
253 | }
|
---|
254 | }
|
---|
255 |
|
---|
256 | /** Perform inverted shift rows transformation on state table.
|
---|
257 | *
|
---|
258 | * @param state State table to be modified.
|
---|
259 | *
|
---|
260 | */
|
---|
261 | static void inv_shift_rows(uint8_t state[ELEMS][ELEMS])
|
---|
262 | {
|
---|
263 | uint8_t temp[ELEMS];
|
---|
264 |
|
---|
265 | for (size_t i = 1; i < ELEMS; i++) {
|
---|
266 | memcpy(temp, state[i], ELEMS - i);
|
---|
267 | memcpy(state[i], state[i] + ELEMS - i, i);
|
---|
268 | memcpy(state[i] + i, temp, ELEMS - i);
|
---|
269 | }
|
---|
270 | }
|
---|
271 |
|
---|
272 | /** Multiplication in GF(2^8).
|
---|
273 | *
|
---|
274 | * @param x First factor.
|
---|
275 | * @param y Second factor.
|
---|
276 | *
|
---|
277 | * @return Multiplication of given factors in GF(2^8).
|
---|
278 | *
|
---|
279 | */
|
---|
280 | static uint8_t galois_mult(uint8_t x, uint8_t y)
|
---|
281 | {
|
---|
282 | uint8_t result = 0;
|
---|
283 | uint8_t f_bith;
|
---|
284 |
|
---|
285 | for (size_t i = 0; i < 8; i++) {
|
---|
286 | if (y & 1)
|
---|
287 | result ^= x;
|
---|
288 |
|
---|
289 | f_bith = (x & 0x80);
|
---|
290 | x <<= 1;
|
---|
291 |
|
---|
292 | if (f_bith)
|
---|
293 | x ^= AES_IP;
|
---|
294 |
|
---|
295 | y >>= 1;
|
---|
296 | }
|
---|
297 |
|
---|
298 | return result;
|
---|
299 | }
|
---|
300 |
|
---|
301 | /** Perform mix columns transformation on state table.
|
---|
302 | *
|
---|
303 | * @param state State table to be modified.
|
---|
304 | *
|
---|
305 | */
|
---|
306 | static void mix_columns(uint8_t state[ELEMS][ELEMS])
|
---|
307 | {
|
---|
308 | uint8_t orig_state[ELEMS][ELEMS];
|
---|
309 | memcpy(orig_state, state, BLOCK_LEN);
|
---|
310 |
|
---|
311 | for (size_t j = 0; j < ELEMS; j++) {
|
---|
312 | state[0][j] =
|
---|
313 | galois_mult(0x2, orig_state[0][j]) ^
|
---|
314 | galois_mult(0x3, orig_state[1][j]) ^
|
---|
315 | orig_state[2][j] ^
|
---|
316 | orig_state[3][j];
|
---|
317 | state[1][j] =
|
---|
318 | orig_state[0][j] ^
|
---|
319 | galois_mult(0x2, orig_state[1][j]) ^
|
---|
320 | galois_mult(0x3, orig_state[2][j]) ^
|
---|
321 | orig_state[3][j];
|
---|
322 | state[2][j] =
|
---|
323 | orig_state[0][j] ^
|
---|
324 | orig_state[1][j] ^
|
---|
325 | galois_mult(0x2, orig_state[2][j]) ^
|
---|
326 | galois_mult(0x3, orig_state[3][j]);
|
---|
327 | state[3][j] =
|
---|
328 | galois_mult(0x3, orig_state[0][j]) ^
|
---|
329 | orig_state[1][j] ^
|
---|
330 | orig_state[2][j] ^
|
---|
331 | galois_mult(0x2, orig_state[3][j]);
|
---|
332 | }
|
---|
333 | }
|
---|
334 |
|
---|
335 | /** Perform inverted mix columns transformation on state table.
|
---|
336 | *
|
---|
337 | * @param state State table to be modified.
|
---|
338 | *
|
---|
339 | */
|
---|
340 | static void inv_mix_columns(uint8_t state[ELEMS][ELEMS])
|
---|
341 | {
|
---|
342 | uint8_t orig_state[ELEMS][ELEMS];
|
---|
343 | memcpy(orig_state, state, BLOCK_LEN);
|
---|
344 |
|
---|
345 | for (size_t j = 0; j < ELEMS; j++) {
|
---|
346 | state[0][j] =
|
---|
347 | galois_mult(0x0e, orig_state[0][j]) ^
|
---|
348 | galois_mult(0x0b, orig_state[1][j]) ^
|
---|
349 | galois_mult(0x0d, orig_state[2][j]) ^
|
---|
350 | galois_mult(0x09, orig_state[3][j]);
|
---|
351 | state[1][j] =
|
---|
352 | galois_mult(0x09, orig_state[0][j]) ^
|
---|
353 | galois_mult(0x0e, orig_state[1][j]) ^
|
---|
354 | galois_mult(0x0b, orig_state[2][j]) ^
|
---|
355 | galois_mult(0x0d, orig_state[3][j]);
|
---|
356 | state[2][j] =
|
---|
357 | galois_mult(0x0d, orig_state[0][j]) ^
|
---|
358 | galois_mult(0x09, orig_state[1][j]) ^
|
---|
359 | galois_mult(0x0e, orig_state[2][j]) ^
|
---|
360 | galois_mult(0x0b, orig_state[3][j]);
|
---|
361 | state[3][j] =
|
---|
362 | galois_mult(0x0b, orig_state[0][j]) ^
|
---|
363 | galois_mult(0x0d, orig_state[1][j]) ^
|
---|
364 | galois_mult(0x09, orig_state[2][j]) ^
|
---|
365 | galois_mult(0x0e, orig_state[3][j]);
|
---|
366 | }
|
---|
367 | }
|
---|
368 |
|
---|
369 | /** Perform round key transformation on state table.
|
---|
370 | *
|
---|
371 | * @param state State table to be modified.
|
---|
372 | * @param round_key Round key to be applied on state table.
|
---|
373 | *
|
---|
374 | */
|
---|
375 | static void add_round_key(uint8_t state[ELEMS][ELEMS], uint32_t *round_key)
|
---|
376 | {
|
---|
377 | uint8_t byte_round;
|
---|
378 | uint8_t shift;
|
---|
379 | uint32_t mask = 0xff;
|
---|
380 |
|
---|
381 | for (size_t j = 0; j < ELEMS; j++) {
|
---|
382 | for (size_t i = 0; i < ELEMS; i++) {
|
---|
383 | shift = 24 - 8 * i;
|
---|
384 | byte_round = (round_key[j] & (mask << shift)) >> shift;
|
---|
385 | state[i][j] = state[i][j] ^ byte_round;
|
---|
386 | }
|
---|
387 | }
|
---|
388 | }
|
---|
389 |
|
---|
390 | /** Perform substitution transformation on given word.
|
---|
391 | *
|
---|
392 | * @param byte Input word.
|
---|
393 | *
|
---|
394 | * @return Substituted word.
|
---|
395 | *
|
---|
396 | */
|
---|
397 | static uint32_t sub_word(uint32_t word)
|
---|
398 | {
|
---|
399 | uint32_t temp = word;
|
---|
400 | uint8_t *start = (uint8_t *) &temp;
|
---|
401 |
|
---|
402 | for (size_t i = 0; i < 4; i++)
|
---|
403 | *(start + i) = sub_byte(*(start + i), false);
|
---|
404 |
|
---|
405 | return temp;
|
---|
406 | }
|
---|
407 |
|
---|
408 | /** Perform left rotation by one byte on given word.
|
---|
409 | *
|
---|
410 | * @param byte Input word.
|
---|
411 | *
|
---|
412 | * @return Rotated word.
|
---|
413 | *
|
---|
414 | */
|
---|
415 | static uint32_t rot_word(uint32_t word)
|
---|
416 | {
|
---|
417 | return (word << 8 | word >> 24);
|
---|
418 | }
|
---|
419 |
|
---|
420 | /** Key expansion procedure for AES algorithm.
|
---|
421 | *
|
---|
422 | * @param key Input key.
|
---|
423 | * @param key_exp Result key expansion.
|
---|
424 | *
|
---|
425 | */
|
---|
426 | static void key_expansion(uint8_t *key, uint32_t *key_exp)
|
---|
427 | {
|
---|
428 | uint32_t temp;
|
---|
429 |
|
---|
430 | for (size_t i = 0; i < CIPHER_ELEMS; i++) {
|
---|
431 | key_exp[i] =
|
---|
432 | (key[4 * i] << 24) +
|
---|
433 | (key[4 * i + 1] << 16) +
|
---|
434 | (key[4 * i + 2] << 8) +
|
---|
435 | (key[4 * i + 3]);
|
---|
436 | }
|
---|
437 |
|
---|
438 | for (size_t i = CIPHER_ELEMS; i < ELEMS * (ROUNDS + 1); i++) {
|
---|
439 | temp = key_exp[i - 1];
|
---|
440 |
|
---|
441 | if ((i % CIPHER_ELEMS) == 0) {
|
---|
442 | temp = sub_word(rot_word(temp)) ^
|
---|
443 | r_con_array[i / CIPHER_ELEMS - 1];
|
---|
444 | }
|
---|
445 |
|
---|
446 | key_exp[i] = key_exp[i - CIPHER_ELEMS] ^ temp;
|
---|
447 | }
|
---|
448 | }
|
---|
449 |
|
---|
450 | /** AES-128 encryption algorithm.
|
---|
451 | *
|
---|
452 | * @param key Input key.
|
---|
453 | * @param input Input data sequence to be encrypted.
|
---|
454 | * @param output Encrypted data sequence.
|
---|
455 | *
|
---|
456 | * @return EINVAL when input or key not specified,
|
---|
457 | * ENOMEM when pointer for output is not allocated,
|
---|
458 | * otherwise EOK.
|
---|
459 | *
|
---|
460 | */
|
---|
461 | errno_t aes_encrypt(uint8_t *key, uint8_t *input, uint8_t *output)
|
---|
462 | {
|
---|
463 | if ((!key) || (!input))
|
---|
464 | return EINVAL;
|
---|
465 |
|
---|
466 | if (!output)
|
---|
467 | return ENOMEM;
|
---|
468 |
|
---|
469 | /* Create key expansion. */
|
---|
470 | uint32_t key_exp[ELEMS * (ROUNDS + 1)];
|
---|
471 | key_expansion(key, key_exp);
|
---|
472 |
|
---|
473 | /* Copy input into state array. */
|
---|
474 | uint8_t state[ELEMS][ELEMS];
|
---|
475 | for (size_t i = 0; i < ELEMS; i++) {
|
---|
476 | for (size_t j = 0; j < ELEMS; j++)
|
---|
477 | state[i][j] = input[i + ELEMS * j];
|
---|
478 | }
|
---|
479 |
|
---|
480 | /* Processing loop. */
|
---|
481 | add_round_key(state, key_exp);
|
---|
482 |
|
---|
483 | for (size_t k = 1; k <= ROUNDS; k++) {
|
---|
484 | sub_bytes(state, false);
|
---|
485 | shift_rows(state);
|
---|
486 |
|
---|
487 | if (k < ROUNDS)
|
---|
488 | mix_columns(state);
|
---|
489 |
|
---|
490 | add_round_key(state, key_exp + k * ELEMS);
|
---|
491 | }
|
---|
492 |
|
---|
493 | /* Copy state array into output. */
|
---|
494 | for (size_t i = 0; i < ELEMS; i++) {
|
---|
495 | for (size_t j = 0; j < ELEMS; j++)
|
---|
496 | output[i + j * ELEMS] = state[i][j];
|
---|
497 | }
|
---|
498 |
|
---|
499 | return EOK;
|
---|
500 | }
|
---|
501 |
|
---|
502 | /** AES-128 decryption algorithm.
|
---|
503 | *
|
---|
504 | * @param key Input key.
|
---|
505 | * @param input Input data sequence to be decrypted.
|
---|
506 | * @param output Decrypted data sequence.
|
---|
507 | *
|
---|
508 | * @return EINVAL when input or key not specified,
|
---|
509 | * ENOMEM when pointer for output is not allocated,
|
---|
510 | * otherwise EOK.
|
---|
511 | *
|
---|
512 | */
|
---|
513 | errno_t aes_decrypt(uint8_t *key, uint8_t *input, uint8_t *output)
|
---|
514 | {
|
---|
515 | if ((!key) || (!input))
|
---|
516 | return EINVAL;
|
---|
517 |
|
---|
518 | if (!output)
|
---|
519 | return ENOMEM;
|
---|
520 |
|
---|
521 | /* Create key expansion. */
|
---|
522 | uint32_t key_exp[ELEMS * (ROUNDS + 1)];
|
---|
523 | key_expansion(key, key_exp);
|
---|
524 |
|
---|
525 | /* Copy input into state array. */
|
---|
526 | uint8_t state[ELEMS][ELEMS];
|
---|
527 | for (size_t i = 0; i < ELEMS; i++) {
|
---|
528 | for (size_t j = 0; j < ELEMS; j++)
|
---|
529 | state[i][j] = input[i + ELEMS * j];
|
---|
530 | }
|
---|
531 |
|
---|
532 | /* Processing loop. */
|
---|
533 | add_round_key(state, key_exp + ROUNDS * ELEMS);
|
---|
534 |
|
---|
535 | for (int k = ROUNDS - 1; k >= 0; k--) {
|
---|
536 | inv_shift_rows(state);
|
---|
537 | sub_bytes(state, true);
|
---|
538 | add_round_key(state, key_exp + k * ELEMS);
|
---|
539 |
|
---|
540 | if (k > 0)
|
---|
541 | inv_mix_columns(state);
|
---|
542 | }
|
---|
543 |
|
---|
544 | /* Copy state array into output. */
|
---|
545 | for (size_t i = 0; i < ELEMS; i++) {
|
---|
546 | for (size_t j = 0; j < ELEMS; j++)
|
---|
547 | output[i + j * ELEMS] = state[i][j];
|
---|
548 | }
|
---|
549 |
|
---|
550 | return EOK;
|
---|
551 | }
|
---|