/* * Copyright (c) 2015 Jan Kolarik * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * - The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** @file aes.c * * Implementation of AES-128 symmetric cipher cryptographic algorithm. * * Based on FIPS 197. */ #include #include #include #include "crypto.h" /* Number of elements in rows/columns in AES arrays. */ #define ELEMS 4 /* Number of elements (words) in cipher. */ #define CIPHER_ELEMS 4 /* Length of AES block. */ #define BLOCK_LEN 16 /* Number of iterations in AES algorithm. */ #define ROUNDS 10 /** Irreducible polynomial used in AES algorithm. * * NOTE: x^8 + x^4 + x^3 + x + 1. * */ #define AES_IP 0x1b /** Precomputed values for AES sub_byte transformation. */ static const uint8_t sbox[BLOCK_LEN][BLOCK_LEN] = { { 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76 }, { 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0 }, { 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15 }, { 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75 }, { 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84 }, { 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf }, { 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8 }, { 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2 }, { 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73 }, { 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb }, { 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79 }, { 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08 }, { 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a }, { 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e }, { 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf }, { 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 } }; /** Precomputed values for AES inv_sub_byte transformation. */ static uint8_t inv_sbox[BLOCK_LEN][BLOCK_LEN] = { { 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb }, { 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb }, { 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e }, { 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25 }, { 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92 }, { 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84 }, { 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06 }, { 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b }, { 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73 }, { 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e }, { 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b }, { 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4 }, { 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f }, { 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef }, { 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61 }, { 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d } }; /** Precomputed values of powers of 2 in GF(2^8) left shifted by 24b. */ static const uint32_t r_con_array[] = { 0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000, 0x20000000, 0x40000000, 0x80000000, 0x1b000000, 0x36000000 }; /** Perform substitution transformation on given byte. * * @param byte Input byte. * @param inv Flag indicating whether to use inverse table. * * @return Substituted value. * */ static uint8_t sub_byte(uint8_t byte, bool inv) { uint8_t i = byte >> 4; uint8_t j = byte & 0xF; if (!inv) return sbox[i][j]; return inv_sbox[i][j]; } /** Perform substitution transformation on state table. * * @param state State table to be modified. * @param inv Flag indicating whether to use inverse table. * */ static void sub_bytes(uint8_t state[ELEMS][ELEMS], bool inv) { uint8_t val; for (size_t i = 0; i < ELEMS; i++) { for (size_t j = 0; j < ELEMS; j++) { val = state[i][j]; state[i][j] = sub_byte(val, inv); } } } /** Perform shift rows transformation on state table. * * @param state State table to be modified. * */ static void shift_rows(uint8_t state[ELEMS][ELEMS]) { uint8_t temp[ELEMS]; for (size_t i = 1; i < ELEMS; i++) { memcpy(temp, state[i], i); memcpy(state[i], state[i] + i, ELEMS - i); memcpy(state[i] + ELEMS - i, temp, i); } } /** Perform inverted shift rows transformation on state table. * * @param state State table to be modified. * */ static void inv_shift_rows(uint8_t state[ELEMS][ELEMS]) { uint8_t temp[ELEMS]; for (size_t i = 1; i < ELEMS; i++) { memcpy(temp, state[i], ELEMS - i); memcpy(state[i], state[i] + ELEMS - i, i); memcpy(state[i] + i, temp, ELEMS - i); } } /** Multiplication in GF(2^8). * * @param x First factor. * @param y Second factor. * * @return Multiplication of given factors in GF(2^8). * */ static uint8_t galois_mult(uint8_t x, uint8_t y) { uint8_t result = 0; uint8_t f_bith; for (size_t i = 0; i < 8; i++) { if (y & 1) result ^= x; f_bith = (x & 0x80); x <<= 1; if (f_bith) x ^= AES_IP; y >>= 1; } return result; } /** Perform mix columns transformation on state table. * * @param state State table to be modified. * */ static void mix_columns(uint8_t state[ELEMS][ELEMS]) { uint8_t orig_state[ELEMS][ELEMS]; memcpy(orig_state, state, BLOCK_LEN); for (size_t j = 0; j < ELEMS; j++) { state[0][j] = galois_mult(0x2, orig_state[0][j]) ^ galois_mult(0x3, orig_state[1][j]) ^ orig_state[2][j] ^ orig_state[3][j]; state[1][j] = orig_state[0][j] ^ galois_mult(0x2, orig_state[1][j]) ^ galois_mult(0x3, orig_state[2][j]) ^ orig_state[3][j]; state[2][j] = orig_state[0][j] ^ orig_state[1][j] ^ galois_mult(0x2, orig_state[2][j]) ^ galois_mult(0x3, orig_state[3][j]); state[3][j] = galois_mult(0x3, orig_state[0][j]) ^ orig_state[1][j] ^ orig_state[2][j] ^ galois_mult(0x2, orig_state[3][j]); } } /** Perform inverted mix columns transformation on state table. * * @param state State table to be modified. * */ static void inv_mix_columns(uint8_t state[ELEMS][ELEMS]) { uint8_t orig_state[ELEMS][ELEMS]; memcpy(orig_state, state, BLOCK_LEN); for (size_t j = 0; j < ELEMS; j++) { state[0][j] = galois_mult(0x0e, orig_state[0][j]) ^ galois_mult(0x0b, orig_state[1][j]) ^ galois_mult(0x0d, orig_state[2][j]) ^ galois_mult(0x09, orig_state[3][j]); state[1][j] = galois_mult(0x09, orig_state[0][j]) ^ galois_mult(0x0e, orig_state[1][j]) ^ galois_mult(0x0b, orig_state[2][j]) ^ galois_mult(0x0d, orig_state[3][j]); state[2][j] = galois_mult(0x0d, orig_state[0][j]) ^ galois_mult(0x09, orig_state[1][j]) ^ galois_mult(0x0e, orig_state[2][j]) ^ galois_mult(0x0b, orig_state[3][j]); state[3][j] = galois_mult(0x0b, orig_state[0][j]) ^ galois_mult(0x0d, orig_state[1][j]) ^ galois_mult(0x09, orig_state[2][j]) ^ galois_mult(0x0e, orig_state[3][j]); } } /** Perform round key transformation on state table. * * @param state State table to be modified. * @param round_key Round key to be applied on state table. * */ static void add_round_key(uint8_t state[ELEMS][ELEMS], uint32_t *round_key) { uint8_t byte_round; uint8_t shift; uint32_t mask = 0xff; for (size_t j = 0; j < ELEMS; j++) { for (size_t i = 0; i < ELEMS; i++) { shift = 24 - 8 * i; byte_round = (round_key[j] & (mask << shift)) >> shift; state[i][j] = state[i][j] ^ byte_round; } } } /** Perform substitution transformation on given word. * * @param byte Input word. * * @return Substituted word. * */ static uint32_t sub_word(uint32_t word) { uint32_t temp = word; uint8_t *start = (uint8_t *) &temp; for (size_t i = 0; i < 4; i++) *(start + i) = sub_byte(*(start + i), false); return temp; } /** Perform left rotation by one byte on given word. * * @param byte Input word. * * @return Rotated word. * */ static uint32_t rot_word(uint32_t word) { return (word << 8 | word >> 24); } /** Key expansion procedure for AES algorithm. * * @param key Input key. * @param key_exp Result key expansion. * */ static void key_expansion(uint8_t *key, uint32_t *key_exp) { uint32_t temp; for (size_t i = 0; i < CIPHER_ELEMS; i++) { key_exp[i] = (key[4 * i] << 24) + (key[4 * i + 1] << 16) + (key[4 * i + 2] << 8) + (key[4 * i + 3]); } for (size_t i = CIPHER_ELEMS; i < ELEMS * (ROUNDS + 1); i++) { temp = key_exp[i - 1]; if ((i % CIPHER_ELEMS) == 0) { temp = sub_word(rot_word(temp)) ^ r_con_array[i / CIPHER_ELEMS - 1]; } key_exp[i] = key_exp[i - CIPHER_ELEMS] ^ temp; } } /** AES-128 encryption algorithm. * * @param key Input key. * @param input Input data sequence to be encrypted. * @param output Encrypted data sequence. * * @return EINVAL when input or key not specified, * ENOMEM when pointer for output is not allocated, * otherwise EOK. * */ errno_t aes_encrypt(uint8_t *key, uint8_t *input, uint8_t *output) { if ((!key) || (!input)) return EINVAL; if (!output) return ENOMEM; /* Create key expansion. */ uint32_t key_exp[ELEMS * (ROUNDS + 1)]; key_expansion(key, key_exp); /* Copy input into state array. */ uint8_t state[ELEMS][ELEMS]; for (size_t i = 0; i < ELEMS; i++) { for (size_t j = 0; j < ELEMS; j++) state[i][j] = input[i + ELEMS * j]; } /* Processing loop. */ add_round_key(state, key_exp); for (size_t k = 1; k <= ROUNDS; k++) { sub_bytes(state, false); shift_rows(state); if (k < ROUNDS) mix_columns(state); add_round_key(state, key_exp + k * ELEMS); } /* Copy state array into output. */ for (size_t i = 0; i < ELEMS; i++) { for (size_t j = 0; j < ELEMS; j++) output[i + j * ELEMS] = state[i][j]; } return EOK; } /** AES-128 decryption algorithm. * * @param key Input key. * @param input Input data sequence to be decrypted. * @param output Decrypted data sequence. * * @return EINVAL when input or key not specified, * ENOMEM when pointer for output is not allocated, * otherwise EOK. * */ errno_t aes_decrypt(uint8_t *key, uint8_t *input, uint8_t *output) { if ((!key) || (!input)) return EINVAL; if (!output) return ENOMEM; /* Create key expansion. */ uint32_t key_exp[ELEMS * (ROUNDS + 1)]; key_expansion(key, key_exp); /* Copy input into state array. */ uint8_t state[ELEMS][ELEMS]; for (size_t i = 0; i < ELEMS; i++) { for (size_t j = 0; j < ELEMS; j++) state[i][j] = input[i + ELEMS * j]; } /* Processing loop. */ add_round_key(state, key_exp + ROUNDS * ELEMS); for (int k = ROUNDS - 1; k >= 0; k--) { inv_shift_rows(state); sub_bytes(state, true); add_round_key(state, key_exp + k * ELEMS); if (k > 0) inv_mix_columns(state); } /* Copy state array into output. */ for (size_t i = 0; i < ELEMS; i++) { for (size_t j = 0; j < ELEMS; j++) output[i + j * ELEMS] = state[i][j]; } return EOK; }