source: mainline/uspace/lib/cpp/include/impl/functional.hpp@ daef596

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since daef596 was daef596, checked in by Dzejrou <dzejrou@…>, 7 years ago

cpp: added a variation of the aux::bind_t template that typedefs the result_type member type using a trick with extra boolean template parameter

  • Property mode set to 100644
File size: 41.9 KB
Line 
1/*
2 * Copyright (c) 2018 Jaroslav Jindrak
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#ifndef LIBCPP_FUNCTIONAL
30#define LIBCPP_FUNCTIONAL
31
32#include <limits>
33#include <memory>
34#include <typeinfo>
35#include <type_traits>
36#include <utility>
37
38namespace std
39{
40 namespace aux
41 {
42 /**
43 * 20.9.2, requirements:
44 */
45 template<class R, class T, class T1, class... Ts>
46 decltype(auto) invoke(R T::* f, T1&& t1, Ts&&... args)
47 {
48 if constexpr (is_member_function_pointer_v<decltype(f)>)
49 {
50 if constexpr (is_base_of_v<T, remove_reference_t<T1>>)
51 // (1.1)
52 return (t1.*f)(forward<Ts>(args)...);
53 else
54 // (1.2)
55 return ((*t1).*f)(forward<Ts>(args)...);
56 }
57 else if constexpr (is_member_object_pointer_v<decltype(f)> && sizeof...(args) == 0)
58 {
59 /**
60 * Note: Standard requires to N be equal to 1, but we take t1 directly
61 * so we need sizeof...(args) to be 0.
62 */
63 if constexpr (is_base_of_v<T, remove_reference_t<T1>>)
64 // (1.3)
65 return t1.*f;
66 else
67 // (1.4)
68 return (*t1).*f;
69 }
70
71 /**
72 * Note: If this condition holds this will not be reachable,
73 * but a new addition to the standard (17.7 point (8.1))
74 * prohibits us from simply using false as the condition here,
75 * so we use this because we know it is false here.
76 */
77 static_assert(is_member_function_pointer_v<decltype(f)>, "invalid invoke");
78 }
79
80 template<class F, class... Args>
81 decltype(auto) invoke(F&& f, Args&&... args)
82 {
83 // (1.5)
84 return f(forward<Args>(args)...);
85 }
86 }
87
88 /**
89 * 20.9.3, invoke:
90 */
91
92 template<class F, class... Args>
93 result_of_t<F&&(Args&&...)> invoke(F&& f, Args&&... args)
94 {
95 return aux::invoke(forward<F>(f)(forward<Args>(args)...));
96 }
97
98 /**
99 * 20.9.4, reference_wrapper:
100 */
101
102 template<class T>
103 class reference_wrapper
104 {
105 public:
106 using type = T;
107 // TODO: conditional typedefs
108
109 reference_wrapper(type& val) noexcept
110 : data_{&val}
111 { /* DUMMY BODY */ }
112
113 reference_wrapper(type&&) = delete;
114
115 reference_wrapper(const reference_wrapper& other) noexcept
116 : data_{other.data_}
117 { /* DUMMY BODY */ }
118
119 reference_wrapper& operator=(const reference_wrapper& other) noexcept
120 {
121 data_ = other.data_;
122
123 return *this;
124 }
125
126 operator type&() const noexcept
127 {
128 return *data_;
129 }
130
131 type& get() const noexcept
132 {
133 return *data_;
134 }
135
136 template<class... Args>
137 result_of_t<type&(Args&&...)> operator()(Args&&... args) const
138 {
139 return invoke(*data_, std::forward<Args>(args)...);
140 }
141
142 private:
143 type* data_;
144 };
145
146 template<class T>
147 reference_wrapper<T> ref(T& t) noexcept
148 {
149 return reference_wrapper<T>{t};
150 }
151
152 template<class T>
153 reference_wrapper<const T> cref(const T& t) noexcept
154 {
155 return reference_wrapper<const T>{t};
156 }
157
158 template<class T>
159 void ref(const T&&) = delete;
160
161 template<class T>
162 void cref(const T&&) = delete;
163
164 template<class T>
165 reference_wrapper<T> ref(reference_wrapper<T> t) noexcept
166 {
167 return ref(t.get());
168 }
169
170 template<class T>
171 reference_wrapper<const T> cref(reference_wrapper<T> t) noexcept
172 {
173 return cref(t.get());
174 }
175
176 /**
177 * 20.9.5, arithmetic operations:
178 */
179
180 template<class T = void>
181 struct plus
182 {
183 constexpr T operator()(const T& lhs, const T& rhs) const
184 {
185 return lhs + rhs;
186 }
187
188 using first_argument_type = T;
189 using second_argument_type = T;
190 using result_type = T;
191 };
192
193 template<class T = void>
194 struct minus
195 {
196 constexpr T operator()(const T& lhs, const T& rhs) const
197 {
198 return lhs - rhs;
199 }
200
201 using first_argument_type = T;
202 using second_argument_type = T;
203 using result_type = T;
204 };
205
206 template<class T = void>
207 struct multiplies
208 {
209 constexpr T operator()(const T& lhs, const T& rhs) const
210 {
211 return lhs * rhs;
212 }
213
214 using first_argument_type = T;
215 using second_argument_type = T;
216 using result_type = T;
217 };
218
219 template<class T = void>
220 struct divides
221 {
222 constexpr T operator()(const T& lhs, const T& rhs) const
223 {
224 return lhs / rhs;
225 }
226
227 using first_argument_type = T;
228 using second_argument_type = T;
229 using result_type = T;
230 };
231
232 template<class T = void>
233 struct modulus
234 {
235 constexpr T operator()(const T& lhs, const T& rhs) const
236 {
237 return lhs % rhs;
238 }
239
240 using first_argument_type = T;
241 using second_argument_type = T;
242 using result_type = T;
243 };
244
245 template<class T = void>
246 struct negate
247 {
248 constexpr T operator()(const T& x) const
249 {
250 return -x;
251 }
252
253 using argument_type = T;
254 using result_type = T;
255 };
256
257 namespace aux
258 {
259 /**
260 * Used by some functions like std::set::find to determine
261 * whether a functor is transparent.
262 */
263 struct transparent_t;
264
265 template<class T, class = void>
266 struct is_transparent: false_type
267 { /* DUMMY BODY */ };
268
269 template<class T>
270 struct is_transparent<T, void_t<typename T::is_transparent>>
271 : true_type
272 { /* DUMMY BODY */ };
273
274 template<class T>
275 inline constexpr bool is_transparent_v = is_transparent<T>::value;
276 }
277
278 template<>
279 struct plus<void>
280 {
281 template<class T, class U>
282 constexpr auto operator()(T&& lhs, U&& rhs) const
283 -> decltype(forward<T>(lhs) + forward<U>(rhs))
284 {
285 return forward<T>(lhs) + forward<T>(rhs);
286 }
287
288 using is_transparent = aux::transparent_t;
289 };
290
291 template<>
292 struct minus<void>
293 {
294 template<class T, class U>
295 constexpr auto operator()(T&& lhs, U&& rhs) const
296 -> decltype(forward<T>(lhs) - forward<U>(rhs))
297 {
298 return forward<T>(lhs) - forward<T>(rhs);
299 }
300
301 using is_transparent = aux::transparent_t;
302 };
303
304 template<>
305 struct multiplies<void>
306 {
307 template<class T, class U>
308 constexpr auto operator()(T&& lhs, U&& rhs) const
309 -> decltype(forward<T>(lhs) * forward<U>(rhs))
310 {
311 return forward<T>(lhs) * forward<T>(rhs);
312 }
313
314 using is_transparent = aux::transparent_t;
315 };
316
317 template<>
318 struct divides<void>
319 {
320 template<class T, class U>
321 constexpr auto operator()(T&& lhs, U&& rhs) const
322 -> decltype(forward<T>(lhs) / forward<U>(rhs))
323 {
324 return forward<T>(lhs) / forward<T>(rhs);
325 }
326
327 using is_transparent = aux::transparent_t;
328 };
329
330 template<>
331 struct modulus<void>
332 {
333 template<class T, class U>
334 constexpr auto operator()(T&& lhs, U&& rhs) const
335 -> decltype(forward<T>(lhs) % forward<U>(rhs))
336 {
337 return forward<T>(lhs) % forward<T>(rhs);
338 }
339
340 using is_transparent = aux::transparent_t;
341 };
342
343 template<>
344 struct negate<void>
345 {
346 template<class T>
347 constexpr auto operator()(T&& x) const
348 -> decltype(-forward<T>(x))
349 {
350 return -forward<T>(x);
351 }
352
353 using is_transparent = aux::transparent_t;
354 };
355
356 /**
357 * 20.9.6, comparisons:
358 */
359
360 template<class T = void>
361 struct equal_to
362 {
363 constexpr bool operator()(const T& lhs, const T& rhs) const
364 {
365 return lhs == rhs;
366 }
367
368 using first_argument_type = T;
369 using second_argument_type = T;
370 using result_type = bool;
371 };
372
373 template<class T = void>
374 struct not_equal_to
375 {
376 constexpr bool operator()(const T& lhs, const T& rhs) const
377 {
378 return lhs != rhs;
379 }
380
381 using first_argument_type = T;
382 using second_argument_type = T;
383 using result_type = bool;
384 };
385
386 template<class T = void>
387 struct greater
388 {
389 constexpr bool operator()(const T& lhs, const T& rhs) const
390 {
391 return lhs > rhs;
392 }
393
394 using first_argument_type = T;
395 using second_argument_type = T;
396 using result_type = bool;
397 };
398
399 template<class T = void>
400 struct less
401 {
402 constexpr bool operator()(const T& lhs, const T& rhs) const
403 {
404 return lhs < rhs;
405 }
406
407 using first_argument_type = T;
408 using second_argument_type = T;
409 using result_type = bool;
410 };
411
412 template<class T = void>
413 struct greater_equal
414 {
415 constexpr bool operator()(const T& lhs, const T& rhs) const
416 {
417 return lhs >= rhs;
418 }
419
420 using first_argument_type = T;
421 using second_argument_type = T;
422 using result_type = bool;
423 };
424
425 template<class T = void>
426 struct less_equal
427 {
428 constexpr bool operator()(const T& lhs, const T& rhs) const
429 {
430 return lhs <= rhs;
431 }
432
433 using first_argument_type = T;
434 using second_argument_type = T;
435 using result_type = bool;
436 };
437
438 template<>
439 struct equal_to<void>
440 {
441 template<class T, class U>
442 constexpr auto operator()(T&& lhs, U&& rhs) const
443 -> decltype(forward<T>(lhs) == forward<U>(rhs))
444 {
445 return forward<T>(lhs) == forward<U>(rhs);
446 }
447
448 using is_transparent = aux::transparent_t;
449 };
450
451 template<>
452 struct not_equal_to<void>
453 {
454 template<class T, class U>
455 constexpr auto operator()(T&& lhs, U&& rhs) const
456 -> decltype(forward<T>(lhs) != forward<U>(rhs))
457 {
458 return forward<T>(lhs) != forward<U>(rhs);
459 }
460
461 using is_transparent = aux::transparent_t;
462 };
463
464 template<>
465 struct greater<void>
466 {
467 template<class T, class U>
468 constexpr auto operator()(T&& lhs, U&& rhs) const
469 -> decltype(forward<T>(lhs) > forward<U>(rhs))
470 {
471 return forward<T>(lhs) > forward<U>(rhs);
472 }
473
474 using is_transparent = aux::transparent_t;
475 };
476
477 template<>
478 struct less<void>
479 {
480 template<class T, class U>
481 constexpr auto operator()(T&& lhs, U&& rhs) const
482 -> decltype(forward<T>(lhs) < forward<U>(rhs))
483 {
484 return forward<T>(lhs) < forward<U>(rhs);
485 }
486
487 using is_transparent = aux::transparent_t;
488 };
489
490 template<>
491 struct greater_equal<void>
492 {
493 template<class T, class U>
494 constexpr auto operator()(T&& lhs, U&& rhs) const
495 -> decltype(forward<T>(lhs) >= forward<U>(rhs))
496 {
497 return forward<T>(lhs) >= forward<U>(rhs);
498 }
499
500 using is_transparent = aux::transparent_t;
501 };
502
503 template<>
504 struct less_equal<void>
505 {
506 template<class T, class U>
507 constexpr auto operator()(T&& lhs, U&& rhs) const
508 -> decltype(forward<T>(lhs) <= forward<U>(rhs))
509 {
510 return forward<T>(lhs) <= forward<U>(rhs);
511 }
512
513 using is_transparent = aux::transparent_t;
514 };
515
516 /**
517 * 20.9.7, logical operations:
518 */
519
520 template<class T = void>
521 struct logical_and
522 {
523 constexpr bool operator()(const T& lhs, const T& rhs) const
524 {
525 return lhs && rhs;
526 }
527
528 using first_argument_type = T;
529 using second_argument_type = T;
530 using result_type = bool;
531 };
532
533 template<class T = void>
534 struct logical_or
535 {
536 constexpr bool operator()(const T& lhs, const T& rhs) const
537 {
538 return lhs || rhs;
539 }
540
541 using first_argument_type = T;
542 using second_argument_type = T;
543 using result_type = bool;
544 };
545
546 template<class T = void>
547 struct logical_not
548 {
549 constexpr bool operator()(const T& x) const
550 {
551 return !x;
552 }
553
554 using argument_type = T;
555 using result_type = bool;
556 };
557
558 template<>
559 struct logical_and<void>
560 {
561 template<class T, class U>
562 constexpr auto operator()(T&& lhs, U&& rhs) const
563 -> decltype(forward<T>(lhs) && forward<U>(rhs))
564 {
565 return forward<T>(lhs) && forward<U>(rhs);
566 }
567
568 using is_transparent = aux::transparent_t;
569 };
570
571 template<>
572 struct logical_or<void>
573 {
574 template<class T, class U>
575 constexpr auto operator()(T&& lhs, U&& rhs) const
576 -> decltype(forward<T>(lhs) || forward<U>(rhs))
577 {
578 return forward<T>(lhs) || forward<U>(rhs);
579 }
580
581 using is_transparent = aux::transparent_t;
582 };
583
584 template<>
585 struct logical_not<void>
586 {
587 template<class T>
588 constexpr auto operator()(T&& x) const
589 -> decltype(!forward<T>(x))
590 {
591 return !forward<T>(x);
592 }
593
594 using is_transparent = aux::transparent_t;
595 };
596
597 /**
598 * 20.9.8, bitwise operations:
599 */
600
601 template<class T = void>
602 struct bit_and
603 {
604 constexpr T operator()(const T& lhs, const T& rhs) const
605 {
606 return lhs & rhs;
607 }
608
609 using first_argument_type = T;
610 using second_argument_type = T;
611 using result_type = T;
612 };
613
614 template<class T = void>
615 struct bit_or
616 {
617 constexpr T operator()(const T& lhs, const T& rhs) const
618 {
619 return lhs | rhs;
620 }
621
622 using first_argument_type = T;
623 using second_argument_type = T;
624 using result_type = T;
625 };
626
627 template<class T = void>
628 struct bit_xor
629 {
630 constexpr T operator()(const T& lhs, const T& rhs) const
631 {
632 return lhs ^ rhs;
633 }
634
635 using first_argument_type = T;
636 using second_argument_type = T;
637 using result_type = T;
638 };
639
640 template<class T = void>
641 struct bit_not
642 {
643 constexpr bool operator()(const T& x) const
644 {
645 return ~x;
646 }
647
648 using argument_type = T;
649 using result_type = T;
650 };
651
652 template<>
653 struct bit_and<void>
654 {
655 template<class T, class U>
656 constexpr auto operator()(T&& lhs, U&& rhs) const
657 -> decltype(forward<T>(lhs) & forward<U>(rhs))
658 {
659 return forward<T>(lhs) & forward<U>(rhs);
660 }
661
662 using is_transparent = aux::transparent_t;
663 };
664
665 template<>
666 struct bit_or<void>
667 {
668 template<class T, class U>
669 constexpr auto operator()(T&& lhs, U&& rhs) const
670 -> decltype(forward<T>(lhs) | forward<U>(rhs))
671 {
672 return forward<T>(lhs) | forward<U>(rhs);
673 }
674
675 using is_transparent = aux::transparent_t;
676 };
677
678 template<>
679 struct bit_xor<void>
680 {
681 template<class T, class U>
682 constexpr auto operator()(T&& lhs, U&& rhs) const
683 -> decltype(forward<T>(lhs) ^ forward<U>(rhs))
684 {
685 return forward<T>(lhs) ^ forward<U>(rhs);
686 }
687
688 using is_transparent = aux::transparent_t;
689 };
690
691 template<>
692 struct bit_not<void>
693 {
694 template<class T>
695 constexpr auto operator()(T&& x) const
696 -> decltype(~forward<T>(x))
697 {
698 return ~forward<T>(x);
699 }
700
701 using is_transparent = aux::transparent_t;
702 };
703
704 /**
705 * 20.9.9, negators:
706 */
707
708 template<class Predicate>
709 class unary_negate
710 {
711 public:
712 using result_type = bool;
713 using argument_type = typename Predicate::argument_type;
714
715 constexpr explicit unary_negate(const Predicate& pred)
716 : pred_{pred}
717 { /* DUMMY BODY */ }
718
719 constexpr result_type operator()(const argument_type& arg)
720 {
721 return !pred_(arg);
722 }
723
724 private:
725 Predicate pred_;
726 };
727
728 template<class Predicate>
729 constexpr unary_negate<Predicate> not1(const Predicate& pred)
730 {
731 return unary_negate<Predicate>{pred};
732 }
733
734 template<class Predicate>
735 class binary_negate
736 {
737 public:
738 using result_type = bool;
739 using first_argument_type = typename Predicate::first_argument_type;
740 using second_argument_type = typename Predicate::second_argument_type;
741
742 constexpr explicit binary_negate(const Predicate& pred)
743 : pred_{pred}
744 { /* DUMMY BODY */ }
745
746 constexpr result_type operator()(const first_argument_type& arg1,
747 const second_argument_type& arg2)
748 {
749 return !pred_(arg1, arg2);
750 }
751
752 private:
753 Predicate pred_;
754 };
755
756 template<class Predicate>
757 constexpr binary_negate<Predicate> not2(const Predicate& pred);
758
759 /**
760 * 20.9.12, polymorphic function adaptors:
761 */
762
763 namespace aux
764 {
765 // TODO: fix this
766 /* template<class, class T, class... Args> */
767 /* struct is_callable_impl: false_type */
768 /* { /1* DUMMY BODY *1/ }; */
769
770 /* template<class, class R, class... Args> */
771 /* struct is_callable_impl< */
772 /* void_t<decltype(aux::invoke(declval<R(Args...)>(), declval<Args>()..., R))>, */
773 /* R, Args... */
774 /* > : true_type */
775 /* { /1* DUMMY BODY *1/ }; */
776
777 /* template<class T> */
778 /* struct is_callable: is_callable_impl<void_t<>, T> */
779 /* { /1* DUMMY BODY *1/ }; */
780
781 template<class Callable, class R, class... Args>
782 R invoke_callable(Callable* clbl, Args&&... args)
783 {
784 return (*clbl)(forward<Args>(args)...);
785 }
786
787 template<class Callable>
788 void copy_callable(Callable* to, Callable* from)
789 {
790 new(to) Callable{*from};
791 }
792
793 template<class Callable>
794 void destroy_callable(Callable* clbl)
795 {
796 if (clbl)
797 clbl->~Callable();
798 }
799 }
800
801 // TODO: implement
802 class bad_function_call;
803
804 template<class>
805 class function; // undefined
806
807 /**
808 * Note: Ideally, this implementation wouldn't
809 * copy the target if it was a pointer to
810 * a function, but for the simplicity of the
811 * implementation, we do copy even in that
812 * case for now. It would be a nice optimization
813 * if this was changed in the future.
814 */
815 template<class R, class... Args>
816 class function<R(Args...)>
817 {
818 public:
819 using result_type = R;
820 // TODO: conditional typedefs
821
822 /**
823 * 20.9.12.2.1, construct/copy/destroy:
824 */
825
826 function() noexcept
827 : callable_{}, callable_size_{}, call_{},
828 copy_{}, dest_{}
829 { /* DUMMY BODY */ }
830
831 function(nullptr_t) noexcept
832 : function{}
833 { /* DUMMY BODY */ }
834
835 function(const function& other)
836 : callable_{}, callable_size_{other.callable_size_},
837 call_{other.call_}, copy_{other.copy_}, dest_{other.dest_}
838 {
839 callable_ = new uint8_t[callable_size_];
840 (*copy_)(callable_, other.callable_);
841 }
842
843 function(function&& other)
844 : callable_{other.callable_}, callable_size_{other.callable_size_},
845 call_{other.call_}, copy_{other.copy_}, dest_{other.dest_}
846 {
847 other.callable_ = nullptr;
848 other.callable_size_ = size_t{};
849 other.call_ = nullptr;
850 other.copy_ = nullptr;
851 other.dest_ = nullptr;
852 }
853
854 // TODO: shall not participate in overloading unless aux::is_callable<F>
855 template<class F>
856 function(F f)
857 : callable_{}, callable_size_{sizeof(F)},
858 call_{(call_t)aux::invoke_callable<F, R, Args...>},
859 copy_{(copy_t)aux::copy_callable<F>},
860 dest_{(dest_t)aux::destroy_callable<F>}
861 {
862 callable_ = new uint8_t[callable_size_];
863 (*copy_)(callable_, (uint8_t*)&f);
864 }
865
866 /**
867 * Note: For the moment we're ignoring the allocator
868 * for simplicity of the implementation.
869 */
870
871 template<class A>
872 function(allocator_arg_t, const A& a) noexcept
873 : function{}
874 { /* DUMMY BODY */ }
875
876 template<class A>
877 function(allocator_arg_t, const A& a, nullptr_t) noexcept
878 : function{}
879 { /* DUMMY BODY */ }
880
881 template<class A>
882 function(allocator_arg_t, const A& a, const function& other)
883 : function{other}
884 { /* DUMMY BODY */ }
885
886 template<class A>
887 function(allocator_arg_t, const A& a, function&& other)
888 : function{move(other)}
889 { /* DUMMY BODY */ }
890
891 // TODO: shall not participate in overloading unless aux::is_callable<F>
892 template<class F, class A>
893 function(allocator_arg_t, const A& a, F f)
894 : function{f}
895 { /* DUMMY BODY */ }
896
897 function& operator=(const function& rhs)
898 {
899 function{rhs}.swap(*this);
900
901 return *this;
902 }
903
904 /**
905 * Note: We have to copy call_, copy_
906 * and dest_ because they can be templated
907 * by a type F we don't know.
908 */
909 function& operator=(function&& rhs)
910 {
911 clear_();
912
913 callable_ = rhs.callable_;
914 callable_size_ = rhs.callable_size_;
915 call_ = rhs.call_;
916 copy_ = rhs.copy_;
917 dest_ = rhs.dest_;
918
919 rhs.callable_ = nullptr;
920 rhs.callable_size_ = size_t{};
921 rhs.call_ = nullptr;
922 rhs.copy_ = nullptr;
923 rhs.dest_ = nullptr;
924
925 return *this;
926 }
927
928 function& operator=(nullptr_t) noexcept
929 {
930 clear_();
931
932 return *this;
933 }
934
935 // TODO: shall not participate in overloading unless aux::is_callable<F>
936 template<class F>
937 function& operator=(F&& f)
938 {
939 callable_size_ = sizeof(F);
940 callable_ = new uint8_t[callable_size_];
941 call_ = aux::invoke_callable<F, R, Args...>;
942 copy_ = aux::copy_callable<F>;
943 dest_ = aux::destroy_callable<F>;
944
945 (*copy_)(callable_, (uint8_t*)&f);
946 }
947
948 template<class F>
949 function& operator=(reference_wrapper<F> ref) noexcept
950 {
951 return (*this) = ref.get();
952 }
953
954 ~function()
955 {
956 if (callable_)
957 {
958 (*dest_)(callable_);
959 delete[] callable_;
960 }
961 }
962
963 /**
964 * 20.9.12.2.2, function modifiers:
965 */
966
967 void swap(function& other) noexcept
968 {
969 std::swap(callable_, other.callable_);
970 std::swap(callable_size_, other.callable_size_);
971 std::swap(call_, other.call_);
972 std::swap(copy_, other.copy_);
973 std::swap(dest_, other.dest_);
974 }
975
976 template<class F, class A>
977 void assign(F&& f, const A& a)
978 {
979 function{allocator_arg, a, forward<F>(f)}.swap(*this);
980 }
981
982 /**
983 * 20.9.12.2.3, function capacity:
984 */
985
986 explicit operator bool() const noexcept
987 {
988 return callable_ != nullptr;
989 }
990
991 /**
992 * 20.9.12.2.4, function invocation:
993 */
994
995 result_type operator()(Args... args) const
996 {
997 // TODO: throw bad_function_call if !callable_ || !call_
998 if constexpr (is_same_v<R, void>)
999 (*call_)(callable_, forward<Args>(args)...);
1000 else
1001 return (*call_)(callable_, forward<Args>(args)...);
1002 }
1003
1004 /**
1005 * 20.9.12.2.5, function target access:
1006 */
1007
1008 const type_info& target_type() const noexcept
1009 {
1010 return typeid(*callable_);
1011 }
1012
1013 template<class T>
1014 T* target() noexcept
1015 {
1016 if (target_type() == typeid(T))
1017 return (T*)callable_;
1018 else
1019 return nullptr;
1020 }
1021
1022 template<class T>
1023 const T* target() const noexcept
1024 {
1025 if (target_type() == typeid(T))
1026 return (T*)callable_;
1027 else
1028 return nullptr;
1029 }
1030
1031 private:
1032 using call_t = R(*)(uint8_t*, Args&&...);
1033 using copy_t = void (*)(uint8_t*, uint8_t*);
1034 using dest_t = void (*)(uint8_t*);
1035
1036 uint8_t* callable_;
1037 size_t callable_size_;
1038 call_t call_;
1039 copy_t copy_;
1040 dest_t dest_;
1041
1042 void clear_()
1043 {
1044 if (callable_)
1045 {
1046 (*dest_)(callable_);
1047 delete[] callable_;
1048 callable_ = nullptr;
1049 }
1050 }
1051 };
1052
1053 /**
1054 * 20.9.12.2.6, null pointer comparisons:
1055 */
1056
1057 template<class R, class... Args>
1058 bool operator==(const function<R(Args...)>& f, nullptr_t) noexcept
1059 {
1060 return !f;
1061 }
1062
1063 template<class R, class... Args>
1064 bool operator==(nullptr_t, const function<R(Args...)>& f) noexcept
1065 {
1066 return !f;
1067 }
1068
1069 template<class R, class... Args>
1070 bool operator!=(const function<R(Args...)>& f, nullptr_t) noexcept
1071 {
1072 return (bool)f;
1073 }
1074
1075 template<class R, class... Args>
1076 bool operator!=(nullptr_t, const function<R(Args...)>& f) noexcept
1077 {
1078 return (bool)f;
1079 }
1080
1081 /**
1082 * 20.9.12.2.7, specialized algorithms:
1083 */
1084
1085 template<class R, class... Args>
1086 void swap(function<R(Args...)>& f1, function<R(Args...)>& f2)
1087 {
1088 f1.swap(f2);
1089 }
1090
1091 template<class R, class... Args, class Alloc>
1092 struct uses_allocator<function<R(Args...)>, Alloc>
1093 : true_type
1094 { /* DUMMY BODY */ };
1095
1096 /**
1097 * 20.9.10, bind:
1098 */
1099
1100 namespace aux
1101 {
1102 template<int N>
1103 struct placeholder_t
1104 {
1105 constexpr placeholder_t() = default;
1106 constexpr placeholder_t(const placeholder_t&) = default;
1107 constexpr placeholder_t(placeholder_t&&) = default;
1108 };
1109 }
1110
1111 template<class T>
1112 struct is_placeholder: integral_constant<int, 0>
1113 { /* DUMMY BODY */ };
1114
1115 template<int N> // Note: const because they are all constexpr.
1116 struct is_placeholder<const aux::placeholder_t<N>>
1117 : integral_constant<int, N>
1118 { /* DUMMY BODY */ };
1119
1120 template<class T>
1121 inline constexpr int is_placeholder_v = is_placeholder<T>::value;
1122
1123 namespace aux
1124 {
1125 /**
1126 * Note: Our internal bind return type has an extra type
1127 * template parameter and an extra bool template parameter.
1128 * We use this for the special version of bind that has
1129 * the return type to have a result_type typedef
1130 * (i.e. when the bool is true, the extra type parameter
1131 * is typedefed as result_type - see the structure below).
1132 * This is just a simplification of the implementation
1133 * so that we don't need to have two return types for
1134 * the two bind functions, because unlike function or
1135 * mem_fn, we know exactly when to make the typedef.
1136 */
1137
1138 template<class, bool = false>
1139 struct bind_conditional_result_type
1140 { /* DUMMY BODY */ };
1141
1142 template<class R>
1143 struct bind_conditional_result_type<R, true>
1144 {
1145 using result_type = R;
1146 };
1147
1148 template<class, bool, class, class...>
1149 class bind_t;
1150
1151 /**
1152 * Filter class that uses its overloaded operator[]
1153 * to filter our placeholders, reference_wrappers and bind
1154 * subexpressions and replace them with the correct
1155 * arguments (extracts references, calls the subexpressions etc).
1156 */
1157 template<class... Args>
1158 class bind_arg_filter
1159 {
1160 public:
1161 bind_arg_filter(Args&&... args)
1162 : args_{forward<Args>(args)...}
1163 { /* DUMMY BODY */ }
1164
1165 template<class T>
1166 constexpr decltype(auto) operator[](T&& t)
1167 {
1168 return forward<T>(t);
1169 }
1170
1171 template<int N>
1172 constexpr decltype(auto) operator[](const placeholder_t<N>)
1173 { // Since placeholders are constexpr, this is the best match for them.
1174 /**
1175 * Come on, it's int! Why not use -1 as not placeholder
1176 * and start them at 0? -.-
1177 */
1178 return get<N - 1>(args_);
1179 }
1180
1181 template<class T>
1182 constexpr T& operator[](reference_wrapper<T> ref)
1183 {
1184 return ref.get();
1185 }
1186
1187 template<class R, bool B, class F, class... BindArgs>
1188 constexpr decltype(auto) operator[](const bind_t<R, B, F, BindArgs...> b)
1189 {
1190 return b; // TODO: bind subexpressions
1191 }
1192
1193
1194 private:
1195 tuple<Args...> args_;
1196 };
1197
1198 template<class R, bool HasResultType, class F, class... Args>
1199 class bind_t: public bind_conditional_result_type<R, HasResultType>
1200 {
1201 public:
1202 template<class G, class... BoundArgs>
1203 constexpr bind_t(G&& g, BoundArgs&&... args)
1204 : func_{forward<F>(g)},
1205 bound_args_{forward<Args>(args)...}
1206 { /* DUMMY BODY */ }
1207
1208 constexpr bind_t(const bind_t& other) = default;
1209 constexpr bind_t(bind_t&& other) = default;
1210
1211 template<class... ActualArgs>
1212 constexpr decltype(auto) operator()(ActualArgs&&... args)
1213 {
1214 return invoke_(
1215 make_index_sequence<sizeof...(Args)>{},
1216 forward<ActualArgs>(args)...
1217 );
1218 }
1219
1220 private:
1221 function<decay_t<F>> func_;
1222 tuple<decay_t<Args>...> bound_args_;
1223
1224 template<size_t... Is, class... ActualArgs>
1225 constexpr decltype(auto) invoke_(
1226 index_sequence<Is...>, ActualArgs&&... args
1227 )
1228 {
1229 /**
1230 * The expression filter[bound_args_[bind_arg_index<Is>()]]...
1231 * here expands bind_arg_index to 0, 1, ... sizeof...(ActualArgs) - 1
1232 * and then passes this variadic list of indices to the bound_args_
1233 * tuple which extracts the bound args from it.
1234 * Our filter will then have its operator[] called on each of them
1235 * and filter out the placeholders, reference_wrappers etc and changes
1236 * them to the actual arguments.
1237 */
1238 bind_arg_filter<ActualArgs...> filter{forward<ActualArgs>(args)...};
1239
1240 return invoke(
1241 func_,
1242 filter[get<Is>(bound_args_)]...
1243 );
1244 }
1245 };
1246 }
1247
1248 template<class T>
1249 struct is_bind_expression: false_type
1250 { /* DUMMY BODY */ };
1251
1252 template<class R, bool B, class F, class... Args>
1253 struct is_bind_expression<aux::bind_t<R, B, F, Args...>>
1254 : true_type
1255 { /* DUMMY BODY */ };
1256
1257 template<class F, class... Args>
1258 aux::bind_t<void, false, F, Args...> bind(F&& f, Args&&... args)
1259 {
1260 return aux::bind_t<void, false, F, Args...>{forward<F>(f), forward<Args>(args)...};
1261 }
1262
1263 template<class R, class F, class... Args>
1264 aux::bind_t<R, true, F, Args...> bind(F&& f, Args&&... args)
1265 {
1266 return aux::bind_t<R, true, F, Args...>{forward<F>(f), forward<Args>(args)...};
1267 }
1268
1269 namespace placeholders
1270 {
1271 /**
1272 * Note: The number of placeholders is
1273 * implementation defined, we've chosen
1274 * 8 because it is a nice number
1275 * and should be enough for any function
1276 * call.
1277 * Note: According to the C++14 standard, these
1278 * are all extern non-const. We decided to use
1279 * the C++17 form of them being inline constexpr
1280 * because it is more convenient, makes sense
1281 * and would eventually need to be upgraded
1282 * anyway.
1283 */
1284 inline constexpr aux::placeholder_t<1> _1;
1285 inline constexpr aux::placeholder_t<2> _2;
1286 inline constexpr aux::placeholder_t<3> _3;
1287 inline constexpr aux::placeholder_t<4> _4;
1288 inline constexpr aux::placeholder_t<5> _5;
1289 inline constexpr aux::placeholder_t<6> _6;
1290 inline constexpr aux::placeholder_t<7> _7;
1291 inline constexpr aux::placeholder_t<8> _8;
1292 }
1293
1294 /**
1295 * 20.9.11, member function adaptors:
1296 */
1297
1298 namespace aux
1299 {
1300 template<class F>
1301 class mem_fn_t
1302 {
1303 // TODO: conditional typedefs
1304 public:
1305 mem_fn_t(F f)
1306 : func_{f}
1307 { /* DUMMY BODY */ }
1308
1309 template<class... Args>
1310 decltype(auto) operator()(Args&&... args)
1311 {
1312 return invoke(func_, forward<Args>(args)...);
1313 }
1314
1315 private:
1316 F func_;
1317 };
1318 }
1319
1320 template<class R, class T>
1321 aux::mem_fn_t<R T::*> mem_fn(R T::* f)
1322 {
1323 return aux::mem_fn_t<R T::*>{f};
1324 }
1325
1326 /**
1327 * 20.9.13, hash function primary template:
1328 */
1329
1330 namespace aux
1331 {
1332 template<class T>
1333 union converter
1334 {
1335 T value;
1336 uint64_t converted;
1337 };
1338
1339 template<class T>
1340 T hash_(uint64_t x) noexcept
1341 {
1342 /**
1343 * Note: std::hash is used for indexing in
1344 * unordered containers, not for cryptography.
1345 * Because of this, we decided to simply convert
1346 * the value to uin64_t, which will help us
1347 * with testing (since in order to create
1348 * a collision in a multiset or multimap
1349 * we simply need 2 values that congruent
1350 * by the size of the table.
1351 */
1352 return static_cast<T>(x);
1353 }
1354
1355 template<class T>
1356 size_t hash(T x) noexcept
1357 {
1358 static_assert(is_arithmetic_v<T> || is_pointer_v<T>,
1359 "invalid type passed to aux::hash");
1360
1361 converter<T> conv;
1362 conv.value = x;
1363
1364 return hash_<size_t>(conv.converted);
1365 }
1366 }
1367
1368 template<class T>
1369 struct hash
1370 { /* DUMMY BODY */ };
1371
1372 template<>
1373 struct hash<bool>
1374 {
1375 size_t operator()(bool x) const noexcept
1376 {
1377 return aux::hash(x);
1378 }
1379
1380 using argument_type = bool;
1381 using result_type = size_t;
1382 };
1383
1384 template<>
1385 struct hash<char>
1386 {
1387 size_t operator()(char x) const noexcept
1388 {
1389 return aux::hash(x);
1390 }
1391
1392 using argument_type = char;
1393 using result_type = size_t;
1394 };
1395
1396 template<>
1397 struct hash<signed char>
1398 {
1399 size_t operator()(signed char x) const noexcept
1400 {
1401 return aux::hash(x);
1402 }
1403
1404 using argument_type = signed char;
1405 using result_type = size_t;
1406 };
1407
1408 template<>
1409 struct hash<unsigned char>
1410 {
1411 size_t operator()(unsigned char x) const noexcept
1412 {
1413 return aux::hash(x);
1414 }
1415
1416 using argument_type = unsigned char;
1417 using result_type = size_t;
1418 };
1419
1420 template<>
1421 struct hash<char16_t>
1422 {
1423 size_t operator()(char16_t x) const noexcept
1424 {
1425 return aux::hash(x);
1426 }
1427
1428 using argument_type = char16_t;
1429 using result_type = size_t;
1430 };
1431
1432 template<>
1433 struct hash<char32_t>
1434 {
1435 size_t operator()(char32_t x) const noexcept
1436 {
1437 return aux::hash(x);
1438 }
1439
1440 using argument_type = char32_t;
1441 using result_type = size_t;
1442 };
1443
1444 template<>
1445 struct hash<wchar_t>
1446 {
1447 size_t operator()(wchar_t x) const noexcept
1448 {
1449 return aux::hash(x);
1450 }
1451
1452 using argument_type = wchar_t;
1453 using result_type = size_t;
1454 };
1455
1456 template<>
1457 struct hash<short>
1458 {
1459 size_t operator()(short x) const noexcept
1460 {
1461 return aux::hash(x);
1462 }
1463
1464 using argument_type = short;
1465 using result_type = size_t;
1466 };
1467
1468 template<>
1469 struct hash<unsigned short>
1470 {
1471 size_t operator()(unsigned short x) const noexcept
1472 {
1473 return aux::hash(x);
1474 }
1475
1476 using argument_type = unsigned short;
1477 using result_type = size_t;
1478 };
1479
1480 template<>
1481 struct hash<int>
1482 {
1483 size_t operator()(int x) const noexcept
1484 {
1485 return aux::hash(x);
1486 }
1487
1488 using argument_type = int;
1489 using result_type = size_t;
1490 };
1491
1492 template<>
1493 struct hash<unsigned int>
1494 {
1495 size_t operator()(unsigned int x) const noexcept
1496 {
1497 return aux::hash(x);
1498 }
1499
1500 using argument_type = unsigned int;
1501 using result_type = size_t;
1502 };
1503
1504 template<>
1505 struct hash<long>
1506 {
1507 size_t operator()(long x) const noexcept
1508 {
1509 return aux::hash(x);
1510 }
1511
1512 using argument_type = long;
1513 using result_type = size_t;
1514 };
1515
1516 template<>
1517 struct hash<long long>
1518 {
1519 size_t operator()(long long x) const noexcept
1520 {
1521 return aux::hash(x);
1522 }
1523
1524 using argument_type = long long;
1525 using result_type = size_t;
1526 };
1527
1528 template<>
1529 struct hash<unsigned long>
1530 {
1531 size_t operator()(unsigned long x) const noexcept
1532 {
1533 return aux::hash(x);
1534 }
1535
1536 using argument_type = unsigned long;
1537 using result_type = size_t;
1538 };
1539
1540 template<>
1541 struct hash<unsigned long long>
1542 {
1543 size_t operator()(unsigned long long x) const noexcept
1544 {
1545 return aux::hash(x);
1546 }
1547
1548 using argument_type = unsigned long long;
1549 using result_type = size_t;
1550 };
1551
1552 template<>
1553 struct hash<float>
1554 {
1555 size_t operator()(float x) const noexcept
1556 {
1557 return aux::hash(x);
1558 }
1559
1560 using argument_type = float;
1561 using result_type = size_t;
1562 };
1563
1564 template<>
1565 struct hash<double>
1566 {
1567 size_t operator()(double x) const noexcept
1568 {
1569 return aux::hash(x);
1570 }
1571
1572 using argument_type = double;
1573 using result_type = size_t;
1574 };
1575
1576 template<>
1577 struct hash<long double>
1578 {
1579 size_t operator()(long double x) const noexcept
1580 {
1581 return aux::hash(x);
1582 }
1583
1584 using argument_type = long double;
1585 using result_type = size_t;
1586 };
1587
1588 template<class T>
1589 struct hash<T*>
1590 {
1591 size_t operator()(T* x) const noexcept
1592 {
1593 return aux::hash(x);
1594 }
1595
1596 using argument_type = T*;
1597 using result_type = size_t;
1598 };
1599}
1600
1601#endif
Note: See TracBrowser for help on using the repository browser.