source: mainline/uspace/lib/cpp/include/impl/functional.hpp@ ca32d45

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since ca32d45 was 55540fca, checked in by Dzejrou <dzejrou@…>, 7 years ago

cpp: added uses_allocator for function

  • Property mode set to 100644
File size: 33.7 KB
RevLine 
[e679283]1/*
2 * Copyright (c) 2018 Jaroslav Jindrak
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#ifndef LIBCPP_FUNCTIONAL
30#define LIBCPP_FUNCTIONAL
31
[22ba300]32#include <limits>
[9c00022]33#include <memory>
34#include <typeinfo>
[e679283]35#include <type_traits>
[22ba300]36#include <utility>
[9f77d98]37
[e679283]38namespace std
39{
40 namespace aux
41 {
42 /**
43 * 20.9.2, requirements:
44 */
45 template<class R, class T, class T1, class... Ts>
[22ba300]46 decltype(auto) invoke(R T::* f, T1&& t1, Ts&&... args)
[e679283]47 {
48 if constexpr (is_member_function_pointer_v<decltype(f)>)
49 {
50 if constexpr (is_base_of_v<T, remove_reference_t<T1>>)
51 // (1.1)
[22ba300]52 return (t1.*f)(forward<Ts>(args)...);
[e679283]53 else
54 // (1.2)
[22ba300]55 return ((*t1).*f)(forward<Ts>(args)...);
[e679283]56 }
[22ba300]57 else if constexpr (is_member_object_pointer_v<decltype(f)> && sizeof...(args) == 0)
[e679283]58 {
59 /**
60 * Note: Standard requires to N be equal to 1, but we take t1 directly
61 * so we need sizeof...(args) to be 0.
62 */
63 if constexpr (is_base_of_v<T, remove_reference_t<T1>>)
64 // (1.3)
65 return t1.*f;
66 else
67 // (1.4)
68 return (*t1).*f;
69 }
[22ba300]70
71 /**
72 * Note: If this condition holds this will not be reachable,
73 * but a new addition to the standard (17.7 point (8.1))
74 * prohibits us from simply using false as the condition here,
75 * so we use this because we know it is false here.
76 */
77 static_assert(is_member_function_pointer_v<decltype(f)>, "invalid invoke");
[e679283]78 }
79
80 template<class F, class... Args>
81 decltype(auto) invoke(F&& f, Args&&... args)
82 {
83 // (1.5)
84 return f(forward<Args>(args)...);
85 }
86 }
87
88 /**
89 * 20.9.3, invoke:
90 */
91
92 template<class F, class... Args>
93 result_of_t<F&&(Args&&...)> invoke(F&& f, Args&&... args)
94 {
95 return aux::invoke(forward<F>(f)(forward<Args>(args)...));
96 }
97
98 /**
99 * 20.9.4, reference_wrapper:
100 */
101
102 template<class T>
[65dde99]103 class reference_wrapper
104 {
105 public:
106 using type = T;
107 // TODO: conditional typedefs
108
109 reference_wrapper(type& val) noexcept
110 : data_{&val}
111 { /* DUMMY BODY */ }
112
113 reference_wrapper(type&&) = delete;
114
115 reference_wrapper(const reference_wrapper& other) noexcept
116 : data_{other.data_}
117 { /* DUMMY BODY */ }
118
119 reference_wrapper& operator=(const reference_wrapper& other) noexcept
120 {
121 data_ = other.data_;
122
123 return *this;
124 }
125
126 operator type&() const noexcept
127 {
128 return *data_;
129 }
130
131 type& get() const noexcept
132 {
133 return *data_;
134 }
135
136 template<class... Args>
137 result_of_t<type&(Args&&...)> operator()(Args&&... args) const
138 {
139 return invoke(*data_, std::forward<Args>(args)...);
140 }
141
142 private:
143 type* data_;
144 };
[e679283]145
146 template<class T>
[65dde99]147 reference_wrapper<T> ref(T& t) noexcept
148 {
149 return reference_wrapper<T>{t};
150 }
[e679283]151
152 template<class T>
[65dde99]153 reference_wrapper<const T> cref(const T& t) noexcept
154 {
155 return reference_wrapper<const T>{t};
156 }
[e679283]157
158 template<class T>
159 void ref(const T&&) = delete;
160
161 template<class T>
162 void cref(const T&&) = delete;
163
164 template<class T>
[65dde99]165 reference_wrapper<T> ref(reference_wrapper<T> t) noexcept
166 {
167 return ref(t.get());
168 }
[e679283]169
170 template<class T>
[65dde99]171 reference_wrapper<const T> cref(reference_wrapper<T> t) noexcept
172 {
173 return cref(t.get());
174 }
[e679283]175
176 /**
177 * 20.9.5, arithmetic operations:
178 */
179
180 template<class T = void>
181 struct plus
182 {
183 constexpr T operator()(const T& lhs, const T& rhs) const
184 {
185 return lhs + rhs;
186 }
187
188 using first_argument_type = T;
189 using second_argument_type = T;
190 using result_type = T;
191 };
192
193 template<class T = void>
194 struct minus
195 {
196 constexpr T operator()(const T& lhs, const T& rhs) const
197 {
198 return lhs - rhs;
199 }
200
201 using first_argument_type = T;
202 using second_argument_type = T;
203 using result_type = T;
204 };
205
206 template<class T = void>
207 struct multiplies
208 {
209 constexpr T operator()(const T& lhs, const T& rhs) const
210 {
211 return lhs * rhs;
212 }
213
214 using first_argument_type = T;
215 using second_argument_type = T;
216 using result_type = T;
217 };
218
219 template<class T = void>
220 struct divides
221 {
222 constexpr T operator()(const T& lhs, const T& rhs) const
223 {
224 return lhs / rhs;
225 }
226
227 using first_argument_type = T;
228 using second_argument_type = T;
229 using result_type = T;
230 };
231
232 template<class T = void>
233 struct modulus
234 {
235 constexpr T operator()(const T& lhs, const T& rhs) const
236 {
237 return lhs % rhs;
238 }
239
240 using first_argument_type = T;
241 using second_argument_type = T;
242 using result_type = T;
243 };
244
245 template<class T = void>
246 struct negate
247 {
248 constexpr T operator()(const T& x) const
249 {
250 return -x;
251 }
252
253 using argument_type = T;
254 using result_type = T;
255 };
256
257 namespace aux
258 {
259 /**
260 * Used by some functions like std::set::find to determine
261 * whether a functor is transparent.
262 */
263 struct transparent_t;
[8830faa]264
265 template<class T, class = void>
266 struct is_transparent: false_type
267 { /* DUMMY BODY */ };
268
269 template<class T>
270 struct is_transparent<T, void_t<typename T::is_transparent>>
271 : true_type
272 { /* DUMMY BODY */ };
273
274 template<class T>
275 inline constexpr bool is_transparent_v = is_transparent<T>::value;
[e679283]276 }
277
278 template<>
279 struct plus<void>
280 {
281 template<class T, class U>
[22ba300]282 constexpr auto operator()(T&& lhs, U&& rhs) const
[e679283]283 -> decltype(forward<T>(lhs) + forward<U>(rhs))
284 {
285 return forward<T>(lhs) + forward<T>(rhs);
286 }
287
288 using is_transparent = aux::transparent_t;
289 };
290
291 template<>
292 struct minus<void>
293 {
294 template<class T, class U>
[22ba300]295 constexpr auto operator()(T&& lhs, U&& rhs) const
[e679283]296 -> decltype(forward<T>(lhs) - forward<U>(rhs))
297 {
298 return forward<T>(lhs) - forward<T>(rhs);
299 }
300
301 using is_transparent = aux::transparent_t;
302 };
303
304 template<>
305 struct multiplies<void>
306 {
307 template<class T, class U>
[22ba300]308 constexpr auto operator()(T&& lhs, U&& rhs) const
[e679283]309 -> decltype(forward<T>(lhs) * forward<U>(rhs))
310 {
311 return forward<T>(lhs) * forward<T>(rhs);
312 }
313
314 using is_transparent = aux::transparent_t;
315 };
316
317 template<>
318 struct divides<void>
319 {
320 template<class T, class U>
[22ba300]321 constexpr auto operator()(T&& lhs, U&& rhs) const
[e679283]322 -> decltype(forward<T>(lhs) / forward<U>(rhs))
323 {
324 return forward<T>(lhs) / forward<T>(rhs);
325 }
326
327 using is_transparent = aux::transparent_t;
328 };
329
330 template<>
331 struct modulus<void>
332 {
333 template<class T, class U>
[22ba300]334 constexpr auto operator()(T&& lhs, U&& rhs) const
[e679283]335 -> decltype(forward<T>(lhs) % forward<U>(rhs))
336 {
337 return forward<T>(lhs) % forward<T>(rhs);
338 }
339
340 using is_transparent = aux::transparent_t;
341 };
342
343 template<>
344 struct negate<void>
345 {
346 template<class T>
[22ba300]347 constexpr auto operator()(T&& x) const
[e679283]348 -> decltype(-forward<T>(x))
349 {
350 return -forward<T>(x);
351 }
352
353 using is_transparent = aux::transparent_t;
354 };
355
356 /**
357 * 20.9.6, comparisons:
358 */
359
360 template<class T = void>
[22ba300]361 struct equal_to
[e679283]362 {
363 constexpr bool operator()(const T& lhs, const T& rhs) const
364 {
365 return lhs == rhs;
366 }
367
368 using first_argument_type = T;
369 using second_argument_type = T;
370 using result_type = bool;
371 };
372
373 template<class T = void>
374 struct not_equal_to
375 {
376 constexpr bool operator()(const T& lhs, const T& rhs) const
377 {
378 return lhs != rhs;
379 }
380
381 using first_argument_type = T;
382 using second_argument_type = T;
383 using result_type = bool;
384 };
385
386 template<class T = void>
387 struct greater
388 {
389 constexpr bool operator()(const T& lhs, const T& rhs) const
390 {
391 return lhs > rhs;
392 }
393
394 using first_argument_type = T;
395 using second_argument_type = T;
396 using result_type = bool;
397 };
398
399 template<class T = void>
400 struct less
401 {
402 constexpr bool operator()(const T& lhs, const T& rhs) const
403 {
404 return lhs < rhs;
405 }
406
407 using first_argument_type = T;
408 using second_argument_type = T;
409 using result_type = bool;
410 };
411
412 template<class T = void>
413 struct greater_equal
414 {
415 constexpr bool operator()(const T& lhs, const T& rhs) const
416 {
417 return lhs >= rhs;
418 }
419
420 using first_argument_type = T;
421 using second_argument_type = T;
422 using result_type = bool;
423 };
424
425 template<class T = void>
426 struct less_equal
427 {
428 constexpr bool operator()(const T& lhs, const T& rhs) const
429 {
430 return lhs <= rhs;
431 }
432
433 using first_argument_type = T;
434 using second_argument_type = T;
435 using result_type = bool;
436 };
437
438 template<>
439 struct equal_to<void>
440 {
441 template<class T, class U>
[22ba300]442 constexpr auto operator()(T&& lhs, U&& rhs) const
[e679283]443 -> decltype(forward<T>(lhs) == forward<U>(rhs))
444 {
445 return forward<T>(lhs) == forward<U>(rhs);
446 }
447
448 using is_transparent = aux::transparent_t;
449 };
450
451 template<>
452 struct not_equal_to<void>
453 {
454 template<class T, class U>
[22ba300]455 constexpr auto operator()(T&& lhs, U&& rhs) const
[e679283]456 -> decltype(forward<T>(lhs) != forward<U>(rhs))
457 {
458 return forward<T>(lhs) != forward<U>(rhs);
459 }
460
461 using is_transparent = aux::transparent_t;
462 };
463
464 template<>
465 struct greater<void>
466 {
467 template<class T, class U>
[22ba300]468 constexpr auto operator()(T&& lhs, U&& rhs) const
[e679283]469 -> decltype(forward<T>(lhs) > forward<U>(rhs))
470 {
471 return forward<T>(lhs) > forward<U>(rhs);
472 }
473
474 using is_transparent = aux::transparent_t;
475 };
476
477 template<>
478 struct less<void>
479 {
480 template<class T, class U>
[22ba300]481 constexpr auto operator()(T&& lhs, U&& rhs) const
[e679283]482 -> decltype(forward<T>(lhs) < forward<U>(rhs))
483 {
484 return forward<T>(lhs) < forward<U>(rhs);
485 }
486
487 using is_transparent = aux::transparent_t;
488 };
489
490 template<>
491 struct greater_equal<void>
492 {
493 template<class T, class U>
[22ba300]494 constexpr auto operator()(T&& lhs, U&& rhs) const
[e679283]495 -> decltype(forward<T>(lhs) >= forward<U>(rhs))
496 {
497 return forward<T>(lhs) >= forward<U>(rhs);
498 }
499
500 using is_transparent = aux::transparent_t;
501 };
502
503 template<>
504 struct less_equal<void>
505 {
506 template<class T, class U>
[22ba300]507 constexpr auto operator()(T&& lhs, U&& rhs) const
[e679283]508 -> decltype(forward<T>(lhs) <= forward<U>(rhs))
509 {
510 return forward<T>(lhs) <= forward<U>(rhs);
511 }
512
513 using is_transparent = aux::transparent_t;
514 };
515
516 /**
517 * 20.9.7, logical operations:
518 */
519
520 template<class T = void>
521 struct logical_and
522 {
523 constexpr bool operator()(const T& lhs, const T& rhs) const
524 {
525 return lhs && rhs;
526 }
527
528 using first_argument_type = T;
529 using second_argument_type = T;
530 using result_type = bool;
531 };
532
533 template<class T = void>
534 struct logical_or
535 {
536 constexpr bool operator()(const T& lhs, const T& rhs) const
537 {
538 return lhs || rhs;
539 }
540
541 using first_argument_type = T;
542 using second_argument_type = T;
543 using result_type = bool;
544 };
545
546 template<class T = void>
547 struct logical_not
548 {
549 constexpr bool operator()(const T& x) const
550 {
551 return !x;
552 }
553
554 using argument_type = T;
555 using result_type = bool;
556 };
557
558 template<>
559 struct logical_and<void>
560 {
561 template<class T, class U>
[22ba300]562 constexpr auto operator()(T&& lhs, U&& rhs) const
[e679283]563 -> decltype(forward<T>(lhs) && forward<U>(rhs))
564 {
565 return forward<T>(lhs) && forward<U>(rhs);
566 }
567
568 using is_transparent = aux::transparent_t;
569 };
570
571 template<>
572 struct logical_or<void>
573 {
574 template<class T, class U>
[22ba300]575 constexpr auto operator()(T&& lhs, U&& rhs) const
[e679283]576 -> decltype(forward<T>(lhs) || forward<U>(rhs))
577 {
578 return forward<T>(lhs) || forward<U>(rhs);
579 }
580
581 using is_transparent = aux::transparent_t;
582 };
583
584 template<>
585 struct logical_not<void>
586 {
587 template<class T>
[22ba300]588 constexpr auto operator()(T&& x) const
[e679283]589 -> decltype(!forward<T>(x))
590 {
[22ba300]591 return !forward<T>(x);
[e679283]592 }
593
594 using is_transparent = aux::transparent_t;
595 };
596
597 /**
598 * 20.9.8, bitwise operations:
599 */
600
601 template<class T = void>
602 struct bit_and
603 {
604 constexpr T operator()(const T& lhs, const T& rhs) const
605 {
606 return lhs & rhs;
607 }
608
609 using first_argument_type = T;
610 using second_argument_type = T;
611 using result_type = T;
612 };
613
614 template<class T = void>
615 struct bit_or
616 {
617 constexpr T operator()(const T& lhs, const T& rhs) const
618 {
619 return lhs | rhs;
620 }
621
622 using first_argument_type = T;
623 using second_argument_type = T;
624 using result_type = T;
625 };
626
627 template<class T = void>
628 struct bit_xor
629 {
630 constexpr T operator()(const T& lhs, const T& rhs) const
631 {
632 return lhs ^ rhs;
633 }
634
635 using first_argument_type = T;
636 using second_argument_type = T;
637 using result_type = T;
638 };
639
640 template<class T = void>
641 struct bit_not
642 {
643 constexpr bool operator()(const T& x) const
644 {
645 return ~x;
646 }
647
648 using argument_type = T;
649 using result_type = T;
650 };
651
652 template<>
653 struct bit_and<void>
654 {
655 template<class T, class U>
[22ba300]656 constexpr auto operator()(T&& lhs, U&& rhs) const
[e679283]657 -> decltype(forward<T>(lhs) & forward<U>(rhs))
658 {
659 return forward<T>(lhs) & forward<U>(rhs);
660 }
661
662 using is_transparent = aux::transparent_t;
663 };
664
665 template<>
666 struct bit_or<void>
667 {
668 template<class T, class U>
[22ba300]669 constexpr auto operator()(T&& lhs, U&& rhs) const
[e679283]670 -> decltype(forward<T>(lhs) | forward<U>(rhs))
671 {
672 return forward<T>(lhs) | forward<U>(rhs);
673 }
674
675 using is_transparent = aux::transparent_t;
676 };
677
678 template<>
679 struct bit_xor<void>
680 {
681 template<class T, class U>
[22ba300]682 constexpr auto operator()(T&& lhs, U&& rhs) const
[e679283]683 -> decltype(forward<T>(lhs) ^ forward<U>(rhs))
684 {
685 return forward<T>(lhs) ^ forward<U>(rhs);
686 }
687
688 using is_transparent = aux::transparent_t;
689 };
690
691 template<>
692 struct bit_not<void>
693 {
694 template<class T>
[22ba300]695 constexpr auto operator()(T&& x) const
[e679283]696 -> decltype(~forward<T>(x))
697 {
[22ba300]698 return ~forward<T>(x);
[e679283]699 }
700
701 using is_transparent = aux::transparent_t;
702 };
703
704 /**
705 * 20.9.9, negators:
706 */
707
708 template<class Predicate>
709 class unary_negate;
710
711 template<class Predicate>
712 constexpr unary_negate<Predicate> not1(const Predicate& pred);
713
714 template<class Predicate>
715 class binary_negate;
716
717 template<class Predicate>
718 constexpr binary_negate<Predicate> not2(const Predicate& pred);
719
720 /**
721 * 20.9.10, bind:
722 */
723
724 template<class T>
725 struct is_bind_expression;
726
727 template<class T>
728 struct is_placeholder;
729
730 // TODO: void should be /unspecified/
731 template<class F, class... Args>
732 void bind(F&& f, Args&&... args);
733
734 template<class R, class F, class... Args>
735 void bind(F&& f, Args&&... args);
736
737 namespace placeholders
738 {
739 /**
740 * TODO: for X from 1 to implementation defined M
741 * extern /unspecified/ _X;
742 */
743 }
744
745 /**
746 * 20.9.11, member function adaptors:
747 */
748
749 // TODO: void should be /unspecified/
750 template<class R, class T>
751 void mem_fn(R T::* f);
752
753 /**
754 * 20.9.12, polymorphic function adaptors:
755 */
756
[9c00022]757 namespace aux
758 {
759 // TODO: fix this
760 /* template<class, class T, class... Args> */
761 /* struct is_callable_impl: false_type */
762 /* { /1* DUMMY BODY *1/ }; */
763
764 /* template<class, class R, class... Args> */
765 /* struct is_callable_impl< */
766 /* void_t<decltype(aux::invoke(declval<R(Args...)>(), declval<Args>()..., R))>, */
767 /* R, Args... */
768 /* > : true_type */
769 /* { /1* DUMMY BODY *1/ }; */
770
771 /* template<class T> */
772 /* struct is_callable: is_callable_impl<void_t<>, T> */
773 /* { /1* DUMMY BODY *1/ }; */
774
775 template<class Callable, class R, class... Args>
776 R invoke_callable(Callable* clbl, Args&&... args)
777 {
778 return (*clbl)(forward<Args>(args)...);
779 }
780
781 template<class Callable>
782 void copy_callable(Callable* to, Callable* from)
783 {
784 new(to) Callable{*from};
785 }
786
787 template<class Callable>
788 void destroy_callable(Callable* clbl)
789 {
790 if (clbl)
791 clbl->~Callable();
792 }
793 }
794
[e679283]795 class bad_function_call;
796
797 template<class>
798 class function; // undefined
799
[9c00022]800 /**
801 * Note: Ideally, this implementation wouldn't
802 * copy the target if it was a pointer to
803 * a function, but for the simplicity of the
804 * implementation, we do copy even in that
805 * case for now. It would be a nice optimization
806 * if this was changed in the future.
807 */
[e679283]808 template<class R, class... Args>
[9c00022]809 class function<R(Args...)>
810 {
811 public:
812 using result_type = R;
813 // TODO: conditional typedefs
814
815 /**
816 * 20.9.12.2.1, construct/copy/destroy:
817 */
818
819 function() noexcept
820 : callable_{}, callable_size_{}, call_{},
821 copy_{}, dest_{}
822 { /* DUMMY BODY */ }
823
824 function(nullptr_t) noexcept
825 : function{}
826 { /* DUMMY BODY */ }
827
828 function(const function& other)
829 : callable_{}, callable_size_{other.callable_size_},
830 call_{other.call_}, copy_{other.copy_}, dest_{other.dest_}
831 {
832 callable_ = new uint8_t[callable_size_];
833 (*copy_)(callable_, other.callable_);
834 }
835
836 function(function&& other)
837 : callable_{other.callable_}, callable_size_{other.callable_size_},
838 call_{other.call_}, copy_{other.copy_}, dest_{other.dest_}
839 {
840 other.callable_ = nullptr;
841 other.callable_size_ = size_t{};
842 other.call_ = nullptr;
843 other.copy_ = nullptr;
844 other.dest_ = nullptr;
845 }
846
847 // TODO: shall not participate in overloading unless aux::is_callable<F>
848 template<class F>
849 function(F f)
850 : callable_{}, callable_size_{sizeof(F)},
851 call_{(call_t)aux::invoke_callable<F, R, Args...>},
852 copy_{(copy_t)aux::copy_callable<F>},
853 dest_{(dest_t)aux::destroy_callable<F>}
854 {
855 callable_ = new uint8_t[callable_size_];
856 (*copy_)(callable_, (uint8_t*)&f);
857 }
858
859 /**
860 * Note: For the moment we're ignoring the allocator
861 * for simplicity of the implementation.
862 */
863
864 template<class A>
865 function(allocator_arg_t, const A& a) noexcept
866 : function{}
867 { /* DUMMY BODY */ }
868
869 template<class A>
870 function(allocator_arg_t, const A& a, nullptr_t) noexcept
871 : function{}
872 { /* DUMMY BODY */ }
873
874 template<class A>
875 function(allocator_arg_t, const A& a, const function& other)
876 : function{other}
877 { /* DUMMY BODY */ }
878
879 template<class A>
880 function(allocator_arg_t, const A& a, function&& other)
881 : function{move(other)}
882 { /* DUMMY BODY */ }
883
884 // TODO: shall not participate in overloading unless aux::is_callable<F>
885 template<class F, class A>
886 function(allocator_arg_t, const A& a, F f)
887 : function{f}
888 { /* DUMMY BODY */ }
889
890 function& operator=(const function& rhs)
891 {
892 function{rhs}.swap(*this);
893
894 return *this;
895 }
896
897 /**
898 * Note: We have to copy call_, copy_
899 * and dest_ because they can be templated
900 * by a type F we don't know.
901 */
902 function& operator=(function&& rhs)
903 {
904 clear_();
905
906 callable_ = rhs.callable_;
907 callable_size_ = rhs.callable_size_;
908 call_ = rhs.call_;
909 copy_ = rhs.copy_;
910 dest_ = rhs.dest_;
911
912 rhs.callable_ = nullptr;
913 rhs.callable_size_ = size_t{};
914 rhs.call_ = nullptr;
915 rhs.copy_ = nullptr;
916 rhs.dest_ = nullptr;
917
918 return *this;
919 }
920
921 function& operator=(nullptr_t) noexcept
922 {
923 clear_();
924
925 return *this;
926 }
927
928 // TODO: shall not participate in overloading unless aux::is_callable<F>
929 template<class F>
930 function& operator=(F&& f)
931 {
932 callable_size_ = sizeof(F);
933 callable_ = new uint8_t[callable_size_];
934 call_ = aux::invoke_callable<F, R, Args...>;
935 copy_ = aux::copy_callable<F>;
936 dest_ = aux::destroy_callable<F>;
937
938 (*copy_)(callable_, (uint8_t*)&f);
939 }
940
941 template<class F>
942 function& operator=(reference_wrapper<F> ref) noexcept
943 {
944 return (*this) = ref.get();
945 }
946
947 ~function()
948 {
949 if (callable_)
950 {
951 (*dest_)(callable_);
952 delete[] callable_;
953 }
954 }
955
956 /**
957 * 20.9.12.2.2, function modifiers:
958 */
959
960 void swap(function& other) noexcept
961 {
962 std::swap(callable_, other.callable_);
963 std::swap(callable_size_, other.callable_size_);
964 std::swap(call_, other.call_);
965 std::swap(copy_, other.copy_);
966 std::swap(dest_, other.dest_);
967 }
968
969 template<class F, class A>
970 void assign(F&& f, const A& a)
971 {
972 function{allocator_arg, a, forward<F>(f)}.swap(*this);
973 }
974
975 /**
976 * 20.9.12.2.3, function capacity:
977 */
978
979 explicit operator bool() const noexcept
980 {
981 return callable_ != nullptr;
982 }
983
984 /**
985 * 20.9.12.2.4, function invocation:
986 */
987
988 result_type operator()(Args... args) const
989 {
990 // TODO: throw bad_function_call if !callable_ || !call_
991 if constexpr (is_same_v<R, void>)
992 (*call_)(callable_, forward<Args>(args)...);
993 else
994 return (*call_)(callable_, forward<Args>(args)...);
995 }
996
997 /**
998 * 20.9.12.2.5, function target access:
999 */
1000
1001 const type_info& target_type() const noexcept
1002 {
1003 return typeid(*callable_);
1004 }
1005
1006 template<class T>
1007 T* target() noexcept
1008 {
1009 if (target_type() == typeid(T))
1010 return (T*)callable_;
1011 else
1012 return nullptr;
1013 }
1014
1015 template<class T>
1016 const T* target() const noexcept
1017 {
1018 if (target_type() == typeid(T))
1019 return (T*)callable_;
1020 else
1021 return nullptr;
1022 }
1023
1024 private:
1025 using call_t = R(*)(uint8_t*, Args&&...);
1026 using copy_t = void (*)(uint8_t*, uint8_t*);
1027 using dest_t = void (*)(uint8_t*);
1028
1029 uint8_t* callable_;
1030 size_t callable_size_;
1031 call_t call_;
1032 copy_t copy_;
1033 dest_t dest_;
1034
1035 void clear_()
1036 {
1037 if (callable_)
1038 {
1039 (*dest_)(callable_);
1040 delete[] callable_;
1041 callable_ = nullptr;
1042 }
1043 }
1044 };
1045
1046 /**
1047 * 20.9.12.2.6, null pointer comparisons:
1048 */
[e679283]1049
1050 template<class R, class... Args>
[9c00022]1051 bool operator==(const function<R(Args...)>& f, nullptr_t) noexcept
1052 {
1053 return !f;
1054 }
[e679283]1055
1056 template<class R, class... Args>
[9c00022]1057 bool operator==(nullptr_t, const function<R(Args...)>& f) noexcept
1058 {
1059 return !f;
1060 }
[e679283]1061
1062 template<class R, class... Args>
[9c00022]1063 bool operator!=(const function<R(Args...)>& f, nullptr_t) noexcept
1064 {
1065 return (bool)f;
1066 }
[e679283]1067
1068 template<class R, class... Args>
[9c00022]1069 bool operator!=(nullptr_t, const function<R(Args...)>& f) noexcept
1070 {
1071 return (bool)f;
1072 }
[e679283]1073
[55540fca]1074 /**
1075 * 20.9.12.2.7, specialized algorithms:
1076 */
1077
1078 template<class R, class... Args>
1079 void swap(function<R(Args...)>& f1, function<R(Args...)>& f2)
1080 {
1081 f1.swap(f2);
1082 }
1083
1084 template<class R, class... Args, class Alloc>
1085 struct uses_allocator<function<R(Args...)>, Alloc>
1086 : true_type
1087 { /* DUMMY BODY */ };
1088
[e679283]1089 /**
1090 * 20.9.13, hash function primary template:
1091 */
1092
[22ba300]1093 namespace aux
1094 {
1095 template<class T>
1096 union converter
1097 {
1098 T value;
1099 uint64_t converted;
1100 };
1101
1102 template<class T>
1103 T hash_(uint64_t x) noexcept
1104 {
[5ae8168]1105 /**
1106 * Note: std::hash is used for indexing in
1107 * unordered containers, not for cryptography.
1108 * Because of this, we decided to simply convert
1109 * the value to uin64_t, which will help us
1110 * with testing (since in order to create
1111 * a collision in a multiset or multimap
1112 * we simply need 2 values that congruent
1113 * by the size of the table.
1114 */
1115 return static_cast<T>(x);
[22ba300]1116 }
1117
1118 template<class T>
1119 size_t hash(T x) noexcept
1120 {
1121 static_assert(is_arithmetic_v<T> || is_pointer_v<T>,
1122 "invalid type passed to aux::hash");
1123
1124 converter<T> conv;
1125 conv.value = x;
1126
1127 return hash_<size_t>(conv.converted);
1128 }
1129 }
1130
[e679283]1131 template<class T>
[9f77d98]1132 struct hash
1133 { /* DUMMY BODY */ };
[e679283]1134
1135 template<>
[9f77d98]1136 struct hash<bool>
1137 {
1138 size_t operator()(bool x) const noexcept
1139 {
[22ba300]1140 return aux::hash(x);
[9f77d98]1141 }
1142
1143 using argument_type = bool;
1144 using result_type = size_t;
1145 };
[e679283]1146
1147 template<>
[9f77d98]1148 struct hash<char>
1149 {
1150 size_t operator()(char x) const noexcept
1151 {
[22ba300]1152 return aux::hash(x);
[9f77d98]1153 }
1154
1155 using argument_type = char;
1156 using result_type = size_t;
1157 };
[e679283]1158
1159 template<>
[9f77d98]1160 struct hash<signed char>
1161 {
1162 size_t operator()(signed char x) const noexcept
1163 {
[22ba300]1164 return aux::hash(x);
[9f77d98]1165 }
1166
1167 using argument_type = signed char;
1168 using result_type = size_t;
1169 };
[e679283]1170
1171 template<>
[9f77d98]1172 struct hash<unsigned char>
1173 {
1174 size_t operator()(unsigned char x) const noexcept
1175 {
[22ba300]1176 return aux::hash(x);
[9f77d98]1177 }
1178
1179 using argument_type = unsigned char;
1180 using result_type = size_t;
1181 };
[e679283]1182
1183 template<>
[9f77d98]1184 struct hash<char16_t>
1185 {
1186 size_t operator()(char16_t x) const noexcept
1187 {
[22ba300]1188 return aux::hash(x);
[9f77d98]1189 }
1190
1191 using argument_type = char16_t;
1192 using result_type = size_t;
1193 };
[e679283]1194
1195 template<>
[9f77d98]1196 struct hash<char32_t>
1197 {
1198 size_t operator()(char32_t x) const noexcept
1199 {
[22ba300]1200 return aux::hash(x);
[9f77d98]1201 }
1202
1203 using argument_type = char32_t;
1204 using result_type = size_t;
1205 };
[e679283]1206
1207 template<>
[9f77d98]1208 struct hash<wchar_t>
1209 {
1210 size_t operator()(wchar_t x) const noexcept
1211 {
[22ba300]1212 return aux::hash(x);
[9f77d98]1213 }
1214
1215 using argument_type = wchar_t;
1216 using result_type = size_t;
1217 };
[e679283]1218
1219 template<>
[9f77d98]1220 struct hash<short>
1221 {
1222 size_t operator()(short x) const noexcept
1223 {
[22ba300]1224 return aux::hash(x);
[9f77d98]1225 }
1226
1227 using argument_type = short;
1228 using result_type = size_t;
1229 };
[e679283]1230
1231 template<>
[9f77d98]1232 struct hash<unsigned short>
1233 {
1234 size_t operator()(unsigned short x) const noexcept
1235 {
[22ba300]1236 return aux::hash(x);
[9f77d98]1237 }
1238
1239 using argument_type = unsigned short;
1240 using result_type = size_t;
1241 };
[e679283]1242
1243 template<>
[9f77d98]1244 struct hash<int>
1245 {
1246 size_t operator()(int x) const noexcept
1247 {
[22ba300]1248 return aux::hash(x);
[9f77d98]1249 }
1250
1251 using argument_type = int;
1252 using result_type = size_t;
1253 };
[e679283]1254
1255 template<>
[9f77d98]1256 struct hash<unsigned int>
1257 {
1258 size_t operator()(unsigned int x) const noexcept
1259 {
[22ba300]1260 return aux::hash(x);
[9f77d98]1261 }
1262
1263 using argument_type = unsigned int;
1264 using result_type = size_t;
1265 };
[e679283]1266
1267 template<>
[9f77d98]1268 struct hash<long>
1269 {
1270 size_t operator()(long x) const noexcept
1271 {
[22ba300]1272 return aux::hash(x);
[9f77d98]1273 }
1274
1275 using argument_type = long;
1276 using result_type = size_t;
1277 };
[e679283]1278
1279 template<>
[9f77d98]1280 struct hash<long long>
1281 {
1282 size_t operator()(long long x) const noexcept
1283 {
[22ba300]1284 return aux::hash(x);
[9f77d98]1285 }
1286
1287 using argument_type = long long;
1288 using result_type = size_t;
1289 };
[e679283]1290
1291 template<>
[9f77d98]1292 struct hash<unsigned long>
1293 {
1294 size_t operator()(unsigned long x) const noexcept
1295 {
[22ba300]1296 return aux::hash(x);
[9f77d98]1297 }
1298
1299 using argument_type = unsigned long;
1300 using result_type = size_t;
1301 };
[e679283]1302
1303 template<>
[9f77d98]1304 struct hash<unsigned long long>
1305 {
1306 size_t operator()(unsigned long long x) const noexcept
1307 {
[22ba300]1308 return aux::hash(x);
[9f77d98]1309 }
1310
1311 using argument_type = unsigned long long;
1312 using result_type = size_t;
1313 };
[e679283]1314
1315 template<>
[9f77d98]1316 struct hash<float>
1317 {
1318 size_t operator()(float x) const noexcept
1319 {
[22ba300]1320 return aux::hash(x);
[9f77d98]1321 }
1322
1323 using argument_type = float;
1324 using result_type = size_t;
1325 };
[e679283]1326
1327 template<>
[22ba300]1328 struct hash<double>
[9f77d98]1329 {
1330 size_t operator()(double x) const noexcept
1331 {
[22ba300]1332 return aux::hash(x);
[9f77d98]1333 }
1334
1335 using argument_type = double;
1336 using result_type = size_t;
1337 };
[e679283]1338
1339 template<>
[22ba300]1340 struct hash<long double>
[9f77d98]1341 {
1342 size_t operator()(long double x) const noexcept
1343 {
[22ba300]1344 return aux::hash(x);
[9f77d98]1345 }
1346
1347 using argument_type = long double;
1348 using result_type = size_t;
1349 };
[e679283]1350
1351 template<class T>
[9f77d98]1352 struct hash<T*>
1353 {
1354 size_t operator()(T* x) const noexcept
1355 {
[22ba300]1356 return aux::hash(x);
[9f77d98]1357 }
1358
1359 using argument_type = T*;
1360 using result_type = size_t;
1361 };
[e679283]1362}
1363
1364#endif
Note: See TracBrowser for help on using the repository browser.