source: mainline/uspace/lib/c/include/adt/list.h@ cd1e3fc0

Last change on this file since cd1e3fc0 was d7f7a4a, checked in by Jiří Zárevúcky <zarevucky.jiri@…>, 3 years ago

Replace some license headers with SPDX identifier

Headers are replaced using tools/transorm-copyright.sh only
when it can be matched verbatim with the license header used
throughout most of the codebase.

  • Property mode set to 100644
File size: 10.4 KB
Line 
1/*
2 * SPDX-FileCopyrightText: 2001-2004 Jakub Jermar
3 * SPDX-FileCopyrightText: 2013 Jiri Svoboda
4 *
5 * SPDX-License-Identifier: BSD-3-Clause
6 */
7
8/** @addtogroup libc
9 * @{
10 */
11/** @file
12 */
13
14#ifndef _LIBC_LIST_H_
15#define _LIBC_LIST_H_
16
17#include <assert.h>
18#include <member.h>
19#include <stdbool.h>
20#include <stddef.h>
21#include <stdint.h>
22#include <trace.h>
23#include <_bits/decls.h>
24
25#ifndef __cplusplus
26
27/**
28 * We don't define the macros in C++ to avoid polluting headers with
29 * namespaceless names. We don't actually need them, so this is fine.
30 * We still allow including the rest of the file (in `helenos` namespace)
31 * so that we can expose publicly visible types that have list_t members.
32 */
33
34/** Declare and initialize statically allocated list.
35 *
36 * @param name Name of the new statically allocated list.
37 *
38 */
39#define LIST_INITIALIZE(name) \
40 list_t name = LIST_INITIALIZER(name)
41
42/** Initializer for statically allocated list.
43 *
44 * @code
45 * struct named_list {
46 * const char *name;
47 * list_t list;
48 * } var = {
49 * .name = "default name",
50 * .list = LIST_INITIALIZER(name_list.list)
51 * };
52 * @endcode
53 *
54 * @param name Name of the new statically allocated list.
55 *
56 */
57#define LIST_INITIALIZER(name) \
58 { \
59 .head = { \
60 .prev = &(name).head, \
61 .next = &(name).head \
62 } \
63 }
64
65#define list_get_instance(link, type, member) \
66 member_to_inst(link, type, member)
67
68#define list_foreach(list, member, itype, iterator) \
69 for (itype *iterator = NULL; iterator == NULL; iterator = (itype *) sizeof(itype)) \
70 for (link_t *_link = (list).head.next; \
71 iterator = list_get_instance(_link, itype, member), \
72 _link != &(list).head; _link = _link->next)
73
74#define list_foreach_rev(list, member, itype, iterator) \
75 for (itype *iterator = NULL; iterator == NULL; iterator = (itype *) sizeof(itype)) \
76 for (link_t *_link = (list).head.prev; \
77 iterator = list_get_instance(_link, itype, member), \
78 _link != &(list).head; _link = _link->prev)
79
80/** Unlike list_foreach(), allows removing items while traversing a list.
81 *
82 * @code
83 * list_t mylist;
84 * typedef struct item {
85 * int value;
86 * link_t item_link;
87 * } item_t;
88 *
89 * //..
90 *
91 * // Print each list element's value and remove the element from the list.
92 * list_foreach_safe(mylist, cur_link, next_link) {
93 * item_t *cur_item = list_get_instance(cur_link, item_t, item_link);
94 * printf("%d\n", cur_item->value);
95 * list_remove(cur_link);
96 * }
97 * @endcode
98 *
99 * @param list List to traverse.
100 * @param iterator Iterator to the current element of the list.
101 * The item this iterator points may be safely removed
102 * from the list.
103 * @param next_iter Iterator to the next element of the list.
104 */
105#define list_foreach_safe(list, iterator, next_iter) \
106 for (link_t *iterator = (list).head.next, \
107 *next_iter = iterator->next; \
108 iterator != &(list).head; \
109 iterator = next_iter, next_iter = iterator->next)
110
111#define assert_link_not_used(link) \
112 assert(!link_used(link))
113
114#define list_pop(list, type, member) \
115 ((type *) list_pop_internal(list, \
116 (list_link_to_void(&(((type *) NULL)->member)) - NULL)))
117
118#endif /* !__cplusplus */
119
120__HELENOS_DECLS_BEGIN;
121
122/** Doubly linked list link. */
123typedef struct __adt_list_link {
124 struct __adt_list_link *prev; /**< Pointer to the previous item in the list. */
125 struct __adt_list_link *next; /**< Pointer to the next item in the list. */
126} link_t;
127
128/** Doubly linked list. */
129typedef struct {
130 link_t head; /**< List head. Does not have any data. */
131} list_t;
132
133extern bool list_member(const link_t *, const list_t *);
134extern void list_splice(list_t *, link_t *);
135extern size_t list_count(const list_t *);
136
137/** Returns true if the link is definitely part of a list. False if not sure. */
138static inline bool link_in_use(const link_t *link)
139{
140 return link->prev != NULL && link->next != NULL;
141}
142
143/** Initialize doubly-linked circular list link
144 *
145 * Initialize doubly-linked list link.
146 *
147 * @param link Pointer to link_t structure to be initialized.
148 *
149 */
150_NO_TRACE static inline void link_initialize(link_t *link)
151{
152 link->prev = NULL;
153 link->next = NULL;
154}
155
156/** Initialize doubly-linked circular list
157 *
158 * Initialize doubly-linked circular list.
159 *
160 * @param list Pointer to list_t structure.
161 *
162 */
163_NO_TRACE static inline void list_initialize(list_t *list)
164{
165 list->head.prev = &list->head;
166 list->head.next = &list->head;
167}
168
169/** Insert item before another item in doubly-linked circular list.
170 *
171 */
172static inline void list_insert_before(link_t *lnew, link_t *lold)
173{
174 lnew->next = lold;
175 lnew->prev = lold->prev;
176 lold->prev->next = lnew;
177 lold->prev = lnew;
178}
179
180/** Insert item after another item in doubly-linked circular list.
181 *
182 */
183static inline void list_insert_after(link_t *lnew, link_t *lold)
184{
185 lnew->prev = lold;
186 lnew->next = lold->next;
187 lold->next->prev = lnew;
188 lold->next = lnew;
189}
190
191/** Add item to the beginning of doubly-linked circular list
192 *
193 * Add item to the beginning of doubly-linked circular list.
194 *
195 * @param link Pointer to link_t structure to be added.
196 * @param list Pointer to list_t structure.
197 *
198 */
199_NO_TRACE static inline void list_prepend(link_t *link, list_t *list)
200{
201 list_insert_after(link, &list->head);
202}
203
204/** Add item to the end of doubly-linked circular list
205 *
206 * Add item to the end of doubly-linked circular list.
207 *
208 * @param link Pointer to link_t structure to be added.
209 * @param list Pointer to list_t structure.
210 *
211 */
212_NO_TRACE static inline void list_append(link_t *link, list_t *list)
213{
214 list_insert_before(link, &list->head);
215}
216
217/** Remove item from doubly-linked circular list
218 *
219 * Remove item from doubly-linked circular list.
220 *
221 * @param link Pointer to link_t structure to be removed from the list
222 * it is contained in.
223 *
224 */
225_NO_TRACE static inline void list_remove(link_t *link)
226{
227 if ((link->prev != NULL) && (link->next != NULL)) {
228 link->next->prev = link->prev;
229 link->prev->next = link->next;
230 }
231
232 link_initialize(link);
233}
234
235/** Query emptiness of doubly-linked circular list
236 *
237 * Query emptiness of doubly-linked circular list.
238 *
239 * @param list Pointer to lins_t structure.
240 *
241 */
242_NO_TRACE static inline bool list_empty(const list_t *list)
243{
244 return (list->head.next == &list->head);
245}
246
247/** Get first item in list.
248 *
249 * @param list Pointer to list_t structure.
250 *
251 * @return Head item of the list.
252 * @return NULL if the list is empty.
253 *
254 */
255static inline link_t *list_first(const list_t *list)
256{
257 return ((list->head.next == &list->head) ? NULL : list->head.next);
258}
259
260/** Get last item in list.
261 *
262 * @param list Pointer to list_t structure.
263 *
264 * @return Head item of the list.
265 * @return NULL if the list is empty.
266 *
267 */
268static inline link_t *list_last(const list_t *list)
269{
270 return (list->head.prev == &list->head) ? NULL : list->head.prev;
271}
272
273/** Get next item in list.
274 *
275 * @param link Current item link
276 * @param list List containing @a link
277 *
278 * @return Next item or NULL if @a link is the last item.
279 */
280static inline link_t *list_next(const link_t *link, const list_t *list)
281{
282 return (link->next == &list->head) ? NULL : link->next;
283}
284
285/** Get previous item in list.
286 *
287 * @param link Current item link
288 * @param list List containing @a link
289 *
290 * @return Previous item or NULL if @a link is the first item.
291 */
292static inline link_t *list_prev(const link_t *link, const list_t *list)
293{
294 return (link->prev == &list->head) ? NULL : link->prev;
295}
296
297/** Split or concatenate headless doubly-linked circular list
298 *
299 * Split or concatenate headless doubly-linked circular list.
300 *
301 * Note that the algorithm works both directions:
302 * concatenates splitted lists and splits concatenated lists.
303 *
304 * @param part1 Pointer to link_t structure leading the first
305 * (half of the headless) list.
306 * @param part2 Pointer to link_t structure leading the second
307 * (half of the headless) list.
308 *
309 */
310_NO_TRACE static inline void headless_list_split_or_concat(link_t *part1, link_t *part2)
311{
312 part1->prev->next = part2;
313 part2->prev->next = part1;
314
315 link_t *hlp = part1->prev;
316
317 part1->prev = part2->prev;
318 part2->prev = hlp;
319}
320
321/** Split headless doubly-linked circular list
322 *
323 * Split headless doubly-linked circular list.
324 *
325 * @param part1 Pointer to link_t structure leading
326 * the first half of the headless list.
327 * @param part2 Pointer to link_t structure leading
328 * the second half of the headless list.
329 *
330 */
331_NO_TRACE static inline void headless_list_split(link_t *part1, link_t *part2)
332{
333 headless_list_split_or_concat(part1, part2);
334}
335
336/** Concatenate two headless doubly-linked circular lists
337 *
338 * Concatenate two headless doubly-linked circular lists.
339 *
340 * @param part1 Pointer to link_t structure leading
341 * the first headless list.
342 * @param part2 Pointer to link_t structure leading
343 * the second headless list.
344 *
345 */
346_NO_TRACE static inline void headless_list_concat(link_t *part1, link_t *part2)
347{
348 headless_list_split_or_concat(part1, part2);
349}
350
351/** Concatenate two lists
352 *
353 * Concatenate lists @a list1 and @a list2, producing a single
354 * list @a list1 containing items from both (in @a list1, @a list2
355 * order) and empty list @a list2.
356 *
357 * @param list1 First list and concatenated output
358 * @param list2 Second list and empty output.
359 *
360 */
361_NO_TRACE static inline void list_concat(list_t *list1, list_t *list2)
362{
363 list_splice(list2, list1->head.prev);
364}
365
366/** Get n-th item in a list.
367 *
368 * @param list Pointer to link_t structure representing the list.
369 * @param n Item number (indexed from zero).
370 *
371 * @return n-th item of the list.
372 * @return NULL if no n-th item found.
373 *
374 */
375static inline link_t *list_nth(const list_t *list, size_t n)
376{
377 size_t cnt = 0;
378
379 link_t *link = list_first(list);
380 while (link != NULL) {
381 if (cnt == n)
382 return link;
383
384 cnt++;
385 link = list_next(link, list);
386 }
387
388 return NULL;
389}
390
391/** Verify that argument type is a pointer to link_t (at compile time).
392 *
393 * This can be used to check argument type in a macro.
394 */
395static inline const void *list_link_to_void(const link_t *link)
396{
397 return link;
398}
399
400/** Determine if link is used.
401 *
402 * @param link Link
403 * @return @c true if link is used, @c false if not.
404 */
405static inline bool link_used(link_t *link)
406{
407 if (link->prev == NULL && link->next == NULL)
408 return false;
409
410 assert(link->prev != NULL && link->next != NULL);
411 return true;
412}
413
414static inline void *list_pop_internal(list_t *list, ptrdiff_t offset)
415{
416 link_t *tmp = list_first(list);
417 if (tmp == NULL)
418 return NULL;
419
420 list_remove(tmp);
421 return (void *) (((uint8_t *) tmp) - offset);
422}
423
424__HELENOS_DECLS_END;
425
426#endif
427
428/** @}
429 */
Note: See TracBrowser for help on using the repository browser.