source: mainline/uspace/lib/c/include/adt/list.h@ 70815a24

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 70815a24 was b1c57a8, checked in by Jakub Jermar <jakub@…>, 11 years ago

Merge from lp:~adam-hraska+lp/helenos/rcu/.

Only merge from the feature branch and resolve all conflicts.

  • Property mode set to 100644
File size: 10.5 KB
Line 
1/*
2 * Copyright (c) 2001-2004 Jakub Jermar
3 * Copyright (c) 2013 Jiri Svoboda
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *
10 * - Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * - Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * - The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30/** @addtogroup libc
31 * @{
32 */
33/** @file
34 */
35
36#ifndef LIBC_LIST_H_
37#define LIBC_LIST_H_
38
39#include <assert.h>
40#include <stdbool.h>
41#include <stddef.h>
42
43/** Doubly linked list link. */
44typedef struct link {
45 struct link *prev; /**< Pointer to the previous item in the list. */
46 struct link *next; /**< Pointer to the next item in the list. */
47} link_t;
48
49/** Doubly linked list. */
50typedef struct list {
51 link_t head; /**< List head. Does not have any data. */
52} list_t;
53
54/** Declare and initialize statically allocated list.
55 *
56 * @param name Name of the new statically allocated list.
57 *
58 */
59#define LIST_INITIALIZE(name) \
60 list_t name = LIST_INITIALIZER(name)
61
62/** Initializer for statically allocated list.
63 *
64 * @code
65 * struct named_list {
66 * const char *name;
67 * list_t list;
68 * } var = {
69 * .name = "default name",
70 * .list = LIST_INITIALIZER(name_list.list)
71 * };
72 * @endcode
73 *
74 * @param name Name of the new statically allocated list.
75 *
76 */
77#define LIST_INITIALIZER(name) \
78 { \
79 .head = { \
80 .prev = &(name).head, \
81 .next = &(name).head \
82 } \
83 }
84
85#define list_get_instance(link, type, member) \
86 ((type *) (((void *)(link)) - list_link_to_void(&(((type *) NULL)->member))))
87
88#define list_foreach(list, member, itype, iterator) \
89 for (itype *iterator = NULL; iterator == NULL; iterator = (itype *) 1) \
90 for (link_t *_link = (list).head.next; \
91 iterator = list_get_instance(_link, itype, member), \
92 _link != &(list).head; _link = _link->next)
93
94#define list_foreach_rev(list, member, itype, iterator) \
95 for (itype *iterator = NULL; iterator == NULL; iterator = (itype *) 1) \
96 for (link_t *_link = (list).head.prev; \
97 iterator = list_get_instance(_link, itype, member), \
98 _link != &(list).head; _link = _link->prev)
99
100/** Unlike list_foreach(), allows removing items while traversing a list.
101 *
102 * @code
103 * list_t mylist;
104 * typedef struct item {
105 * int value;
106 * link_t item_link;
107 * } item_t;
108 *
109 * //..
110 *
111 * // Print each list element's value and remove the element from the list.
112 * list_foreach_safe(mylist, cur_link, next_link) {
113 * item_t *cur_item = list_get_instance(cur_link, item_t, item_link);
114 * printf("%d\n", cur_item->value);
115 * list_remove(cur_link);
116 * }
117 * @endcode
118 *
119 * @param list List to traverse.
120 * @param iterator Iterator to the current element of the list.
121 * The item this iterator points may be safely removed
122 * from the list.
123 * @param next_iter Iterator to the next element of the list.
124 */
125#define list_foreach_safe(list, iterator, next_iter) \
126 for (link_t *iterator = (list).head.next, \
127 *next_iter = iterator->next; \
128 iterator != &(list).head; \
129 iterator = next_iter, next_iter = iterator->next)
130
131#define assert_link_not_used(link) \
132 assert(!link_used(link))
133
134/** Returns true if the link is definitely part of a list. False if not sure. */
135static inline int link_in_use(link_t *link)
136{
137 return link->prev != NULL && link->next != NULL;
138}
139
140/** Initialize doubly-linked circular list link
141 *
142 * Initialize doubly-linked list link.
143 *
144 * @param link Pointer to link_t structure to be initialized.
145 *
146 */
147static inline void link_initialize(link_t *link)
148{
149 link->prev = NULL;
150 link->next = NULL;
151}
152
153/** Initialize doubly-linked circular list
154 *
155 * Initialize doubly-linked circular list.
156 *
157 * @param list Pointer to list_t structure.
158 *
159 */
160static inline void list_initialize(list_t *list)
161{
162 list->head.prev = &list->head;
163 list->head.next = &list->head;
164}
165
166/** Insert item before another item in doubly-linked circular list.
167 *
168 */
169static inline void list_insert_before(link_t *lnew, link_t *lold)
170{
171 lnew->next = lold;
172 lnew->prev = lold->prev;
173 lold->prev->next = lnew;
174 lold->prev = lnew;
175}
176
177/** Insert item after another item in doubly-linked circular list.
178 *
179 */
180static inline void list_insert_after(link_t *lnew, link_t *lold)
181{
182 lnew->prev = lold;
183 lnew->next = lold->next;
184 lold->next->prev = lnew;
185 lold->next = lnew;
186}
187
188/** Add item to the beginning of doubly-linked circular list
189 *
190 * Add item to the beginning of doubly-linked circular list.
191 *
192 * @param link Pointer to link_t structure to be added.
193 * @param list Pointer to list_t structure.
194 *
195 */
196static inline void list_prepend(link_t *link, list_t *list)
197{
198 list_insert_after(link, &list->head);
199}
200
201/** Add item to the end of doubly-linked circular list
202 *
203 * Add item to the end of doubly-linked circular list.
204 *
205 * @param link Pointer to link_t structure to be added.
206 * @param list Pointer to list_t structure.
207 *
208 */
209static inline void list_append(link_t *link, list_t *list)
210{
211 list_insert_before(link, &list->head);
212}
213
214/** Remove item from doubly-linked circular list
215 *
216 * Remove item from doubly-linked circular list.
217 *
218 * @param link Pointer to link_t structure to be removed from the list
219 * it is contained in.
220 *
221 */
222static inline void list_remove(link_t *link)
223{
224 if ((link->prev != NULL) && (link->next != NULL)) {
225 link->next->prev = link->prev;
226 link->prev->next = link->next;
227 }
228
229 link_initialize(link);
230}
231
232/** Query emptiness of doubly-linked circular list
233 *
234 * Query emptiness of doubly-linked circular list.
235 *
236 * @param list Pointer to lins_t structure.
237 *
238 */
239static inline int list_empty(const list_t *list)
240{
241 return (list->head.next == &list->head);
242}
243
244/** Get first item in list.
245 *
246 * @param list Pointer to list_t structure.
247 *
248 * @return Head item of the list.
249 * @return NULL if the list is empty.
250 *
251 */
252static inline link_t *list_first(const list_t *list)
253{
254 return ((list->head.next == &list->head) ? NULL : list->head.next);
255}
256
257/** Get last item in list.
258 *
259 * @param list Pointer to list_t structure.
260 *
261 * @return Head item of the list.
262 * @return NULL if the list is empty.
263 *
264 */
265static inline link_t *list_last(list_t *list)
266{
267 return (list->head.prev == &list->head) ? NULL : list->head.prev;
268}
269
270/** Get next item in list.
271 *
272 * @param link Current item link
273 * @param list List containing @a link
274 *
275 * @return Next item or NULL if @a link is the last item.
276 *
277 */
278static inline link_t *list_next(link_t *link, const list_t *list)
279{
280 return (link->next == &list->head) ? NULL : link->next;
281}
282
283/** Get previous item in list.
284 *
285 * @param link Current item link
286 * @param list List containing @a link
287 *
288 * @return Previous item or NULL if @a link is the first item.
289 *
290 */
291static inline link_t *list_prev(link_t *link, const list_t *list)
292{
293 return (link->prev == &list->head) ? NULL : link->prev;
294}
295
296/** Split or concatenate headless doubly-linked circular list
297 *
298 * Split or concatenate headless doubly-linked circular list.
299 *
300 * Note that the algorithm works both directions:
301 * concatenates splitted lists and splits concatenated lists.
302 *
303 * @param part1 Pointer to link_t structure leading the first
304 * (half of the headless) list.
305 * @param part2 Pointer to link_t structure leading the second
306 * (half of the headless) list.
307 *
308 */
309static inline void headless_list_split_or_concat(link_t *part1, link_t *part2)
310{
311 part1->prev->next = part2;
312 part2->prev->next = part1;
313
314 link_t *hlp = part1->prev;
315
316 part1->prev = part2->prev;
317 part2->prev = hlp;
318}
319
320/** Split headless doubly-linked circular list
321 *
322 * Split headless doubly-linked circular list.
323 *
324 * @param part1 Pointer to link_t structure leading
325 * the first half of the headless list.
326 * @param part2 Pointer to link_t structure leading
327 * the second half of the headless list.
328 *
329 */
330static inline void headless_list_split(link_t *part1, link_t *part2)
331{
332 headless_list_split_or_concat(part1, part2);
333}
334
335/** Concatenate two headless doubly-linked circular lists
336 *
337 * Concatenate two headless doubly-linked circular lists.
338 *
339 * @param part1 Pointer to link_t structure leading
340 * the first headless list.
341 * @param part2 Pointer to link_t structure leading
342 * the second headless list.
343 *
344 */
345static inline void headless_list_concat(link_t *part1, link_t *part2)
346{
347 headless_list_split_or_concat(part1, part2);
348}
349
350/** Get n-th item in a list.
351 *
352 * @param list Pointer to link_t structure representing the list.
353 * @param n Item number (indexed from zero).
354 *
355 * @return n-th item of the list.
356 * @return NULL if no n-th item found.
357 *
358 */
359static inline link_t *list_nth(list_t *list, unsigned int n)
360{
361 unsigned int cnt = 0;
362
363 link_t *link = list_first(list);
364 while (link != NULL) {
365 if (cnt == n)
366 return link;
367
368 cnt++;
369 link = list_next(link, list);
370 }
371
372 return NULL;
373}
374
375/** Verify that argument type is a pointer to link_t (at compile time).
376 *
377 * This can be used to check argument type in a macro.
378 */
379static inline const void *list_link_to_void(const link_t *link)
380{
381 return link;
382}
383
384/** Determine if link is used.
385 *
386 * @param link Link
387 * @return @c true if link is used, @c false if not.
388 */
389static inline bool link_used(link_t *link)
390{
391 if (link->prev == NULL && link->next == NULL)
392 return false;
393
394 assert(link->prev != NULL && link->next != NULL);
395 return true;
396}
397
398extern int list_member(const link_t *, const list_t *);
399extern void list_concat(list_t *, list_t *);
400extern unsigned int list_count(const list_t *);
401
402#endif
403
404/** @}
405 */
Note: See TracBrowser for help on using the repository browser.