source: mainline/uspace/lib/c/generic/time.c@ c0c38c7c

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since c0c38c7c was 1ab8539, checked in by Martin Decky <martin@…>, 11 years ago

remove system.uptime sysinfo entry since it is redundant
cleanup the time handling routines

  • still more cleanup is needed here, the code is a wild combination of quasi-POSIX API (with all the brain-dead types, etc.) and HelenOS API
  • Property mode set to 100644
File size: 23.2 KB
Line 
1/*
2 * Copyright (c) 2006 Ondrej Palkovsky
3 * Copyright (c) 2011 Petr Koupy
4 * Copyright (c) 2011 Jiri Zarevucky
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * - Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * - Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * - The name of the author may not be used to endorse or promote products
17 * derived from this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31/** @addtogroup libc
32 * @{
33 */
34/** @file
35 */
36
37#include <sys/time.h>
38#include <time.h>
39#include <stdbool.h>
40#include <libarch/barrier.h>
41#include <macros.h>
42#include <errno.h>
43#include <sysinfo.h>
44#include <as.h>
45#include <ddi.h>
46#include <libc.h>
47#include <stdint.h>
48#include <stdio.h>
49#include <ctype.h>
50#include <assert.h>
51#include <unistd.h>
52#include <loc.h>
53#include <device/clock_dev.h>
54#include <malloc.h>
55
56#define ASCTIME_BUF_LEN 26
57
58#define HOURS_PER_DAY 24
59#define MINS_PER_HOUR 60
60#define SECS_PER_MIN 60
61#define MINS_PER_DAY (MINS_PER_HOUR * HOURS_PER_DAY)
62#define SECS_PER_HOUR (SECS_PER_MIN * MINS_PER_HOUR)
63#define SECS_PER_DAY (SECS_PER_HOUR * HOURS_PER_DAY)
64
65/** Pointer to kernel shared variables with time */
66struct {
67 volatile sysarg_t seconds1;
68 volatile sysarg_t useconds;
69 volatile sysarg_t seconds2;
70} *ktime = NULL;
71
72static async_sess_t *clock_conn = NULL;
73
74/** Check whether the year is a leap year.
75 *
76 * @param year Year since 1900 (e.g. for 1970, the value is 70).
77 *
78 * @return true if year is a leap year, false otherwise
79 *
80 */
81static bool is_leap_year(time_t year)
82{
83 year += 1900;
84
85 if (year % 400 == 0)
86 return true;
87
88 if (year % 100 == 0)
89 return false;
90
91 if (year % 4 == 0)
92 return true;
93
94 return false;
95}
96
97/** How many days there are in the given month
98 *
99 * Return how many days there are in the given month of the given year.
100 * Note that year is only taken into account if month is February.
101 *
102 * @param year Year since 1900 (can be negative).
103 * @param mon Month of the year. 0 for January, 11 for December.
104 *
105 * @return Number of days in the specified month.
106 *
107 */
108static int days_in_month(time_t year, time_t mon)
109{
110 assert(mon >= 0);
111 assert(mon <= 11);
112
113 static int month_days[] = {
114 31, 0, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
115 };
116
117 if (mon == 1) {
118 /* February */
119 year += 1900;
120 return is_leap_year(year) ? 29 : 28;
121 }
122
123 return month_days[mon];
124}
125
126/** Which day of that year it is.
127 *
128 * For specified year, month and day of month, return which day of that year
129 * it is.
130 *
131 * For example, given date 2011-01-03, the corresponding expression is:
132 * day_of_year(111, 0, 3) == 2
133 *
134 * @param year Year (year 1900 = 0, can be negative).
135 * @param mon Month (January = 0).
136 * @param mday Day of month (First day is 1).
137 *
138 * @return Day of year (First day is 0).
139 *
140 */
141static int day_of_year(time_t year, time_t mon, time_t mday)
142{
143 static int mdays[] = {
144 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
145 };
146
147 static int leap_mdays[] = {
148 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335
149 };
150
151 return (is_leap_year(year) ? leap_mdays[mon] : mdays[mon]) + mday - 1;
152}
153
154/** Integer division that rounds to negative infinity.
155 *
156 * Used by some functions in this module.
157 *
158 * @param op1 Dividend.
159 * @param op2 Divisor.
160 *
161 * @return Rounded quotient.
162 *
163 */
164static time_t floor_div(time_t op1, time_t op2)
165{
166 if ((op1 >= 0) || (op1 % op2 == 0))
167 return op1 / op2;
168
169 return op1 / op2 - 1;
170}
171
172/** Modulo that rounds to negative infinity.
173 *
174 * Used by some functions in this module.
175 *
176 * @param op1 Dividend.
177 * @param op2 Divisor.
178 *
179 * @return Remainder.
180 *
181 */
182static time_t floor_mod(time_t op1, time_t op2)
183{
184 time_t div = floor_div(op1, op2);
185
186 /*
187 * (a / b) * b + a % b == a
188 * Thus: a % b == a - (a / b) * b
189 */
190
191 time_t result = op1 - div * op2;
192
193 /* Some paranoid checking to ensure there is mistake here. */
194 assert(result >= 0);
195 assert(result < op2);
196 assert(div * op2 + result == op1);
197
198 return result;
199}
200
201/** Number of days since the Epoch.
202 *
203 * Epoch is 1970-01-01, which is also equal to day 0.
204 *
205 * @param year Year (year 1900 = 0, may be negative).
206 * @param mon Month (January = 0).
207 * @param mday Day of month (first day = 1).
208 *
209 * @return Number of days since the Epoch.
210 *
211 */
212static time_t days_since_epoch(time_t year, time_t mon, time_t mday)
213{
214 return (year - 70) * 365 + floor_div(year - 69, 4) -
215 floor_div(year - 1, 100) + floor_div(year + 299, 400) +
216 day_of_year(year, mon, mday);
217}
218
219/** Seconds since the Epoch.
220 *
221 * See also days_since_epoch().
222 *
223 * @param tm Normalized broken-down time.
224 *
225 * @return Number of seconds since the epoch, not counting leap seconds.
226 *
227 */
228static time_t secs_since_epoch(const struct tm *tm)
229{
230 return days_since_epoch(tm->tm_year, tm->tm_mon, tm->tm_mday) *
231 SECS_PER_DAY + tm->tm_hour * SECS_PER_HOUR +
232 tm->tm_min * SECS_PER_MIN + tm->tm_sec;
233}
234
235/** Which day of week the specified date is.
236 *
237 * @param year Year (year 1900 = 0).
238 * @param mon Month (January = 0).
239 * @param mday Day of month (first = 1).
240 *
241 * @return Day of week (Sunday = 0).
242 *
243 */
244static time_t day_of_week(time_t year, time_t mon, time_t mday)
245{
246 /* 1970-01-01 is Thursday */
247 return floor_mod(days_since_epoch(year, mon, mday) + 4, 7);
248}
249
250/** Normalize the broken-down time.
251 *
252 * Optionally add specified amount of seconds.
253 *
254 * @param tm Broken-down time to normalize.
255 * @param sec_add Seconds to add.
256 *
257 * @return 0 on success, -1 on overflow
258 *
259 */
260static int normalize_time(struct tm *tm, time_t sec_add)
261{
262 // TODO: DST correction
263
264 /* Set initial values. */
265 time_t sec = tm->tm_sec + sec_add;
266 time_t min = tm->tm_min;
267 time_t hour = tm->tm_hour;
268 time_t day = tm->tm_mday - 1;
269 time_t mon = tm->tm_mon;
270 time_t year = tm->tm_year;
271
272 /* Adjust time. */
273 min += floor_div(sec, SECS_PER_MIN);
274 sec = floor_mod(sec, SECS_PER_MIN);
275 hour += floor_div(min, MINS_PER_HOUR);
276 min = floor_mod(min, MINS_PER_HOUR);
277 day += floor_div(hour, HOURS_PER_DAY);
278 hour = floor_mod(hour, HOURS_PER_DAY);
279
280 /* Adjust month. */
281 year += floor_div(mon, 12);
282 mon = floor_mod(mon, 12);
283
284 /* Now the difficult part - days of month. */
285
286 /* First, deal with whole cycles of 400 years = 146097 days. */
287 year += floor_div(day, 146097) * 400;
288 day = floor_mod(day, 146097);
289
290 /* Then, go in one year steps. */
291 if (mon <= 1) {
292 /* January and February. */
293 while (day > 365) {
294 day -= is_leap_year(year) ? 366 : 365;
295 year++;
296 }
297 } else {
298 /* Rest of the year. */
299 while (day > 365) {
300 day -= is_leap_year(year + 1) ? 366 : 365;
301 year++;
302 }
303 }
304
305 /* Finally, finish it off month per month. */
306 while (day >= days_in_month(year, mon)) {
307 day -= days_in_month(year, mon);
308 mon++;
309
310 if (mon >= 12) {
311 mon -= 12;
312 year++;
313 }
314 }
315
316 /* Calculate the remaining two fields. */
317 tm->tm_yday = day_of_year(year, mon, day + 1);
318 tm->tm_wday = day_of_week(year, mon, day + 1);
319
320 /* And put the values back to the struct. */
321 tm->tm_sec = (int) sec;
322 tm->tm_min = (int) min;
323 tm->tm_hour = (int) hour;
324 tm->tm_mday = (int) day + 1;
325 tm->tm_mon = (int) mon;
326
327 /* Casts to work around POSIX brain-damage. */
328 if (year > ((int) INT_MAX) || year < ((int) INT_MIN)) {
329 tm->tm_year = (year < 0) ? ((int) INT_MIN) : ((int) INT_MAX);
330 return -1;
331 }
332
333 tm->tm_year = (int) year;
334 return 0;
335}
336
337/** Which day the week-based year starts on.
338 *
339 * Relative to the first calendar day. E.g. if the year starts
340 * on December 31st, the return value is -1.
341 *
342 * @param Year since 1900.
343 *
344 * @return Offset of week-based year relative to calendar year.
345 *
346 */
347static int wbyear_offset(int year)
348{
349 int start_wday = day_of_week(year, 0, 1);
350
351 return floor_mod(4 - start_wday, 7) - 3;
352}
353
354/** Week-based year of the specified time.
355 *
356 * @param tm Normalized broken-down time.
357 *
358 * @return Week-based year.
359 *
360 */
361static int wbyear(const struct tm *tm)
362{
363 int day = tm->tm_yday - wbyear_offset(tm->tm_year);
364
365 if (day < 0) {
366 /* Last week of previous year. */
367 return tm->tm_year - 1;
368 }
369
370 if (day > 364 + is_leap_year(tm->tm_year)) {
371 /* First week of next year. */
372 return tm->tm_year + 1;
373 }
374
375 /* All the other days are in the calendar year. */
376 return tm->tm_year;
377}
378
379/** Week number of the year (assuming weeks start on Sunday).
380 *
381 * The first Sunday of January is the first day of week 1;
382 * days in the new year before this are in week 0.
383 *
384 * @param tm Normalized broken-down time.
385 *
386 * @return The week number (0 - 53).
387 *
388 */
389static int sun_week_number(const struct tm *tm)
390{
391 int first_day = (7 - day_of_week(tm->tm_year, 0, 1)) % 7;
392
393 return (tm->tm_yday - first_day + 7) / 7;
394}
395
396/** Week number of the year (assuming weeks start on Monday).
397 *
398 * If the week containing January 1st has four or more days
399 * in the new year, then it is considered week 1. Otherwise,
400 * it is the last week of the previous year, and the next week
401 * is week 1. Both January 4th and the first Thursday
402 * of January are always in week 1.
403 *
404 * @param tm Normalized broken-down time.
405 *
406 * @return The week number (1 - 53).
407 *
408 */
409static int iso_week_number(const struct tm *tm)
410{
411 int day = tm->tm_yday - wbyear_offset(tm->tm_year);
412
413 if (day < 0) {
414 /* Last week of previous year. */
415 return 53;
416 }
417
418 if (day > 364 + is_leap_year(tm->tm_year)) {
419 /* First week of next year. */
420 return 1;
421 }
422
423 /* All the other days give correct answer. */
424 return (day / 7 + 1);
425}
426
427/** Week number of the year (assuming weeks start on Monday).
428 *
429 * The first Monday of January is the first day of week 1;
430 * days in the new year before this are in week 0.
431 *
432 * @param tm Normalized broken-down time.
433 *
434 * @return The week number (0 - 53).
435 *
436 */
437static int mon_week_number(const struct tm *tm)
438{
439 int first_day = (1 - day_of_week(tm->tm_year, 0, 1)) % 7;
440
441 return (tm->tm_yday - first_day + 7) / 7;
442}
443
444/** Add microseconds to given timeval.
445 *
446 * @param tv Destination timeval.
447 * @param usecs Number of microseconds to add.
448 *
449 */
450void tv_add(struct timeval *tv, suseconds_t usecs)
451{
452 tv->tv_sec += usecs / 1000000;
453 tv->tv_usec += usecs % 1000000;
454
455 if (tv->tv_usec > 1000000) {
456 tv->tv_sec++;
457 tv->tv_usec -= 1000000;
458 }
459}
460
461/** Subtract two timevals.
462 *
463 * @param tv1 First timeval.
464 * @param tv2 Second timeval.
465 *
466 * @return Difference between tv1 and tv2 (tv1 - tv2) in
467 * microseconds.
468 *
469 */
470suseconds_t tv_sub(struct timeval *tv1, struct timeval *tv2)
471{
472 return (tv1->tv_usec - tv2->tv_usec) +
473 ((tv1->tv_sec - tv2->tv_sec) * 1000000);
474}
475
476/** Decide if one timeval is greater than the other.
477 *
478 * @param t1 First timeval.
479 * @param t2 Second timeval.
480 *
481 * @return True if tv1 is greater than tv2.
482 * @return False otherwise.
483 *
484 */
485int tv_gt(struct timeval *tv1, struct timeval *tv2)
486{
487 if (tv1->tv_sec > tv2->tv_sec)
488 return true;
489
490 if ((tv1->tv_sec == tv2->tv_sec) && (tv1->tv_usec > tv2->tv_usec))
491 return true;
492
493 return false;
494}
495
496/** Decide if one timeval is greater than or equal to the other.
497 *
498 * @param tv1 First timeval.
499 * @param tv2 Second timeval.
500 *
501 * @return True if tv1 is greater than or equal to tv2.
502 * @return False otherwise.
503 *
504 */
505int tv_gteq(struct timeval *tv1, struct timeval *tv2)
506{
507 if (tv1->tv_sec > tv2->tv_sec)
508 return true;
509
510 if ((tv1->tv_sec == tv2->tv_sec) && (tv1->tv_usec >= tv2->tv_usec))
511 return true;
512
513 return false;
514}
515
516/** Get time of day.
517 *
518 * The time variables are memory mapped (read-only) from kernel which
519 * updates them periodically.
520 *
521 * As it is impossible to read 2 values atomically, we use a trick:
522 * First we read the seconds, then we read the microseconds, then we
523 * read the seconds again. If a second elapsed in the meantime, set
524 * the microseconds to zero.
525 *
526 * This assures that the values returned by two subsequent calls
527 * to gettimeofday() are monotonous.
528 *
529 */
530void gettimeofday(struct timeval *tv, struct timezone *tz)
531{
532 if (tz) {
533 tz->tz_minuteswest = 0;
534 tz->tz_dsttime = DST_NONE;
535 }
536
537 if (clock_conn == NULL) {
538 category_id_t cat_id;
539 int rc = loc_category_get_id("clock", &cat_id, IPC_FLAG_BLOCKING);
540 if (rc != EOK)
541 goto fallback;
542
543 service_id_t *svc_ids;
544 size_t svc_cnt;
545 rc = loc_category_get_svcs(cat_id, &svc_ids, &svc_cnt);
546 if (rc != EOK)
547 goto fallback;
548
549 if (svc_cnt == 0)
550 goto fallback;
551
552 char *svc_name;
553 rc = loc_service_get_name(svc_ids[0], &svc_name);
554 free(svc_ids);
555 if (rc != EOK)
556 goto fallback;
557
558 service_id_t svc_id;
559 rc = loc_service_get_id(svc_name, &svc_id, 0);
560 free(svc_name);
561 if (rc != EOK)
562 goto fallback;
563
564 clock_conn = loc_service_connect(EXCHANGE_SERIALIZE,
565 svc_id, IPC_FLAG_BLOCKING);
566 if (!clock_conn)
567 goto fallback;
568 }
569
570 struct tm time;
571 int rc = clock_dev_time_get(clock_conn, &time);
572 if (rc != EOK)
573 goto fallback;
574
575 tv->tv_usec = 0;
576 tv->tv_sec = mktime(&time);
577
578 return;
579
580fallback:
581 getuptime(tv);
582}
583
584void getuptime(struct timeval *tv)
585{
586 if (ktime == NULL) {
587 uintptr_t faddr;
588 int rc = sysinfo_get_value("clock.faddr", &faddr);
589 if (rc != EOK) {
590 errno = rc;
591 goto fallback;
592 }
593
594 void *addr = AS_AREA_ANY;
595 rc = physmem_map(faddr, 1, AS_AREA_READ | AS_AREA_CACHEABLE,
596 &addr);
597 if (rc != EOK) {
598 as_area_destroy(addr);
599 errno = rc;
600 goto fallback;
601 }
602
603 ktime = addr;
604 }
605
606 sysarg_t s2 = ktime->seconds2;
607
608 read_barrier();
609 tv->tv_usec = ktime->useconds;
610
611 read_barrier();
612 sysarg_t s1 = ktime->seconds1;
613
614 if (s1 != s2) {
615 tv->tv_sec = max(s1, s2);
616 tv->tv_usec = 0;
617 } else
618 tv->tv_sec = s1;
619
620 return;
621
622fallback:
623 tv->tv_sec = 0;
624 tv->tv_usec = 0;
625}
626
627time_t time(time_t *tloc)
628{
629 struct timeval tv;
630 gettimeofday(&tv, NULL);
631
632 if (tloc)
633 *tloc = tv.tv_sec;
634
635 return tv.tv_sec;
636}
637
638/** Wait unconditionally for specified number of microseconds
639 *
640 */
641int usleep(useconds_t usec)
642{
643 (void) __SYSCALL1(SYS_THREAD_USLEEP, usec);
644 return 0;
645}
646
647void udelay(useconds_t time)
648{
649 (void) __SYSCALL1(SYS_THREAD_UDELAY, (sysarg_t) time);
650}
651
652
653/** Wait unconditionally for specified number of seconds
654 *
655 */
656unsigned int sleep(unsigned int sec)
657{
658 /*
659 * Sleep in 1000 second steps to support
660 * full argument range
661 */
662
663 while (sec > 0) {
664 unsigned int period = (sec > 1000) ? 1000 : sec;
665
666 usleep(period * 1000000);
667 sec -= period;
668 }
669
670 return 0;
671}
672
673/** Get time from broken-down time.
674 *
675 * First normalize the provided broken-down time
676 * (moves all values to their proper bounds) and
677 * then try to calculate the appropriate time_t
678 * representation.
679 *
680 * @param tm Broken-down time.
681 *
682 * @return time_t representation of the time.
683 * @return Undefined value on overflow.
684 *
685 */
686time_t mktime(struct tm *tm)
687{
688 // TODO: take DST flag into account
689 // TODO: detect overflow
690
691 normalize_time(tm, 0);
692 return secs_since_epoch(tm);
693}
694
695/*
696 * FIXME: This requires POSIX-correct snprintf.
697 * Otherwise it won't work with non-ASCII chars.
698 */
699#define APPEND(...) \
700 { \
701 consumed = snprintf(ptr, remaining, __VA_ARGS__); \
702 if (consumed >= remaining) \
703 return 0; \
704 \
705 ptr += consumed; \
706 remaining -= consumed; \
707 }
708
709#define RECURSE(fmt) \
710 { \
711 consumed = strftime(ptr, remaining, fmt, tm); \
712 if (consumed == 0) \
713 return 0; \
714 \
715 ptr += consumed; \
716 remaining -= consumed; \
717 }
718
719#define TO_12H(hour) \
720 (((hour) > 12) ? ((hour) - 12) : \
721 (((hour) == 0) ? 12 : (hour)))
722
723/** Convert time and date to a string.
724 *
725 * @param s Buffer to write string to.
726 * @param maxsize Size of the buffer.
727 * @param format Format of the output.
728 * @param tm Broken-down time to format.
729 *
730 * @return Number of bytes written.
731 *
732 */
733size_t strftime(char *restrict s, size_t maxsize,
734 const char *restrict format, const struct tm *restrict tm)
735{
736 assert(s != NULL);
737 assert(format != NULL);
738 assert(tm != NULL);
739
740 // TODO: use locale
741
742 static const char *wday_abbr[] = {
743 "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
744 };
745
746 static const char *wday[] = {
747 "Sunday", "Monday", "Tuesday", "Wednesday",
748 "Thursday", "Friday", "Saturday"
749 };
750
751 static const char *mon_abbr[] = {
752 "Jan", "Feb", "Mar", "Apr", "May", "Jun",
753 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
754 };
755
756 static const char *mon[] = {
757 "January", "February", "March", "April", "May", "June", "July",
758 "August", "September", "October", "November", "December"
759 };
760
761 if (maxsize < 1)
762 return 0;
763
764 char *ptr = s;
765 size_t consumed;
766 size_t remaining = maxsize;
767
768 while (*format != '\0') {
769 if (*format != '%') {
770 APPEND("%c", *format);
771 format++;
772 continue;
773 }
774
775 format++;
776 if ((*format == '0') || (*format == '+')) {
777 // TODO: padding
778 format++;
779 }
780
781 while (isdigit(*format)) {
782 // TODO: padding
783 format++;
784 }
785
786 if ((*format == 'O') || (*format == 'E')) {
787 // TODO: locale's alternative format
788 format++;
789 }
790
791 switch (*format) {
792 case 'a':
793 APPEND("%s", wday_abbr[tm->tm_wday]);
794 break;
795 case 'A':
796 APPEND("%s", wday[tm->tm_wday]);
797 break;
798 case 'b':
799 APPEND("%s", mon_abbr[tm->tm_mon]);
800 break;
801 case 'B':
802 APPEND("%s", mon[tm->tm_mon]);
803 break;
804 case 'c':
805 // TODO: locale-specific datetime format
806 RECURSE("%Y-%m-%d %H:%M:%S");
807 break;
808 case 'C':
809 APPEND("%02d", (1900 + tm->tm_year) / 100);
810 break;
811 case 'd':
812 APPEND("%02d", tm->tm_mday);
813 break;
814 case 'D':
815 RECURSE("%m/%d/%y");
816 break;
817 case 'e':
818 APPEND("%2d", tm->tm_mday);
819 break;
820 case 'F':
821 RECURSE("%+4Y-%m-%d");
822 break;
823 case 'g':
824 APPEND("%02d", wbyear(tm) % 100);
825 break;
826 case 'G':
827 APPEND("%d", wbyear(tm));
828 break;
829 case 'h':
830 RECURSE("%b");
831 break;
832 case 'H':
833 APPEND("%02d", tm->tm_hour);
834 break;
835 case 'I':
836 APPEND("%02d", TO_12H(tm->tm_hour));
837 break;
838 case 'j':
839 APPEND("%03d", tm->tm_yday);
840 break;
841 case 'k':
842 APPEND("%2d", tm->tm_hour);
843 break;
844 case 'l':
845 APPEND("%2d", TO_12H(tm->tm_hour));
846 break;
847 case 'm':
848 APPEND("%02d", tm->tm_mon);
849 break;
850 case 'M':
851 APPEND("%02d", tm->tm_min);
852 break;
853 case 'n':
854 APPEND("\n");
855 break;
856 case 'p':
857 APPEND("%s", tm->tm_hour < 12 ? "AM" : "PM");
858 break;
859 case 'P':
860 APPEND("%s", tm->tm_hour < 12 ? "am" : "PM");
861 break;
862 case 'r':
863 RECURSE("%I:%M:%S %p");
864 break;
865 case 'R':
866 RECURSE("%H:%M");
867 break;
868 case 's':
869 APPEND("%ld", secs_since_epoch(tm));
870 break;
871 case 'S':
872 APPEND("%02d", tm->tm_sec);
873 break;
874 case 't':
875 APPEND("\t");
876 break;
877 case 'T':
878 RECURSE("%H:%M:%S");
879 break;
880 case 'u':
881 APPEND("%d", (tm->tm_wday == 0) ? 7 : tm->tm_wday);
882 break;
883 case 'U':
884 APPEND("%02d", sun_week_number(tm));
885 break;
886 case 'V':
887 APPEND("%02d", iso_week_number(tm));
888 break;
889 case 'w':
890 APPEND("%d", tm->tm_wday);
891 break;
892 case 'W':
893 APPEND("%02d", mon_week_number(tm));
894 break;
895 case 'x':
896 // TODO: locale-specific date format
897 RECURSE("%Y-%m-%d");
898 break;
899 case 'X':
900 // TODO: locale-specific time format
901 RECURSE("%H:%M:%S");
902 break;
903 case 'y':
904 APPEND("%02d", tm->tm_year % 100);
905 break;
906 case 'Y':
907 APPEND("%d", 1900 + tm->tm_year);
908 break;
909 case 'z':
910 // TODO: timezone
911 break;
912 case 'Z':
913 // TODO: timezone
914 break;
915 case '%':
916 APPEND("%%");
917 break;
918 default:
919 /* Invalid specifier, print verbatim. */
920 while (*format != '%')
921 format--;
922
923 APPEND("%%");
924 break;
925 }
926
927 format++;
928 }
929
930 return maxsize - remaining;
931}
932
933/** Convert a time value to a broken-down UTC time/
934 *
935 * @param time Time to convert
936 * @param result Structure to store the result to
937 *
938 * @return EOK or a negative error code
939 *
940 */
941int time_utc2tm(const time_t time, struct tm *restrict result)
942{
943 assert(result != NULL);
944
945 /* Set result to epoch. */
946 result->tm_sec = 0;
947 result->tm_min = 0;
948 result->tm_hour = 0;
949 result->tm_mday = 1;
950 result->tm_mon = 0;
951 result->tm_year = 70; /* 1970 */
952
953 if (normalize_time(result, time) == -1)
954 return EOVERFLOW;
955
956 return EOK;
957}
958
959/** Convert a time value to a NULL-terminated string.
960 *
961 * The format is "Wed Jun 30 21:49:08 1993\n" expressed in UTC.
962 *
963 * @param time Time to convert.
964 * @param buf Buffer to store the string to, must be at least
965 * ASCTIME_BUF_LEN bytes long.
966 *
967 * @return EOK or a negative error code.
968 *
969 */
970int time_utc2str(const time_t time, char *restrict buf)
971{
972 struct tm tm;
973 int ret = time_utc2tm(time, &tm);
974 if (ret != EOK)
975 return ret;
976
977 time_tm2str(&tm, buf);
978 return EOK;
979}
980
981/** Convert broken-down time to a NULL-terminated string.
982 *
983 * The format is "Sun Jan 1 00:00:00 1970\n". (Obsolete)
984 *
985 * @param timeptr Broken-down time structure.
986 * @param buf Buffer to store string to, must be at least
987 * ASCTIME_BUF_LEN bytes long.
988 *
989 */
990void time_tm2str(const struct tm *restrict timeptr, char *restrict buf)
991{
992 assert(timeptr != NULL);
993 assert(buf != NULL);
994
995 static const char *wday[] = {
996 "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
997 };
998
999 static const char *mon[] = {
1000 "Jan", "Feb", "Mar", "Apr", "May", "Jun",
1001 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
1002 };
1003
1004 snprintf(buf, ASCTIME_BUF_LEN, "%s %s %2d %02d:%02d:%02d %d\n",
1005 wday[timeptr->tm_wday],
1006 mon[timeptr->tm_mon],
1007 timeptr->tm_mday, timeptr->tm_hour,
1008 timeptr->tm_min, timeptr->tm_sec,
1009 1900 + timeptr->tm_year);
1010}
1011
1012/** Converts a time value to a broken-down local time.
1013 *
1014 * Time is expressed relative to the user's specified timezone.
1015 *
1016 * @param timer Time to convert.
1017 * @param result Structure to store the result to.
1018 *
1019 * @return EOK on success or a negative error code.
1020 *
1021 */
1022int time_local2tm(const time_t time, struct tm *restrict result)
1023{
1024 // TODO: Deal with timezones.
1025 // Currently assumes system and all times are in UTC
1026
1027 /* Set result to epoch. */
1028 result->tm_sec = 0;
1029 result->tm_min = 0;
1030 result->tm_hour = 0;
1031 result->tm_mday = 1;
1032 result->tm_mon = 0;
1033 result->tm_year = 70; /* 1970 */
1034
1035 if (normalize_time(result, time) == -1)
1036 return EOVERFLOW;
1037
1038 return EOK;
1039}
1040
1041/** Convert the calendar time to a NULL-terminated string.
1042 *
1043 * The format is "Wed Jun 30 21:49:08 1993\n" expressed relative to the
1044 * user's specified timezone.
1045 *
1046 * @param timer Time to convert.
1047 * @param buf Buffer to store the string to. Must be at least
1048 * ASCTIME_BUF_LEN bytes long.
1049 *
1050 * @return EOK on success or a negative error code.
1051 *
1052 */
1053int time_local2str(const time_t time, char *buf)
1054{
1055 struct tm loctime;
1056 int ret = time_local2tm(time, &loctime);
1057 if (ret != EOK)
1058 return ret;
1059
1060 time_tm2str(&loctime, buf);
1061 return EOK;
1062}
1063
1064/** Calculate the difference between two times, in seconds.
1065 *
1066 * @param time1 First time.
1067 * @param time0 Second time.
1068 *
1069 * @return Time difference in seconds.
1070 *
1071 */
1072double difftime(time_t time1, time_t time0)
1073{
1074 return (double) (time1 - time0);
1075}
1076
1077/** @}
1078 */
Note: See TracBrowser for help on using the repository browser.