source: mainline/uspace/lib/c/generic/time.c@ 8c85f0f

Last change on this file since 8c85f0f was 205f1add, checked in by Jakub Jermar <jakub@…>, 7 years ago

Get rid of sys/time.h

This commit moves the POSIX-like time functionality from libc's
sys/time.h to libposix and introduces C99-like or HelenOS-specific
interfaces to libc.

Specifically, use of sys/time.h, struct timeval, suseconds_t and
gettimeofday is replaced by time.h (C99), struct timespec (C99),
usec_t (HelenOS) and getuptime / getrealtime (HelenOS).

  • Property mode set to 100644
File size: 24.3 KB
Line 
1/*
2 * Copyright (c) 2006 Ondrej Palkovsky
3 * Copyright (c) 2011 Petr Koupy
4 * Copyright (c) 2011 Jiri Zarevucky
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * - Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * - Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * - The name of the author may not be used to endorse or promote products
17 * derived from this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31/** @addtogroup libc
32 * @{
33 */
34/** @file
35 */
36
37#include <time.h>
38#include <stdbool.h>
39#include <barrier.h>
40#include <macros.h>
41#include <errno.h>
42#include <sysinfo.h>
43#include <as.h>
44#include <ddi.h>
45#include <libc.h>
46#include <stdint.h>
47#include <stdio.h>
48#include <ctype.h>
49#include <assert.h>
50#include <loc.h>
51#include <device/clock_dev.h>
52
53#define ASCTIME_BUF_LEN 26
54
55#define HOURS_PER_DAY 24
56#define MINS_PER_HOUR 60
57#define SECS_PER_MIN 60
58#define NSECS_PER_SEC 1000000000ll
59#define MINS_PER_DAY (MINS_PER_HOUR * HOURS_PER_DAY)
60#define SECS_PER_HOUR (SECS_PER_MIN * MINS_PER_HOUR)
61#define SECS_PER_DAY (SECS_PER_HOUR * HOURS_PER_DAY)
62
63/** Pointer to kernel shared variables with time */
64struct {
65 volatile sysarg_t seconds1;
66 volatile sysarg_t useconds;
67 volatile sysarg_t seconds2;
68} *ktime = NULL;
69
70static async_sess_t *clock_conn = NULL;
71
72/** Check whether the year is a leap year.
73 *
74 * @param year Year since 1900 (e.g. for 1970, the value is 70).
75 *
76 * @return true if year is a leap year, false otherwise
77 *
78 */
79static bool is_leap_year(time_t year)
80{
81 year += 1900;
82
83 if (year % 400 == 0)
84 return true;
85
86 if (year % 100 == 0)
87 return false;
88
89 if (year % 4 == 0)
90 return true;
91
92 return false;
93}
94
95/** How many days there are in the given month
96 *
97 * Return how many days there are in the given month of the given year.
98 * Note that year is only taken into account if month is February.
99 *
100 * @param year Year since 1900 (can be negative).
101 * @param mon Month of the year. 0 for January, 11 for December.
102 *
103 * @return Number of days in the specified month.
104 *
105 */
106static int days_in_month(time_t year, time_t mon)
107{
108 assert(mon >= 0);
109 assert(mon <= 11);
110
111 static int month_days[] = {
112 31, 0, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
113 };
114
115 if (mon == 1) {
116 /* February */
117 year += 1900;
118 return is_leap_year(year) ? 29 : 28;
119 }
120
121 return month_days[mon];
122}
123
124/** Which day of that year it is.
125 *
126 * For specified year, month and day of month, return which day of that year
127 * it is.
128 *
129 * For example, given date 2011-01-03, the corresponding expression is:
130 * day_of_year(111, 0, 3) == 2
131 *
132 * @param year Year (year 1900 = 0, can be negative).
133 * @param mon Month (January = 0).
134 * @param mday Day of month (First day is 1).
135 *
136 * @return Day of year (First day is 0).
137 *
138 */
139static int day_of_year(time_t year, time_t mon, time_t mday)
140{
141 static int mdays[] = {
142 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
143 };
144
145 static int leap_mdays[] = {
146 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335
147 };
148
149 return (is_leap_year(year) ? leap_mdays[mon] : mdays[mon]) + mday - 1;
150}
151
152/** Integer division that rounds to negative infinity.
153 *
154 * Used by some functions in this module.
155 *
156 * @param op1 Dividend.
157 * @param op2 Divisor.
158 *
159 * @return Rounded quotient.
160 *
161 */
162static time_t floor_div(time_t op1, time_t op2)
163{
164 if ((op1 >= 0) || (op1 % op2 == 0))
165 return op1 / op2;
166
167 return op1 / op2 - 1;
168}
169
170/** Modulo that rounds to negative infinity.
171 *
172 * Used by some functions in this module.
173 *
174 * @param op1 Dividend.
175 * @param op2 Divisor.
176 *
177 * @return Remainder.
178 *
179 */
180static time_t floor_mod(time_t op1, time_t op2)
181{
182 time_t div = floor_div(op1, op2);
183
184 /*
185 * (a / b) * b + a % b == a
186 * Thus: a % b == a - (a / b) * b
187 */
188
189 time_t result = op1 - div * op2;
190
191 /* Some paranoid checking to ensure there is mistake here. */
192 assert(result >= 0);
193 assert(result < op2);
194 assert(div * op2 + result == op1);
195
196 return result;
197}
198
199/** Number of days since the Epoch.
200 *
201 * Epoch is 1970-01-01, which is also equal to day 0.
202 *
203 * @param year Year (year 1900 = 0, may be negative).
204 * @param mon Month (January = 0).
205 * @param mday Day of month (first day = 1).
206 *
207 * @return Number of days since the Epoch.
208 *
209 */
210static time_t days_since_epoch(time_t year, time_t mon, time_t mday)
211{
212 return (year - 70) * 365 + floor_div(year - 69, 4) -
213 floor_div(year - 1, 100) + floor_div(year + 299, 400) +
214 day_of_year(year, mon, mday);
215}
216
217/** Seconds since the Epoch.
218 *
219 * See also days_since_epoch().
220 *
221 * @param tm Normalized broken-down time.
222 *
223 * @return Number of seconds since the epoch, not counting leap seconds.
224 *
225 */
226static time_t secs_since_epoch(const struct tm *tm)
227{
228 return days_since_epoch(tm->tm_year, tm->tm_mon, tm->tm_mday) *
229 SECS_PER_DAY + tm->tm_hour * SECS_PER_HOUR +
230 tm->tm_min * SECS_PER_MIN + tm->tm_sec;
231}
232
233/** Which day of week the specified date is.
234 *
235 * @param year Year (year 1900 = 0).
236 * @param mon Month (January = 0).
237 * @param mday Day of month (first = 1).
238 *
239 * @return Day of week (Sunday = 0).
240 *
241 */
242static time_t day_of_week(time_t year, time_t mon, time_t mday)
243{
244 /* 1970-01-01 is Thursday */
245 return floor_mod(days_since_epoch(year, mon, mday) + 4, 7);
246}
247
248/** Normalize the broken-down time.
249 *
250 * Optionally add specified amount of seconds.
251 *
252 * @param tm Broken-down time to normalize.
253 * @param ts Timespec to add.
254 *
255 * @return 0 on success, -1 on overflow
256 *
257 */
258static int normalize_tm_ts(struct tm *tm, const struct timespec *ts)
259{
260 // TODO: DST correction
261
262 /* Set initial values. */
263 time_t nsec = tm->tm_nsec + ts->tv_nsec;
264 time_t sec = tm->tm_sec + ts->tv_sec;
265 time_t min = tm->tm_min;
266 time_t hour = tm->tm_hour;
267 time_t day = tm->tm_mday - 1;
268 time_t mon = tm->tm_mon;
269 time_t year = tm->tm_year;
270
271 /* Adjust time. */
272 sec += floor_div(nsec, NSECS_PER_SEC);
273 nsec = floor_mod(nsec, NSECS_PER_SEC);
274 min += floor_div(sec, SECS_PER_MIN);
275 sec = floor_mod(sec, SECS_PER_MIN);
276 hour += floor_div(min, MINS_PER_HOUR);
277 min = floor_mod(min, MINS_PER_HOUR);
278 day += floor_div(hour, HOURS_PER_DAY);
279 hour = floor_mod(hour, HOURS_PER_DAY);
280
281 /* Adjust month. */
282 year += floor_div(mon, 12);
283 mon = floor_mod(mon, 12);
284
285 /* Now the difficult part - days of month. */
286
287 /* First, deal with whole cycles of 400 years = 146097 days. */
288 year += floor_div(day, 146097) * 400;
289 day = floor_mod(day, 146097);
290
291 /* Then, go in one year steps. */
292 if (mon <= 1) {
293 /* January and February. */
294 while (day > 365) {
295 day -= is_leap_year(year) ? 366 : 365;
296 year++;
297 }
298 } else {
299 /* Rest of the year. */
300 while (day > 365) {
301 day -= is_leap_year(year + 1) ? 366 : 365;
302 year++;
303 }
304 }
305
306 /* Finally, finish it off month per month. */
307 while (day >= days_in_month(year, mon)) {
308 day -= days_in_month(year, mon);
309 mon++;
310
311 if (mon >= 12) {
312 mon -= 12;
313 year++;
314 }
315 }
316
317 /* Calculate the remaining two fields. */
318 tm->tm_yday = day_of_year(year, mon, day + 1);
319 tm->tm_wday = day_of_week(year, mon, day + 1);
320
321 /* And put the values back to the struct. */
322 tm->tm_nsec = (int) nsec;
323 tm->tm_sec = (int) sec;
324 tm->tm_min = (int) min;
325 tm->tm_hour = (int) hour;
326 tm->tm_mday = (int) day + 1;
327 tm->tm_mon = (int) mon;
328
329 /* Casts to work around POSIX brain-damage. */
330 if (year > ((int) INT_MAX) || year < ((int) INT_MIN)) {
331 tm->tm_year = (year < 0) ? ((int) INT_MIN) : ((int) INT_MAX);
332 return -1;
333 }
334
335 tm->tm_year = (int) year;
336 return 0;
337}
338
339static int normalize_tm_time(struct tm *tm, time_t time)
340{
341 struct timespec ts = {
342 .tv_sec = time,
343 .tv_nsec = 0
344 };
345
346 return normalize_tm_ts(tm, &ts);
347}
348
349
350/** Which day the week-based year starts on.
351 *
352 * Relative to the first calendar day. E.g. if the year starts
353 * on December 31st, the return value is -1.
354 *
355 * @param Year since 1900.
356 *
357 * @return Offset of week-based year relative to calendar year.
358 *
359 */
360static int wbyear_offset(int year)
361{
362 int start_wday = day_of_week(year, 0, 1);
363
364 return floor_mod(4 - start_wday, 7) - 3;
365}
366
367/** Week-based year of the specified time.
368 *
369 * @param tm Normalized broken-down time.
370 *
371 * @return Week-based year.
372 *
373 */
374static int wbyear(const struct tm *tm)
375{
376 int day = tm->tm_yday - wbyear_offset(tm->tm_year);
377
378 if (day < 0) {
379 /* Last week of previous year. */
380 return tm->tm_year - 1;
381 }
382
383 if (day > 364 + is_leap_year(tm->tm_year)) {
384 /* First week of next year. */
385 return tm->tm_year + 1;
386 }
387
388 /* All the other days are in the calendar year. */
389 return tm->tm_year;
390}
391
392/** Week number of the year (assuming weeks start on Sunday).
393 *
394 * The first Sunday of January is the first day of week 1;
395 * days in the new year before this are in week 0.
396 *
397 * @param tm Normalized broken-down time.
398 *
399 * @return The week number (0 - 53).
400 *
401 */
402static int sun_week_number(const struct tm *tm)
403{
404 int first_day = (7 - day_of_week(tm->tm_year, 0, 1)) % 7;
405
406 return (tm->tm_yday - first_day + 7) / 7;
407}
408
409/** Week number of the year (assuming weeks start on Monday).
410 *
411 * If the week containing January 1st has four or more days
412 * in the new year, then it is considered week 1. Otherwise,
413 * it is the last week of the previous year, and the next week
414 * is week 1. Both January 4th and the first Thursday
415 * of January are always in week 1.
416 *
417 * @param tm Normalized broken-down time.
418 *
419 * @return The week number (1 - 53).
420 *
421 */
422static int iso_week_number(const struct tm *tm)
423{
424 int day = tm->tm_yday - wbyear_offset(tm->tm_year);
425
426 if (day < 0) {
427 /* Last week of previous year. */
428 return 53;
429 }
430
431 if (day > 364 + is_leap_year(tm->tm_year)) {
432 /* First week of next year. */
433 return 1;
434 }
435
436 /* All the other days give correct answer. */
437 return (day / 7 + 1);
438}
439
440/** Week number of the year (assuming weeks start on Monday).
441 *
442 * The first Monday of January is the first day of week 1;
443 * days in the new year before this are in week 0.
444 *
445 * @param tm Normalized broken-down time.
446 *
447 * @return The week number (0 - 53).
448 *
449 */
450static int mon_week_number(const struct tm *tm)
451{
452 int first_day = (1 - day_of_week(tm->tm_year, 0, 1)) % 7;
453
454 return (tm->tm_yday - first_day + 7) / 7;
455}
456
457static void ts_normalize(struct timespec *ts)
458{
459 while (ts->tv_nsec >= NSECS_PER_SEC) {
460 ts->tv_sec++;
461 ts->tv_nsec -= NSECS_PER_SEC;
462 }
463 while (ts->tv_nsec < 0) {
464 ts->tv_sec--;
465 ts->tv_nsec += NSECS_PER_SEC;
466 }
467}
468
469/** Add nanoseconds to given timespec.
470 *
471 * @param ts Destination timespec.
472 * @param nsecs Number of nanoseconds to add.
473 *
474 */
475void ts_add_diff(struct timespec *ts, nsec_t nsecs)
476{
477 ts->tv_sec += nsecs / NSECS_PER_SEC;
478 ts->tv_nsec += nsecs % NSECS_PER_SEC;
479 ts_normalize(ts);
480}
481
482/** Add two timespecs.
483 *
484 * @param ts1 First timespec.
485 * @param ts2 Second timespec.
486 */
487void ts_add(struct timespec *ts1, const struct timespec *ts2)
488{
489 ts1->tv_sec += ts2->tv_sec;
490 ts1->tv_nsec += ts2->tv_nsec;
491 ts_normalize(ts1);
492}
493
494/** Subtract two timespecs.
495 *
496 * @param ts1 First timespec.
497 * @param ts2 Second timespec.
498 *
499 * @return Difference between ts1 and ts2 (ts1 - ts2) in nanoseconds.
500 *
501 */
502nsec_t ts_sub_diff(const struct timespec *ts1, const struct timespec *ts2)
503{
504 return (nsec_t) (ts1->tv_nsec - ts2->tv_nsec) +
505 SEC2NSEC((ts1->tv_sec - ts2->tv_sec));
506}
507
508/** Subtract two timespecs.
509 *
510 * @param ts1 First timespec.
511 * @param ts2 Second timespec.
512 *
513 */
514void ts_sub(struct timespec *ts1, const struct timespec *ts2)
515{
516 ts1->tv_sec -= ts2->tv_sec;
517 ts1->tv_nsec -= ts2->tv_nsec;
518 ts_normalize(ts1);
519}
520
521/** Decide if one timespec is greater than the other.
522 *
523 * @param ts1 First timespec.
524 * @param ts2 Second timespec.
525 *
526 * @return True if ts1 is greater than ts2.
527 * @return False otherwise.
528 *
529 */
530bool ts_gt(const struct timespec *ts1, const struct timespec *ts2)
531{
532 if (ts1->tv_sec > ts2->tv_sec)
533 return true;
534
535 if ((ts1->tv_sec == ts2->tv_sec) && (ts1->tv_nsec > ts2->tv_nsec))
536 return true;
537
538 return false;
539}
540
541/** Decide if one timespec is greater than or equal to the other.
542 *
543 * @param ts1 First timespec.
544 * @param ts2 Second timespec.
545 *
546 * @return True if ts1 is greater than or equal to ts2.
547 * @return False otherwise.
548 *
549 */
550bool ts_gteq(const struct timespec *ts1, const struct timespec *ts2)
551{
552 if (ts1->tv_sec > ts2->tv_sec)
553 return true;
554
555 if ((ts1->tv_sec == ts2->tv_sec) && (ts1->tv_nsec >= ts2->tv_nsec))
556 return true;
557
558 return false;
559}
560
561/** Get real time from a RTC service.
562 *
563 * @param[out] ts Timespec to hold time read from the RTC service (if
564 * available). If no such service exists, the returned time
565 * corresponds to system uptime.
566 */
567void getrealtime(struct timespec *ts)
568{
569 if (clock_conn == NULL) {
570 category_id_t cat_id;
571 errno_t rc = loc_category_get_id("clock", &cat_id, IPC_FLAG_BLOCKING);
572 if (rc != EOK)
573 goto fallback;
574
575 service_id_t *svc_ids;
576 size_t svc_cnt;
577 rc = loc_category_get_svcs(cat_id, &svc_ids, &svc_cnt);
578 if (rc != EOK)
579 goto fallback;
580
581 if (svc_cnt == 0)
582 goto fallback;
583
584 char *svc_name;
585 rc = loc_service_get_name(svc_ids[0], &svc_name);
586 free(svc_ids);
587 if (rc != EOK)
588 goto fallback;
589
590 service_id_t svc_id;
591 rc = loc_service_get_id(svc_name, &svc_id, 0);
592 free(svc_name);
593 if (rc != EOK)
594 goto fallback;
595
596 clock_conn = loc_service_connect(svc_id, INTERFACE_DDF,
597 IPC_FLAG_BLOCKING);
598 if (!clock_conn)
599 goto fallback;
600 }
601
602 struct tm time;
603 errno_t rc = clock_dev_time_get(clock_conn, &time);
604 if (rc != EOK)
605 goto fallback;
606
607 ts->tv_nsec = time.tm_nsec;
608 ts->tv_sec = mktime(&time);
609
610 return;
611
612fallback:
613 getuptime(ts);
614}
615
616/** Get system uptime.
617 *
618 * @param[out] ts Timespec to hold time current uptime.
619 *
620 * The time variables are memory mapped (read-only) from kernel which
621 * updates them periodically.
622 *
623 * As it is impossible to read 2 values atomically, we use a trick:
624 * First we read the seconds, then we read the microseconds, then we
625 * read the seconds again. If a second elapsed in the meantime, set
626 * the microseconds to zero.
627 *
628 * This assures that the values returned by two subsequent calls
629 * to getuptime() are monotonous.
630 *
631 */
632void getuptime(struct timespec *ts)
633{
634 if (ktime == NULL) {
635 uintptr_t faddr;
636 errno_t rc = sysinfo_get_value("clock.faddr", &faddr);
637 if (rc != EOK) {
638 errno = rc;
639 goto fallback;
640 }
641
642 void *addr = AS_AREA_ANY;
643 rc = physmem_map(faddr, 1, AS_AREA_READ | AS_AREA_CACHEABLE,
644 &addr);
645 if (rc != EOK) {
646 as_area_destroy(addr);
647 errno = rc;
648 goto fallback;
649 }
650
651 ktime = addr;
652 }
653
654 sysarg_t s2 = ktime->seconds2;
655
656 read_barrier();
657 ts->tv_nsec = USEC2NSEC(ktime->useconds);
658
659 read_barrier();
660 sysarg_t s1 = ktime->seconds1;
661
662 if (s1 != s2) {
663 ts->tv_sec = max(s1, s2);
664 ts->tv_nsec = 0;
665 } else
666 ts->tv_sec = s1;
667
668 return;
669
670fallback:
671 ts->tv_sec = 0;
672 ts->tv_nsec = 0;
673}
674
675time_t time(time_t *tloc)
676{
677 struct timespec ts;
678 getrealtime(&ts);
679
680 if (tloc)
681 *tloc = ts.tv_sec;
682
683 return ts.tv_sec;
684}
685
686void udelay(usec_t time)
687{
688 (void) __SYSCALL1(SYS_THREAD_UDELAY, (sysarg_t) time);
689}
690
691/** Get time from broken-down time.
692 *
693 * First normalize the provided broken-down time
694 * (moves all values to their proper bounds) and
695 * then try to calculate the appropriate time_t
696 * representation.
697 *
698 * @param tm Broken-down time.
699 *
700 * @return time_t representation of the time.
701 * @return Undefined value on overflow.
702 *
703 */
704time_t mktime(struct tm *tm)
705{
706 // TODO: take DST flag into account
707 // TODO: detect overflow
708
709 normalize_tm_time(tm, 0);
710 return secs_since_epoch(tm);
711}
712
713/*
714 * FIXME: This requires POSIX-correct snprintf.
715 * Otherwise it won't work with non-ASCII chars.
716 */
717#define APPEND(...) \
718 { \
719 consumed = snprintf(ptr, remaining, __VA_ARGS__); \
720 if (consumed >= remaining) \
721 return 0; \
722 \
723 ptr += consumed; \
724 remaining -= consumed; \
725 }
726
727#define RECURSE(fmt) \
728 { \
729 consumed = strftime(ptr, remaining, fmt, tm); \
730 if (consumed == 0) \
731 return 0; \
732 \
733 ptr += consumed; \
734 remaining -= consumed; \
735 }
736
737#define TO_12H(hour) \
738 (((hour) > 12) ? ((hour) - 12) : \
739 (((hour) == 0) ? 12 : (hour)))
740
741/** Convert time and date to a string.
742 *
743 * @param s Buffer to write string to.
744 * @param maxsize Size of the buffer.
745 * @param format Format of the output.
746 * @param tm Broken-down time to format.
747 *
748 * @return Number of bytes written.
749 *
750 */
751size_t strftime(char *restrict s, size_t maxsize,
752 const char *restrict format, const struct tm *restrict tm)
753{
754 assert(s != NULL);
755 assert(format != NULL);
756 assert(tm != NULL);
757
758 // TODO: use locale
759
760 static const char *wday_abbr[] = {
761 "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
762 };
763
764 static const char *wday[] = {
765 "Sunday", "Monday", "Tuesday", "Wednesday",
766 "Thursday", "Friday", "Saturday"
767 };
768
769 static const char *mon_abbr[] = {
770 "Jan", "Feb", "Mar", "Apr", "May", "Jun",
771 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
772 };
773
774 static const char *mon[] = {
775 "January", "February", "March", "April", "May", "June", "July",
776 "August", "September", "October", "November", "December"
777 };
778
779 if (maxsize < 1)
780 return 0;
781
782 char *ptr = s;
783 size_t consumed;
784 size_t remaining = maxsize;
785
786 while (*format != '\0') {
787 if (*format != '%') {
788 APPEND("%c", *format);
789 format++;
790 continue;
791 }
792
793 format++;
794 if ((*format == '0') || (*format == '+')) {
795 // TODO: padding
796 format++;
797 }
798
799 while (isdigit(*format)) {
800 // TODO: padding
801 format++;
802 }
803
804 if ((*format == 'O') || (*format == 'E')) {
805 // TODO: locale's alternative format
806 format++;
807 }
808
809 switch (*format) {
810 case 'a':
811 APPEND("%s", wday_abbr[tm->tm_wday]);
812 break;
813 case 'A':
814 APPEND("%s", wday[tm->tm_wday]);
815 break;
816 case 'b':
817 APPEND("%s", mon_abbr[tm->tm_mon]);
818 break;
819 case 'B':
820 APPEND("%s", mon[tm->tm_mon]);
821 break;
822 case 'c':
823 // TODO: locale-specific datetime format
824 RECURSE("%Y-%m-%d %H:%M:%S");
825 break;
826 case 'C':
827 APPEND("%02d", (1900 + tm->tm_year) / 100);
828 break;
829 case 'd':
830 APPEND("%02d", tm->tm_mday);
831 break;
832 case 'D':
833 RECURSE("%m/%d/%y");
834 break;
835 case 'e':
836 APPEND("%2d", tm->tm_mday);
837 break;
838 case 'F':
839 RECURSE("%+4Y-%m-%d");
840 break;
841 case 'g':
842 APPEND("%02d", wbyear(tm) % 100);
843 break;
844 case 'G':
845 APPEND("%d", wbyear(tm));
846 break;
847 case 'h':
848 RECURSE("%b");
849 break;
850 case 'H':
851 APPEND("%02d", tm->tm_hour);
852 break;
853 case 'I':
854 APPEND("%02d", TO_12H(tm->tm_hour));
855 break;
856 case 'j':
857 APPEND("%03d", tm->tm_yday);
858 break;
859 case 'k':
860 APPEND("%2d", tm->tm_hour);
861 break;
862 case 'l':
863 APPEND("%2d", TO_12H(tm->tm_hour));
864 break;
865 case 'm':
866 APPEND("%02d", tm->tm_mon);
867 break;
868 case 'M':
869 APPEND("%02d", tm->tm_min);
870 break;
871 case 'n':
872 APPEND("\n");
873 break;
874 case 'p':
875 APPEND("%s", tm->tm_hour < 12 ? "AM" : "PM");
876 break;
877 case 'P':
878 APPEND("%s", tm->tm_hour < 12 ? "am" : "PM");
879 break;
880 case 'r':
881 RECURSE("%I:%M:%S %p");
882 break;
883 case 'R':
884 RECURSE("%H:%M");
885 break;
886 case 's':
887 APPEND("%lld", secs_since_epoch(tm));
888 break;
889 case 'S':
890 APPEND("%02d", tm->tm_sec);
891 break;
892 case 't':
893 APPEND("\t");
894 break;
895 case 'T':
896 RECURSE("%H:%M:%S");
897 break;
898 case 'u':
899 APPEND("%d", (tm->tm_wday == 0) ? 7 : tm->tm_wday);
900 break;
901 case 'U':
902 APPEND("%02d", sun_week_number(tm));
903 break;
904 case 'V':
905 APPEND("%02d", iso_week_number(tm));
906 break;
907 case 'w':
908 APPEND("%d", tm->tm_wday);
909 break;
910 case 'W':
911 APPEND("%02d", mon_week_number(tm));
912 break;
913 case 'x':
914 // TODO: locale-specific date format
915 RECURSE("%Y-%m-%d");
916 break;
917 case 'X':
918 // TODO: locale-specific time format
919 RECURSE("%H:%M:%S");
920 break;
921 case 'y':
922 APPEND("%02d", tm->tm_year % 100);
923 break;
924 case 'Y':
925 APPEND("%d", 1900 + tm->tm_year);
926 break;
927 case 'z':
928 // TODO: timezone
929 break;
930 case 'Z':
931 // TODO: timezone
932 break;
933 case '%':
934 APPEND("%%");
935 break;
936 default:
937 /* Invalid specifier, print verbatim. */
938 while (*format != '%')
939 format--;
940
941 APPEND("%%");
942 break;
943 }
944
945 format++;
946 }
947
948 return maxsize - remaining;
949}
950
951/** Convert a time value to a broken-down UTC time/
952 *
953 * @param time Time to convert
954 * @param result Structure to store the result to
955 *
956 * @return EOK or an error code
957 *
958 */
959errno_t time_utc2tm(const time_t time, struct tm *restrict result)
960{
961 assert(result != NULL);
962
963 /* Set result to epoch. */
964 result->tm_nsec = 0;
965 result->tm_sec = 0;
966 result->tm_min = 0;
967 result->tm_hour = 0;
968 result->tm_mday = 1;
969 result->tm_mon = 0;
970 result->tm_year = 70; /* 1970 */
971
972 if (normalize_tm_time(result, time) == -1)
973 return EOVERFLOW;
974
975 return EOK;
976}
977
978/** Convert a time value to a NULL-terminated string.
979 *
980 * The format is "Wed Jun 30 21:49:08 1993\n" expressed in UTC.
981 *
982 * @param time Time to convert.
983 * @param buf Buffer to store the string to, must be at least
984 * ASCTIME_BUF_LEN bytes long.
985 *
986 * @return EOK or an error code.
987 *
988 */
989errno_t time_utc2str(const time_t time, char *restrict buf)
990{
991 struct tm tm;
992 errno_t ret = time_utc2tm(time, &tm);
993 if (ret != EOK)
994 return ret;
995
996 time_tm2str(&tm, buf);
997 return EOK;
998}
999
1000/** Convert broken-down time to a NULL-terminated string.
1001 *
1002 * The format is "Sun Jan 1 00:00:00 1970\n". (Obsolete)
1003 *
1004 * @param timeptr Broken-down time structure.
1005 * @param buf Buffer to store string to, must be at least
1006 * ASCTIME_BUF_LEN bytes long.
1007 *
1008 */
1009void time_tm2str(const struct tm *restrict timeptr, char *restrict buf)
1010{
1011 assert(timeptr != NULL);
1012 assert(buf != NULL);
1013
1014 static const char *wday[] = {
1015 "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
1016 };
1017
1018 static const char *mon[] = {
1019 "Jan", "Feb", "Mar", "Apr", "May", "Jun",
1020 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
1021 };
1022
1023 snprintf(buf, ASCTIME_BUF_LEN, "%s %s %2d %02d:%02d:%02d %d\n",
1024 wday[timeptr->tm_wday],
1025 mon[timeptr->tm_mon],
1026 timeptr->tm_mday, timeptr->tm_hour,
1027 timeptr->tm_min, timeptr->tm_sec,
1028 1900 + timeptr->tm_year);
1029}
1030
1031/** Converts a time value to a broken-down local time.
1032 *
1033 * Time is expressed relative to the user's specified timezone.
1034 *
1035 * @param tv Timeval to convert.
1036 * @param result Structure to store the result to.
1037 *
1038 * @return EOK on success or an error code.
1039 *
1040 */
1041errno_t time_ts2tm(const struct timespec *ts, struct tm *restrict result)
1042{
1043 // TODO: Deal with timezones.
1044 // Currently assumes system and all times are in UTC
1045
1046 /* Set result to epoch. */
1047 result->tm_nsec = 0;
1048 result->tm_sec = 0;
1049 result->tm_min = 0;
1050 result->tm_hour = 0;
1051 result->tm_mday = 1;
1052 result->tm_mon = 0;
1053 result->tm_year = 70; /* 1970 */
1054
1055 if (normalize_tm_ts(result, ts) == -1)
1056 return EOVERFLOW;
1057
1058 return EOK;
1059}
1060
1061/** Converts a time value to a broken-down local time.
1062 *
1063 * Time is expressed relative to the user's specified timezone.
1064 *
1065 * @param timer Time to convert.
1066 * @param result Structure to store the result to.
1067 *
1068 * @return EOK on success or an error code.
1069 *
1070 */
1071errno_t time_local2tm(const time_t time, struct tm *restrict result)
1072{
1073 struct timespec ts = {
1074 .tv_sec = time,
1075 .tv_nsec = 0
1076 };
1077
1078 return time_ts2tm(&ts, result);
1079}
1080
1081/** Convert the calendar time to a NULL-terminated string.
1082 *
1083 * The format is "Wed Jun 30 21:49:08 1993\n" expressed relative to the
1084 * user's specified timezone.
1085 *
1086 * @param timer Time to convert.
1087 * @param buf Buffer to store the string to. Must be at least
1088 * ASCTIME_BUF_LEN bytes long.
1089 *
1090 * @return EOK on success or an error code.
1091 *
1092 */
1093errno_t time_local2str(const time_t time, char *buf)
1094{
1095 struct tm loctime;
1096 errno_t ret = time_local2tm(time, &loctime);
1097 if (ret != EOK)
1098 return ret;
1099
1100 time_tm2str(&loctime, buf);
1101 return EOK;
1102}
1103
1104/** Calculate the difference between two times, in seconds.
1105 *
1106 * @param time1 First time.
1107 * @param time0 Second time.
1108 *
1109 * @return Time difference in seconds.
1110 *
1111 */
1112double difftime(time_t time1, time_t time0)
1113{
1114 return (double) (time1 - time0);
1115}
1116
1117/** @}
1118 */
Note: See TracBrowser for help on using the repository browser.