source: mainline/uspace/lib/c/generic/time.c@ 8610c2c

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 8610c2c was 38d150e, checked in by Jiri Svoboda <jiri@…>, 8 years ago

Prefer to get memory allocation functions through the standard stdlib header.

  • Property mode set to 100644
File size: 24.1 KB
Line 
1/*
2 * Copyright (c) 2006 Ondrej Palkovsky
3 * Copyright (c) 2011 Petr Koupy
4 * Copyright (c) 2011 Jiri Zarevucky
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * - Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * - Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * - The name of the author may not be used to endorse or promote products
17 * derived from this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31/** @addtogroup libc
32 * @{
33 */
34/** @file
35 */
36
37#include <sys/time.h>
38#include <time.h>
39#include <stdbool.h>
40#include <libarch/barrier.h>
41#include <macros.h>
42#include <errno.h>
43#include <sysinfo.h>
44#include <as.h>
45#include <ddi.h>
46#include <libc.h>
47#include <stdint.h>
48#include <stdio.h>
49#include <ctype.h>
50#include <assert.h>
51#include <loc.h>
52#include <device/clock_dev.h>
53#include <thread.h>
54
55#define ASCTIME_BUF_LEN 26
56
57#define HOURS_PER_DAY 24
58#define MINS_PER_HOUR 60
59#define SECS_PER_MIN 60
60#define USECS_PER_SEC 1000000
61#define MINS_PER_DAY (MINS_PER_HOUR * HOURS_PER_DAY)
62#define SECS_PER_HOUR (SECS_PER_MIN * MINS_PER_HOUR)
63#define SECS_PER_DAY (SECS_PER_HOUR * HOURS_PER_DAY)
64
65/** Pointer to kernel shared variables with time */
66struct {
67 volatile sysarg_t seconds1;
68 volatile sysarg_t useconds;
69 volatile sysarg_t seconds2;
70} *ktime = NULL;
71
72static async_sess_t *clock_conn = NULL;
73
74/** Check whether the year is a leap year.
75 *
76 * @param year Year since 1900 (e.g. for 1970, the value is 70).
77 *
78 * @return true if year is a leap year, false otherwise
79 *
80 */
81static bool is_leap_year(time_t year)
82{
83 year += 1900;
84
85 if (year % 400 == 0)
86 return true;
87
88 if (year % 100 == 0)
89 return false;
90
91 if (year % 4 == 0)
92 return true;
93
94 return false;
95}
96
97/** How many days there are in the given month
98 *
99 * Return how many days there are in the given month of the given year.
100 * Note that year is only taken into account if month is February.
101 *
102 * @param year Year since 1900 (can be negative).
103 * @param mon Month of the year. 0 for January, 11 for December.
104 *
105 * @return Number of days in the specified month.
106 *
107 */
108static int days_in_month(time_t year, time_t mon)
109{
110 assert(mon >= 0);
111 assert(mon <= 11);
112
113 static int month_days[] = {
114 31, 0, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
115 };
116
117 if (mon == 1) {
118 /* February */
119 year += 1900;
120 return is_leap_year(year) ? 29 : 28;
121 }
122
123 return month_days[mon];
124}
125
126/** Which day of that year it is.
127 *
128 * For specified year, month and day of month, return which day of that year
129 * it is.
130 *
131 * For example, given date 2011-01-03, the corresponding expression is:
132 * day_of_year(111, 0, 3) == 2
133 *
134 * @param year Year (year 1900 = 0, can be negative).
135 * @param mon Month (January = 0).
136 * @param mday Day of month (First day is 1).
137 *
138 * @return Day of year (First day is 0).
139 *
140 */
141static int day_of_year(time_t year, time_t mon, time_t mday)
142{
143 static int mdays[] = {
144 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
145 };
146
147 static int leap_mdays[] = {
148 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335
149 };
150
151 return (is_leap_year(year) ? leap_mdays[mon] : mdays[mon]) + mday - 1;
152}
153
154/** Integer division that rounds to negative infinity.
155 *
156 * Used by some functions in this module.
157 *
158 * @param op1 Dividend.
159 * @param op2 Divisor.
160 *
161 * @return Rounded quotient.
162 *
163 */
164static time_t floor_div(time_t op1, time_t op2)
165{
166 if ((op1 >= 0) || (op1 % op2 == 0))
167 return op1 / op2;
168
169 return op1 / op2 - 1;
170}
171
172/** Modulo that rounds to negative infinity.
173 *
174 * Used by some functions in this module.
175 *
176 * @param op1 Dividend.
177 * @param op2 Divisor.
178 *
179 * @return Remainder.
180 *
181 */
182static time_t floor_mod(time_t op1, time_t op2)
183{
184 time_t div = floor_div(op1, op2);
185
186 /*
187 * (a / b) * b + a % b == a
188 * Thus: a % b == a - (a / b) * b
189 */
190
191 time_t result = op1 - div * op2;
192
193 /* Some paranoid checking to ensure there is mistake here. */
194 assert(result >= 0);
195 assert(result < op2);
196 assert(div * op2 + result == op1);
197
198 return result;
199}
200
201/** Number of days since the Epoch.
202 *
203 * Epoch is 1970-01-01, which is also equal to day 0.
204 *
205 * @param year Year (year 1900 = 0, may be negative).
206 * @param mon Month (January = 0).
207 * @param mday Day of month (first day = 1).
208 *
209 * @return Number of days since the Epoch.
210 *
211 */
212static time_t days_since_epoch(time_t year, time_t mon, time_t mday)
213{
214 return (year - 70) * 365 + floor_div(year - 69, 4) -
215 floor_div(year - 1, 100) + floor_div(year + 299, 400) +
216 day_of_year(year, mon, mday);
217}
218
219/** Seconds since the Epoch.
220 *
221 * See also days_since_epoch().
222 *
223 * @param tm Normalized broken-down time.
224 *
225 * @return Number of seconds since the epoch, not counting leap seconds.
226 *
227 */
228static time_t secs_since_epoch(const struct tm *tm)
229{
230 return days_since_epoch(tm->tm_year, tm->tm_mon, tm->tm_mday) *
231 SECS_PER_DAY + tm->tm_hour * SECS_PER_HOUR +
232 tm->tm_min * SECS_PER_MIN + tm->tm_sec;
233}
234
235/** Which day of week the specified date is.
236 *
237 * @param year Year (year 1900 = 0).
238 * @param mon Month (January = 0).
239 * @param mday Day of month (first = 1).
240 *
241 * @return Day of week (Sunday = 0).
242 *
243 */
244static time_t day_of_week(time_t year, time_t mon, time_t mday)
245{
246 /* 1970-01-01 is Thursday */
247 return floor_mod(days_since_epoch(year, mon, mday) + 4, 7);
248}
249
250/** Normalize the broken-down time.
251 *
252 * Optionally add specified amount of seconds.
253 *
254 * @param tm Broken-down time to normalize.
255 * @param tv Timeval to add.
256 *
257 * @return 0 on success, -1 on overflow
258 *
259 */
260static int normalize_tm_tv(struct tm *tm, const struct timeval *tv)
261{
262 // TODO: DST correction
263
264 /* Set initial values. */
265 time_t usec = tm->tm_usec + tv->tv_usec;
266 time_t sec = tm->tm_sec + tv->tv_sec;
267 time_t min = tm->tm_min;
268 time_t hour = tm->tm_hour;
269 time_t day = tm->tm_mday - 1;
270 time_t mon = tm->tm_mon;
271 time_t year = tm->tm_year;
272
273 /* Adjust time. */
274 sec += floor_div(usec, USECS_PER_SEC);
275 usec = floor_mod(usec, USECS_PER_SEC);
276 min += floor_div(sec, SECS_PER_MIN);
277 sec = floor_mod(sec, SECS_PER_MIN);
278 hour += floor_div(min, MINS_PER_HOUR);
279 min = floor_mod(min, MINS_PER_HOUR);
280 day += floor_div(hour, HOURS_PER_DAY);
281 hour = floor_mod(hour, HOURS_PER_DAY);
282
283 /* Adjust month. */
284 year += floor_div(mon, 12);
285 mon = floor_mod(mon, 12);
286
287 /* Now the difficult part - days of month. */
288
289 /* First, deal with whole cycles of 400 years = 146097 days. */
290 year += floor_div(day, 146097) * 400;
291 day = floor_mod(day, 146097);
292
293 /* Then, go in one year steps. */
294 if (mon <= 1) {
295 /* January and February. */
296 while (day > 365) {
297 day -= is_leap_year(year) ? 366 : 365;
298 year++;
299 }
300 } else {
301 /* Rest of the year. */
302 while (day > 365) {
303 day -= is_leap_year(year + 1) ? 366 : 365;
304 year++;
305 }
306 }
307
308 /* Finally, finish it off month per month. */
309 while (day >= days_in_month(year, mon)) {
310 day -= days_in_month(year, mon);
311 mon++;
312
313 if (mon >= 12) {
314 mon -= 12;
315 year++;
316 }
317 }
318
319 /* Calculate the remaining two fields. */
320 tm->tm_yday = day_of_year(year, mon, day + 1);
321 tm->tm_wday = day_of_week(year, mon, day + 1);
322
323 /* And put the values back to the struct. */
324 tm->tm_usec = (int) usec;
325 tm->tm_sec = (int) sec;
326 tm->tm_min = (int) min;
327 tm->tm_hour = (int) hour;
328 tm->tm_mday = (int) day + 1;
329 tm->tm_mon = (int) mon;
330
331 /* Casts to work around POSIX brain-damage. */
332 if (year > ((int) INT_MAX) || year < ((int) INT_MIN)) {
333 tm->tm_year = (year < 0) ? ((int) INT_MIN) : ((int) INT_MAX);
334 return -1;
335 }
336
337 tm->tm_year = (int) year;
338 return 0;
339}
340
341static int normalize_tm_time(struct tm *tm, time_t time)
342{
343 struct timeval tv = {
344 .tv_sec = time,
345 .tv_usec = 0
346 };
347
348 return normalize_tm_tv(tm, &tv);
349}
350
351
352/** Which day the week-based year starts on.
353 *
354 * Relative to the first calendar day. E.g. if the year starts
355 * on December 31st, the return value is -1.
356 *
357 * @param Year since 1900.
358 *
359 * @return Offset of week-based year relative to calendar year.
360 *
361 */
362static int wbyear_offset(int year)
363{
364 int start_wday = day_of_week(year, 0, 1);
365
366 return floor_mod(4 - start_wday, 7) - 3;
367}
368
369/** Week-based year of the specified time.
370 *
371 * @param tm Normalized broken-down time.
372 *
373 * @return Week-based year.
374 *
375 */
376static int wbyear(const struct tm *tm)
377{
378 int day = tm->tm_yday - wbyear_offset(tm->tm_year);
379
380 if (day < 0) {
381 /* Last week of previous year. */
382 return tm->tm_year - 1;
383 }
384
385 if (day > 364 + is_leap_year(tm->tm_year)) {
386 /* First week of next year. */
387 return tm->tm_year + 1;
388 }
389
390 /* All the other days are in the calendar year. */
391 return tm->tm_year;
392}
393
394/** Week number of the year (assuming weeks start on Sunday).
395 *
396 * The first Sunday of January is the first day of week 1;
397 * days in the new year before this are in week 0.
398 *
399 * @param tm Normalized broken-down time.
400 *
401 * @return The week number (0 - 53).
402 *
403 */
404static int sun_week_number(const struct tm *tm)
405{
406 int first_day = (7 - day_of_week(tm->tm_year, 0, 1)) % 7;
407
408 return (tm->tm_yday - first_day + 7) / 7;
409}
410
411/** Week number of the year (assuming weeks start on Monday).
412 *
413 * If the week containing January 1st has four or more days
414 * in the new year, then it is considered week 1. Otherwise,
415 * it is the last week of the previous year, and the next week
416 * is week 1. Both January 4th and the first Thursday
417 * of January are always in week 1.
418 *
419 * @param tm Normalized broken-down time.
420 *
421 * @return The week number (1 - 53).
422 *
423 */
424static int iso_week_number(const struct tm *tm)
425{
426 int day = tm->tm_yday - wbyear_offset(tm->tm_year);
427
428 if (day < 0) {
429 /* Last week of previous year. */
430 return 53;
431 }
432
433 if (day > 364 + is_leap_year(tm->tm_year)) {
434 /* First week of next year. */
435 return 1;
436 }
437
438 /* All the other days give correct answer. */
439 return (day / 7 + 1);
440}
441
442/** Week number of the year (assuming weeks start on Monday).
443 *
444 * The first Monday of January is the first day of week 1;
445 * days in the new year before this are in week 0.
446 *
447 * @param tm Normalized broken-down time.
448 *
449 * @return The week number (0 - 53).
450 *
451 */
452static int mon_week_number(const struct tm *tm)
453{
454 int first_day = (1 - day_of_week(tm->tm_year, 0, 1)) % 7;
455
456 return (tm->tm_yday - first_day + 7) / 7;
457}
458
459static void tv_normalize(struct timeval *tv)
460{
461 while (tv->tv_usec > USECS_PER_SEC) {
462 tv->tv_sec++;
463 tv->tv_usec -= USECS_PER_SEC;
464 }
465 while (tv->tv_usec < 0) {
466 tv->tv_sec--;
467 tv->tv_usec += USECS_PER_SEC;
468 }
469}
470
471/** Add microseconds to given timeval.
472 *
473 * @param tv Destination timeval.
474 * @param usecs Number of microseconds to add.
475 *
476 */
477void tv_add_diff(struct timeval *tv, suseconds_t usecs)
478{
479 tv->tv_sec += usecs / USECS_PER_SEC;
480 tv->tv_usec += usecs % USECS_PER_SEC;
481 tv_normalize(tv);
482}
483
484/** Add two timevals.
485 *
486 * @param tv1 First timeval.
487 * @param tv2 Second timeval.
488 */
489void tv_add(struct timeval *tv1, struct timeval *tv2)
490{
491 tv1->tv_sec += tv2->tv_sec;
492 tv1->tv_usec += tv2->tv_usec;
493 tv_normalize(tv1);
494}
495
496/** Subtract two timevals.
497 *
498 * @param tv1 First timeval.
499 * @param tv2 Second timeval.
500 *
501 * @return Difference between tv1 and tv2 (tv1 - tv2) in
502 * microseconds.
503 *
504 */
505suseconds_t tv_sub_diff(struct timeval *tv1, struct timeval *tv2)
506{
507 return (tv1->tv_usec - tv2->tv_usec) +
508 ((tv1->tv_sec - tv2->tv_sec) * USECS_PER_SEC);
509}
510
511/** Subtract two timevals.
512 *
513 * @param tv1 First timeval.
514 * @param tv2 Second timeval.
515 *
516 */
517void tv_sub(struct timeval *tv1, struct timeval *tv2)
518{
519 tv1->tv_sec -= tv2->tv_sec;
520 tv1->tv_usec -= tv2->tv_usec;
521 tv_normalize(tv1);
522}
523
524/** Decide if one timeval is greater than the other.
525 *
526 * @param t1 First timeval.
527 * @param t2 Second timeval.
528 *
529 * @return True if tv1 is greater than tv2.
530 * @return False otherwise.
531 *
532 */
533int tv_gt(struct timeval *tv1, struct timeval *tv2)
534{
535 if (tv1->tv_sec > tv2->tv_sec)
536 return true;
537
538 if ((tv1->tv_sec == tv2->tv_sec) && (tv1->tv_usec > tv2->tv_usec))
539 return true;
540
541 return false;
542}
543
544/** Decide if one timeval is greater than or equal to the other.
545 *
546 * @param tv1 First timeval.
547 * @param tv2 Second timeval.
548 *
549 * @return True if tv1 is greater than or equal to tv2.
550 * @return False otherwise.
551 *
552 */
553int tv_gteq(struct timeval *tv1, struct timeval *tv2)
554{
555 if (tv1->tv_sec > tv2->tv_sec)
556 return true;
557
558 if ((tv1->tv_sec == tv2->tv_sec) && (tv1->tv_usec >= tv2->tv_usec))
559 return true;
560
561 return false;
562}
563
564/** Get time of day.
565 *
566 * The time variables are memory mapped (read-only) from kernel which
567 * updates them periodically.
568 *
569 * As it is impossible to read 2 values atomically, we use a trick:
570 * First we read the seconds, then we read the microseconds, then we
571 * read the seconds again. If a second elapsed in the meantime, set
572 * the microseconds to zero.
573 *
574 * This assures that the values returned by two subsequent calls
575 * to gettimeofday() are monotonous.
576 *
577 */
578void gettimeofday(struct timeval *tv, struct timezone *tz)
579{
580 if (tz) {
581 tz->tz_minuteswest = 0;
582 tz->tz_dsttime = DST_NONE;
583 }
584
585 if (clock_conn == NULL) {
586 category_id_t cat_id;
587 int rc = loc_category_get_id("clock", &cat_id, IPC_FLAG_BLOCKING);
588 if (rc != EOK)
589 goto fallback;
590
591 service_id_t *svc_ids;
592 size_t svc_cnt;
593 rc = loc_category_get_svcs(cat_id, &svc_ids, &svc_cnt);
594 if (rc != EOK)
595 goto fallback;
596
597 if (svc_cnt == 0)
598 goto fallback;
599
600 char *svc_name;
601 rc = loc_service_get_name(svc_ids[0], &svc_name);
602 free(svc_ids);
603 if (rc != EOK)
604 goto fallback;
605
606 service_id_t svc_id;
607 rc = loc_service_get_id(svc_name, &svc_id, 0);
608 free(svc_name);
609 if (rc != EOK)
610 goto fallback;
611
612 clock_conn = loc_service_connect(svc_id, INTERFACE_DDF,
613 IPC_FLAG_BLOCKING);
614 if (!clock_conn)
615 goto fallback;
616 }
617
618 struct tm time;
619 int rc = clock_dev_time_get(clock_conn, &time);
620 if (rc != EOK)
621 goto fallback;
622
623 tv->tv_usec = time.tm_usec;
624 tv->tv_sec = mktime(&time);
625
626 return;
627
628fallback:
629 getuptime(tv);
630}
631
632void getuptime(struct timeval *tv)
633{
634 if (ktime == NULL) {
635 uintptr_t faddr;
636 int rc = sysinfo_get_value("clock.faddr", &faddr);
637 if (rc != EOK) {
638 errno = rc;
639 goto fallback;
640 }
641
642 void *addr = AS_AREA_ANY;
643 rc = physmem_map(faddr, 1, AS_AREA_READ | AS_AREA_CACHEABLE,
644 &addr);
645 if (rc != EOK) {
646 as_area_destroy(addr);
647 errno = rc;
648 goto fallback;
649 }
650
651 ktime = addr;
652 }
653
654 sysarg_t s2 = ktime->seconds2;
655
656 read_barrier();
657 tv->tv_usec = ktime->useconds;
658
659 read_barrier();
660 sysarg_t s1 = ktime->seconds1;
661
662 if (s1 != s2) {
663 tv->tv_sec = max(s1, s2);
664 tv->tv_usec = 0;
665 } else
666 tv->tv_sec = s1;
667
668 return;
669
670fallback:
671 tv->tv_sec = 0;
672 tv->tv_usec = 0;
673}
674
675time_t time(time_t *tloc)
676{
677 struct timeval tv;
678 gettimeofday(&tv, NULL);
679
680 if (tloc)
681 *tloc = tv.tv_sec;
682
683 return tv.tv_sec;
684}
685
686void udelay(useconds_t time)
687{
688 (void) __SYSCALL1(SYS_THREAD_UDELAY, (sysarg_t) time);
689}
690
691/** Get time from broken-down time.
692 *
693 * First normalize the provided broken-down time
694 * (moves all values to their proper bounds) and
695 * then try to calculate the appropriate time_t
696 * representation.
697 *
698 * @param tm Broken-down time.
699 *
700 * @return time_t representation of the time.
701 * @return Undefined value on overflow.
702 *
703 */
704time_t mktime(struct tm *tm)
705{
706 // TODO: take DST flag into account
707 // TODO: detect overflow
708
709 normalize_tm_time(tm, 0);
710 return secs_since_epoch(tm);
711}
712
713/*
714 * FIXME: This requires POSIX-correct snprintf.
715 * Otherwise it won't work with non-ASCII chars.
716 */
717#define APPEND(...) \
718 { \
719 consumed = snprintf(ptr, remaining, __VA_ARGS__); \
720 if (consumed >= remaining) \
721 return 0; \
722 \
723 ptr += consumed; \
724 remaining -= consumed; \
725 }
726
727#define RECURSE(fmt) \
728 { \
729 consumed = strftime(ptr, remaining, fmt, tm); \
730 if (consumed == 0) \
731 return 0; \
732 \
733 ptr += consumed; \
734 remaining -= consumed; \
735 }
736
737#define TO_12H(hour) \
738 (((hour) > 12) ? ((hour) - 12) : \
739 (((hour) == 0) ? 12 : (hour)))
740
741/** Convert time and date to a string.
742 *
743 * @param s Buffer to write string to.
744 * @param maxsize Size of the buffer.
745 * @param format Format of the output.
746 * @param tm Broken-down time to format.
747 *
748 * @return Number of bytes written.
749 *
750 */
751size_t strftime(char *restrict s, size_t maxsize,
752 const char *restrict format, const struct tm *restrict tm)
753{
754 assert(s != NULL);
755 assert(format != NULL);
756 assert(tm != NULL);
757
758 // TODO: use locale
759
760 static const char *wday_abbr[] = {
761 "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
762 };
763
764 static const char *wday[] = {
765 "Sunday", "Monday", "Tuesday", "Wednesday",
766 "Thursday", "Friday", "Saturday"
767 };
768
769 static const char *mon_abbr[] = {
770 "Jan", "Feb", "Mar", "Apr", "May", "Jun",
771 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
772 };
773
774 static const char *mon[] = {
775 "January", "February", "March", "April", "May", "June", "July",
776 "August", "September", "October", "November", "December"
777 };
778
779 if (maxsize < 1)
780 return 0;
781
782 char *ptr = s;
783 size_t consumed;
784 size_t remaining = maxsize;
785
786 while (*format != '\0') {
787 if (*format != '%') {
788 APPEND("%c", *format);
789 format++;
790 continue;
791 }
792
793 format++;
794 if ((*format == '0') || (*format == '+')) {
795 // TODO: padding
796 format++;
797 }
798
799 while (isdigit(*format)) {
800 // TODO: padding
801 format++;
802 }
803
804 if ((*format == 'O') || (*format == 'E')) {
805 // TODO: locale's alternative format
806 format++;
807 }
808
809 switch (*format) {
810 case 'a':
811 APPEND("%s", wday_abbr[tm->tm_wday]);
812 break;
813 case 'A':
814 APPEND("%s", wday[tm->tm_wday]);
815 break;
816 case 'b':
817 APPEND("%s", mon_abbr[tm->tm_mon]);
818 break;
819 case 'B':
820 APPEND("%s", mon[tm->tm_mon]);
821 break;
822 case 'c':
823 // TODO: locale-specific datetime format
824 RECURSE("%Y-%m-%d %H:%M:%S");
825 break;
826 case 'C':
827 APPEND("%02d", (1900 + tm->tm_year) / 100);
828 break;
829 case 'd':
830 APPEND("%02d", tm->tm_mday);
831 break;
832 case 'D':
833 RECURSE("%m/%d/%y");
834 break;
835 case 'e':
836 APPEND("%2d", tm->tm_mday);
837 break;
838 case 'F':
839 RECURSE("%+4Y-%m-%d");
840 break;
841 case 'g':
842 APPEND("%02d", wbyear(tm) % 100);
843 break;
844 case 'G':
845 APPEND("%d", wbyear(tm));
846 break;
847 case 'h':
848 RECURSE("%b");
849 break;
850 case 'H':
851 APPEND("%02d", tm->tm_hour);
852 break;
853 case 'I':
854 APPEND("%02d", TO_12H(tm->tm_hour));
855 break;
856 case 'j':
857 APPEND("%03d", tm->tm_yday);
858 break;
859 case 'k':
860 APPEND("%2d", tm->tm_hour);
861 break;
862 case 'l':
863 APPEND("%2d", TO_12H(tm->tm_hour));
864 break;
865 case 'm':
866 APPEND("%02d", tm->tm_mon);
867 break;
868 case 'M':
869 APPEND("%02d", tm->tm_min);
870 break;
871 case 'n':
872 APPEND("\n");
873 break;
874 case 'p':
875 APPEND("%s", tm->tm_hour < 12 ? "AM" : "PM");
876 break;
877 case 'P':
878 APPEND("%s", tm->tm_hour < 12 ? "am" : "PM");
879 break;
880 case 'r':
881 RECURSE("%I:%M:%S %p");
882 break;
883 case 'R':
884 RECURSE("%H:%M");
885 break;
886 case 's':
887 APPEND("%ld", secs_since_epoch(tm));
888 break;
889 case 'S':
890 APPEND("%02d", tm->tm_sec);
891 break;
892 case 't':
893 APPEND("\t");
894 break;
895 case 'T':
896 RECURSE("%H:%M:%S");
897 break;
898 case 'u':
899 APPEND("%d", (tm->tm_wday == 0) ? 7 : tm->tm_wday);
900 break;
901 case 'U':
902 APPEND("%02d", sun_week_number(tm));
903 break;
904 case 'V':
905 APPEND("%02d", iso_week_number(tm));
906 break;
907 case 'w':
908 APPEND("%d", tm->tm_wday);
909 break;
910 case 'W':
911 APPEND("%02d", mon_week_number(tm));
912 break;
913 case 'x':
914 // TODO: locale-specific date format
915 RECURSE("%Y-%m-%d");
916 break;
917 case 'X':
918 // TODO: locale-specific time format
919 RECURSE("%H:%M:%S");
920 break;
921 case 'y':
922 APPEND("%02d", tm->tm_year % 100);
923 break;
924 case 'Y':
925 APPEND("%d", 1900 + tm->tm_year);
926 break;
927 case 'z':
928 // TODO: timezone
929 break;
930 case 'Z':
931 // TODO: timezone
932 break;
933 case '%':
934 APPEND("%%");
935 break;
936 default:
937 /* Invalid specifier, print verbatim. */
938 while (*format != '%')
939 format--;
940
941 APPEND("%%");
942 break;
943 }
944
945 format++;
946 }
947
948 return maxsize - remaining;
949}
950
951/** Convert a time value to a broken-down UTC time/
952 *
953 * @param time Time to convert
954 * @param result Structure to store the result to
955 *
956 * @return EOK or a negative error code
957 *
958 */
959int time_utc2tm(const time_t time, struct tm *restrict result)
960{
961 assert(result != NULL);
962
963 /* Set result to epoch. */
964 result->tm_usec = 0;
965 result->tm_sec = 0;
966 result->tm_min = 0;
967 result->tm_hour = 0;
968 result->tm_mday = 1;
969 result->tm_mon = 0;
970 result->tm_year = 70; /* 1970 */
971
972 if (normalize_tm_time(result, time) == -1)
973 return EOVERFLOW;
974
975 return EOK;
976}
977
978/** Convert a time value to a NULL-terminated string.
979 *
980 * The format is "Wed Jun 30 21:49:08 1993\n" expressed in UTC.
981 *
982 * @param time Time to convert.
983 * @param buf Buffer to store the string to, must be at least
984 * ASCTIME_BUF_LEN bytes long.
985 *
986 * @return EOK or a negative error code.
987 *
988 */
989int time_utc2str(const time_t time, char *restrict buf)
990{
991 struct tm tm;
992 int ret = time_utc2tm(time, &tm);
993 if (ret != EOK)
994 return ret;
995
996 time_tm2str(&tm, buf);
997 return EOK;
998}
999
1000/** Convert broken-down time to a NULL-terminated string.
1001 *
1002 * The format is "Sun Jan 1 00:00:00 1970\n". (Obsolete)
1003 *
1004 * @param timeptr Broken-down time structure.
1005 * @param buf Buffer to store string to, must be at least
1006 * ASCTIME_BUF_LEN bytes long.
1007 *
1008 */
1009void time_tm2str(const struct tm *restrict timeptr, char *restrict buf)
1010{
1011 assert(timeptr != NULL);
1012 assert(buf != NULL);
1013
1014 static const char *wday[] = {
1015 "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
1016 };
1017
1018 static const char *mon[] = {
1019 "Jan", "Feb", "Mar", "Apr", "May", "Jun",
1020 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
1021 };
1022
1023 snprintf(buf, ASCTIME_BUF_LEN, "%s %s %2d %02d:%02d:%02d %d\n",
1024 wday[timeptr->tm_wday],
1025 mon[timeptr->tm_mon],
1026 timeptr->tm_mday, timeptr->tm_hour,
1027 timeptr->tm_min, timeptr->tm_sec,
1028 1900 + timeptr->tm_year);
1029}
1030
1031/** Converts a time value to a broken-down local time.
1032 *
1033 * Time is expressed relative to the user's specified timezone.
1034 *
1035 * @param tv Timeval to convert.
1036 * @param result Structure to store the result to.
1037 *
1038 * @return EOK on success or a negative error code.
1039 *
1040 */
1041int time_tv2tm(const struct timeval *tv, struct tm *restrict result)
1042{
1043 // TODO: Deal with timezones.
1044 // Currently assumes system and all times are in UTC
1045
1046 /* Set result to epoch. */
1047 result->tm_usec = 0;
1048 result->tm_sec = 0;
1049 result->tm_min = 0;
1050 result->tm_hour = 0;
1051 result->tm_mday = 1;
1052 result->tm_mon = 0;
1053 result->tm_year = 70; /* 1970 */
1054
1055 if (normalize_tm_tv(result, tv) == -1)
1056 return EOVERFLOW;
1057
1058 return EOK;
1059}
1060
1061/** Converts a time value to a broken-down local time.
1062 *
1063 * Time is expressed relative to the user's specified timezone.
1064 *
1065 * @param timer Time to convert.
1066 * @param result Structure to store the result to.
1067 *
1068 * @return EOK on success or a negative error code.
1069 *
1070 */
1071int time_local2tm(const time_t time, struct tm *restrict result)
1072{
1073 struct timeval tv = {
1074 .tv_sec = time,
1075 .tv_usec = 0
1076 };
1077
1078 return time_tv2tm(&tv, result);
1079}
1080
1081/** Convert the calendar time to a NULL-terminated string.
1082 *
1083 * The format is "Wed Jun 30 21:49:08 1993\n" expressed relative to the
1084 * user's specified timezone.
1085 *
1086 * @param timer Time to convert.
1087 * @param buf Buffer to store the string to. Must be at least
1088 * ASCTIME_BUF_LEN bytes long.
1089 *
1090 * @return EOK on success or a negative error code.
1091 *
1092 */
1093int time_local2str(const time_t time, char *buf)
1094{
1095 struct tm loctime;
1096 int ret = time_local2tm(time, &loctime);
1097 if (ret != EOK)
1098 return ret;
1099
1100 time_tm2str(&loctime, buf);
1101 return EOK;
1102}
1103
1104/** Calculate the difference between two times, in seconds.
1105 *
1106 * @param time1 First time.
1107 * @param time0 Second time.
1108 *
1109 * @return Time difference in seconds.
1110 *
1111 */
1112double difftime(time_t time1, time_t time0)
1113{
1114 return (double) (time1 - time0);
1115}
1116
1117/** @}
1118 */
Note: See TracBrowser for help on using the repository browser.