source: mainline/uspace/lib/c/generic/time.c@ 43e660c

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 43e660c was f7e69f5, checked in by Maurizio Lombardi <m.lombardi85@…>, 13 years ago

Merge mainline changes

  • Property mode set to 100644
File size: 21.0 KB
Line 
1/*
2 * Copyright (c) 2006 Ondrej Palkovsky
3 * Copyright (c) 2011 Petr Koupy
4 * Copyright (c) 2011 Jiri Zarevucky
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * - Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * - Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * - The name of the author may not be used to endorse or promote products
17 * derived from this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31/** @addtogroup libc
32 * @{
33 */
34/** @file
35 */
36
37#include <sys/time.h>
38#include <time.h>
39#include <bool.h>
40#include <libarch/barrier.h>
41#include <macros.h>
42#include <errno.h>
43#include <sysinfo.h>
44#include <as.h>
45#include <ddi.h>
46#include <libc.h>
47#include <stdint.h>
48#include <stdio.h>
49#include <ctype.h>
50#include <assert.h>
51#include <unistd.h>
52
53#define ASCTIME_BUF_LEN 26
54
55/** Pointer to kernel shared variables with time */
56struct {
57 volatile sysarg_t seconds1;
58 volatile sysarg_t useconds;
59 volatile sysarg_t seconds2;
60} *ktime = NULL;
61
62/* Helper functions ***********************************************************/
63
64#define HOURS_PER_DAY (24)
65#define MINS_PER_HOUR (60)
66#define SECS_PER_MIN (60)
67#define MINS_PER_DAY (MINS_PER_HOUR * HOURS_PER_DAY)
68#define SECS_PER_HOUR (SECS_PER_MIN * MINS_PER_HOUR)
69#define SECS_PER_DAY (SECS_PER_HOUR * HOURS_PER_DAY)
70
71/**
72 * Checks whether the year is a leap year.
73 *
74 * @param year Year since 1900 (e.g. for 1970, the value is 70).
75 * @return true if year is a leap year, false otherwise
76 */
77static bool _is_leap_year(time_t year)
78{
79 year += 1900;
80
81 if (year % 400 == 0)
82 return true;
83 if (year % 100 == 0)
84 return false;
85 if (year % 4 == 0)
86 return true;
87 return false;
88}
89
90/**
91 * Returns how many days there are in the given month of the given year.
92 * Note that year is only taken into account if month is February.
93 *
94 * @param year Year since 1900 (can be negative).
95 * @param mon Month of the year. 0 for January, 11 for December.
96 * @return Number of days in the specified month.
97 */
98static int _days_in_month(time_t year, time_t mon)
99{
100 assert(mon >= 0 && mon <= 11);
101
102 static int month_days[] =
103 { 31, 0, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
104
105 if (mon == 1) {
106 year += 1900;
107 /* february */
108 return _is_leap_year(year) ? 29 : 28;
109 } else {
110 return month_days[mon];
111 }
112}
113
114/**
115 * For specified year, month and day of month, returns which day of that year
116 * it is.
117 *
118 * For example, given date 2011-01-03, the corresponding expression is:
119 * _day_of_year(111, 0, 3) == 2
120 *
121 * @param year Year (year 1900 = 0, can be negative).
122 * @param mon Month (January = 0).
123 * @param mday Day of month (First day is 1).
124 * @return Day of year (First day is 0).
125 */
126static int _day_of_year(time_t year, time_t mon, time_t mday)
127{
128 static int mdays[] =
129 { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
130 static int leap_mdays[] =
131 { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335 };
132
133 return (_is_leap_year(year) ? leap_mdays[mon] : mdays[mon]) + mday - 1;
134}
135
136/**
137 * Integer division that rounds to negative infinity.
138 * Used by some functions in this file.
139 *
140 * @param op1 Dividend.
141 * @param op2 Divisor.
142 * @return Rounded quotient.
143 */
144static time_t _floor_div(time_t op1, time_t op2)
145{
146 if (op1 >= 0 || op1 % op2 == 0) {
147 return op1 / op2;
148 } else {
149 return op1 / op2 - 1;
150 }
151}
152
153/**
154 * Modulo that rounds to negative infinity.
155 * Used by some functions in this file.
156 *
157 * @param op1 Dividend.
158 * @param op2 Divisor.
159 * @return Remainder.
160 */
161static time_t _floor_mod(time_t op1, time_t op2)
162{
163 int div = _floor_div(op1, op2);
164
165 /* (a / b) * b + a % b == a */
166 /* thus, a % b == a - (a / b) * b */
167
168 int result = op1 - div * op2;
169
170 /* Some paranoid checking to ensure I didn't make a mistake here. */
171 assert(result >= 0);
172 assert(result < op2);
173 assert(div * op2 + result == op1);
174
175 return result;
176}
177
178/**
179 * Number of days since the Epoch.
180 * Epoch is 1970-01-01, which is also equal to day 0.
181 *
182 * @param year Year (year 1900 = 0, may be negative).
183 * @param mon Month (January = 0).
184 * @param mday Day of month (first day = 1).
185 * @return Number of days since the Epoch.
186 */
187static time_t _days_since_epoch(time_t year, time_t mon, time_t mday)
188{
189 return (year - 70) * 365 + _floor_div(year - 69, 4) -
190 _floor_div(year - 1, 100) + _floor_div(year + 299, 400) +
191 _day_of_year(year, mon, mday);
192}
193
194/**
195 * Seconds since the Epoch. see also _days_since_epoch().
196 *
197 * @param tm Normalized broken-down time.
198 * @return Number of seconds since the epoch, not counting leap seconds.
199 */
200static time_t _secs_since_epoch(const struct tm *tm)
201{
202 return _days_since_epoch(tm->tm_year, tm->tm_mon, tm->tm_mday) *
203 SECS_PER_DAY + tm->tm_hour * SECS_PER_HOUR +
204 tm->tm_min * SECS_PER_MIN + tm->tm_sec;
205}
206
207/**
208 * Which day of week the specified date is.
209 *
210 * @param year Year (year 1900 = 0).
211 * @param mon Month (January = 0).
212 * @param mday Day of month (first = 1).
213 * @return Day of week (Sunday = 0).
214 */
215static int _day_of_week(time_t year, time_t mon, time_t mday)
216{
217 /* 1970-01-01 is Thursday */
218 return _floor_mod((_days_since_epoch(year, mon, mday) + 4), 7);
219}
220
221/**
222 * Normalizes the broken-down time and optionally adds specified amount of
223 * seconds.
224 *
225 * @param tm Broken-down time to normalize.
226 * @param sec_add Seconds to add.
227 * @return 0 on success, -1 on overflow
228 */
229static int _normalize_time(struct tm *tm, time_t sec_add)
230{
231 // TODO: DST correction
232
233 /* Set initial values. */
234 time_t sec = tm->tm_sec + sec_add;
235 time_t min = tm->tm_min;
236 time_t hour = tm->tm_hour;
237 time_t day = tm->tm_mday - 1;
238 time_t mon = tm->tm_mon;
239 time_t year = tm->tm_year;
240
241 /* Adjust time. */
242 min += _floor_div(sec, SECS_PER_MIN);
243 sec = _floor_mod(sec, SECS_PER_MIN);
244 hour += _floor_div(min, MINS_PER_HOUR);
245 min = _floor_mod(min, MINS_PER_HOUR);
246 day += _floor_div(hour, HOURS_PER_DAY);
247 hour = _floor_mod(hour, HOURS_PER_DAY);
248
249 /* Adjust month. */
250 year += _floor_div(mon, 12);
251 mon = _floor_mod(mon, 12);
252
253 /* Now the difficult part - days of month. */
254
255 /* First, deal with whole cycles of 400 years = 146097 days. */
256 year += _floor_div(day, 146097) * 400;
257 day = _floor_mod(day, 146097);
258
259 /* Then, go in one year steps. */
260 if (mon <= 1) {
261 /* January and February. */
262 while (day > 365) {
263 day -= _is_leap_year(year) ? 366 : 365;
264 year++;
265 }
266 } else {
267 /* Rest of the year. */
268 while (day > 365) {
269 day -= _is_leap_year(year + 1) ? 366 : 365;
270 year++;
271 }
272 }
273
274 /* Finally, finish it off month per month. */
275 while (day >= _days_in_month(year, mon)) {
276 day -= _days_in_month(year, mon);
277 mon++;
278 if (mon >= 12) {
279 mon -= 12;
280 year++;
281 }
282 }
283
284 /* Calculate the remaining two fields. */
285 tm->tm_yday = _day_of_year(year, mon, day + 1);
286 tm->tm_wday = _day_of_week(year, mon, day + 1);
287
288 /* And put the values back to the struct. */
289 tm->tm_sec = (int) sec;
290 tm->tm_min = (int) min;
291 tm->tm_hour = (int) hour;
292 tm->tm_mday = (int) day + 1;
293 tm->tm_mon = (int) mon;
294
295 /* Casts to work around libc brain-damage. */
296 if (year > ((int)INT_MAX) || year < ((int)INT_MIN)) {
297 tm->tm_year = (year < 0) ? ((int)INT_MIN) : ((int)INT_MAX);
298 return -1;
299 }
300
301 tm->tm_year = (int) year;
302 return 0;
303}
304
305/**
306 * Which day the week-based year starts on, relative to the first calendar day.
307 * E.g. if the year starts on December 31st, the return value is -1.
308 *
309 * @param Year since 1900.
310 * @return Offset of week-based year relative to calendar year.
311 */
312static int _wbyear_offset(int year)
313{
314 int start_wday = _day_of_week(year, 0, 1);
315 return _floor_mod(4 - start_wday, 7) - 3;
316}
317
318/**
319 * Returns week-based year of the specified time.
320 *
321 * @param tm Normalized broken-down time.
322 * @return Week-based year.
323 */
324static int _wbyear(const struct tm *tm)
325{
326 int day = tm->tm_yday - _wbyear_offset(tm->tm_year);
327 if (day < 0) {
328 /* Last week of previous year. */
329 return tm->tm_year - 1;
330 }
331 if (day > 364 + _is_leap_year(tm->tm_year)) {
332 /* First week of next year. */
333 return tm->tm_year + 1;
334 }
335 /* All the other days are in the calendar year. */
336 return tm->tm_year;
337}
338
339/**
340 * Week number of the year, assuming weeks start on sunday.
341 * The first Sunday of January is the first day of week 1;
342 * days in the new year before this are in week 0.
343 *
344 * @param tm Normalized broken-down time.
345 * @return The week number (0 - 53).
346 */
347static int _sun_week_number(const struct tm *tm)
348{
349 int first_day = (7 - _day_of_week(tm->tm_year, 0, 1)) % 7;
350 return (tm->tm_yday - first_day + 7) / 7;
351}
352
353/**
354 * Week number of the year, assuming weeks start on monday.
355 * If the week containing January 1st has four or more days in the new year,
356 * then it is considered week 1. Otherwise, it is the last week of the previous
357 * year, and the next week is week 1. Both January 4th and the first Thursday
358 * of January are always in week 1.
359 *
360 * @param tm Normalized broken-down time.
361 * @return The week number (1 - 53).
362 */
363static int _iso_week_number(const struct tm *tm)
364{
365 int day = tm->tm_yday - _wbyear_offset(tm->tm_year);
366 if (day < 0) {
367 /* Last week of previous year. */
368 return 53;
369 }
370 if (day > 364 + _is_leap_year(tm->tm_year)) {
371 /* First week of next year. */
372 return 1;
373 }
374 /* All the other days give correct answer. */
375 return (day / 7 + 1);
376}
377
378/**
379 * Week number of the year, assuming weeks start on monday.
380 * The first Monday of January is the first day of week 1;
381 * days in the new year before this are in week 0.
382 *
383 * @param tm Normalized broken-down time.
384 * @return The week number (0 - 53).
385 */
386static int _mon_week_number(const struct tm *tm)
387{
388 int first_day = (1 - _day_of_week(tm->tm_year, 0, 1)) % 7;
389 return (tm->tm_yday - first_day + 7) / 7;
390}
391
392/******************************************************************************/
393
394
395/** Add microseconds to given timeval.
396 *
397 * @param tv Destination timeval.
398 * @param usecs Number of microseconds to add.
399 *
400 */
401void tv_add(struct timeval *tv, suseconds_t usecs)
402{
403 tv->tv_sec += usecs / 1000000;
404 tv->tv_usec += usecs % 1000000;
405
406 if (tv->tv_usec > 1000000) {
407 tv->tv_sec++;
408 tv->tv_usec -= 1000000;
409 }
410}
411
412/** Subtract two timevals.
413 *
414 * @param tv1 First timeval.
415 * @param tv2 Second timeval.
416 *
417 * @return Difference between tv1 and tv2 (tv1 - tv2) in
418 * microseconds.
419 *
420 */
421suseconds_t tv_sub(struct timeval *tv1, struct timeval *tv2)
422{
423 return (tv1->tv_usec - tv2->tv_usec) +
424 ((tv1->tv_sec - tv2->tv_sec) * 1000000);
425}
426
427/** Decide if one timeval is greater than the other.
428 *
429 * @param t1 First timeval.
430 * @param t2 Second timeval.
431 *
432 * @return True if tv1 is greater than tv2.
433 * @return False otherwise.
434 *
435 */
436int tv_gt(struct timeval *tv1, struct timeval *tv2)
437{
438 if (tv1->tv_sec > tv2->tv_sec)
439 return true;
440
441 if ((tv1->tv_sec == tv2->tv_sec) && (tv1->tv_usec > tv2->tv_usec))
442 return true;
443
444 return false;
445}
446
447/** Decide if one timeval is greater than or equal to the other.
448 *
449 * @param tv1 First timeval.
450 * @param tv2 Second timeval.
451 *
452 * @return True if tv1 is greater than or equal to tv2.
453 * @return False otherwise.
454 *
455 */
456int tv_gteq(struct timeval *tv1, struct timeval *tv2)
457{
458 if (tv1->tv_sec > tv2->tv_sec)
459 return true;
460
461 if ((tv1->tv_sec == tv2->tv_sec) && (tv1->tv_usec >= tv2->tv_usec))
462 return true;
463
464 return false;
465}
466
467/** Get time of day
468 *
469 * The time variables are memory mapped (read-only) from kernel which
470 * updates them periodically.
471 *
472 * As it is impossible to read 2 values atomically, we use a trick:
473 * First we read the seconds, then we read the microseconds, then we
474 * read the seconds again. If a second elapsed in the meantime, set
475 * the microseconds to zero.
476 *
477 * This assures that the values returned by two subsequent calls
478 * to gettimeofday() are monotonous.
479 *
480 */
481int gettimeofday(struct timeval *tv, struct timezone *tz)
482{
483 if (ktime == NULL) {
484 uintptr_t faddr;
485 int rc = sysinfo_get_value("clock.faddr", &faddr);
486 if (rc != EOK) {
487 errno = rc;
488 return -1;
489 }
490
491 void *addr;
492 rc = physmem_map((void *) faddr, 1,
493 AS_AREA_READ | AS_AREA_CACHEABLE, &addr);
494 if (rc != EOK) {
495 as_area_destroy(addr);
496 errno = rc;
497 return -1;
498 }
499
500 ktime = addr;
501 }
502
503 if (tz) {
504 tz->tz_minuteswest = 0;
505 tz->tz_dsttime = DST_NONE;
506 }
507
508 sysarg_t s2 = ktime->seconds2;
509
510 read_barrier();
511 tv->tv_usec = ktime->useconds;
512
513 read_barrier();
514 sysarg_t s1 = ktime->seconds1;
515
516 if (s1 != s2) {
517 tv->tv_sec = max(s1, s2);
518 tv->tv_usec = 0;
519 } else
520 tv->tv_sec = s1;
521
522 return 0;
523}
524
525time_t time(time_t *tloc)
526{
527 struct timeval tv;
528 if (gettimeofday(&tv, NULL))
529 return (time_t) -1;
530
531 if (tloc)
532 *tloc = tv.tv_sec;
533
534 return tv.tv_sec;
535}
536
537/** Wait unconditionally for specified number of microseconds
538 *
539 */
540int usleep(useconds_t usec)
541{
542 (void) __SYSCALL1(SYS_THREAD_USLEEP, usec);
543 return 0;
544}
545
546void udelay(useconds_t time)
547{
548 (void) __SYSCALL1(SYS_THREAD_UDELAY, (sysarg_t) time);
549}
550
551
552/** Wait unconditionally for specified number of seconds
553 *
554 */
555unsigned int sleep(unsigned int sec)
556{
557 /*
558 * Sleep in 1000 second steps to support
559 * full argument range
560 */
561
562 while (sec > 0) {
563 unsigned int period = (sec > 1000) ? 1000 : sec;
564
565 usleep(period * 1000000);
566 sec -= period;
567 }
568
569 return 0;
570}
571
572/**
573 * This function first normalizes the provided broken-down time
574 * (moves all values to their proper bounds) and then tries to
575 * calculate the appropriate time_t representation.
576 *
577 * @param tm Broken-down time.
578 * @return time_t representation of the time, undefined value on overflow.
579 */
580time_t mktime(struct tm *tm)
581{
582 // TODO: take DST flag into account
583 // TODO: detect overflow
584
585 _normalize_time(tm, 0);
586 return _secs_since_epoch(tm);
587}
588
589/**
590 * Convert time and date to a string, based on a specified format and
591 * current locale.
592 *
593 * @param s Buffer to write string to.
594 * @param maxsize Size of the buffer.
595 * @param format Format of the output.
596 * @param tm Broken-down time to format.
597 * @return Number of bytes written.
598 */
599size_t strftime(char *restrict s, size_t maxsize,
600 const char *restrict format, const struct tm *restrict tm)
601{
602 assert(s != NULL);
603 assert(format != NULL);
604 assert(tm != NULL);
605
606 // TODO: use locale
607 static const char *wday_abbr[] = {
608 "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
609 };
610 static const char *wday[] = {
611 "Sunday", "Monday", "Tuesday", "Wednesday",
612 "Thursday", "Friday", "Saturday"
613 };
614 static const char *mon_abbr[] = {
615 "Jan", "Feb", "Mar", "Apr", "May", "Jun",
616 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
617 };
618 static const char *mon[] = {
619 "January", "February", "March", "April", "May", "June", "July",
620 "August", "September", "October", "November", "December"
621 };
622
623 if (maxsize < 1) {
624 return 0;
625 }
626
627 char *ptr = s;
628 size_t consumed;
629 size_t remaining = maxsize;
630
631 #define append(...) { \
632 /* FIXME: this requires POSIX-correct snprintf */ \
633 /* otherwise it won't work with non-ascii chars */ \
634 consumed = snprintf(ptr, remaining, __VA_ARGS__); \
635 if (consumed >= remaining) { \
636 return 0; \
637 } \
638 ptr += consumed; \
639 remaining -= consumed; \
640 }
641
642 #define recurse(fmt) { \
643 consumed = strftime(ptr, remaining, fmt, tm); \
644 if (consumed == 0) { \
645 return 0; \
646 } \
647 ptr += consumed; \
648 remaining -= consumed; \
649 }
650
651 #define TO_12H(hour) (((hour) > 12) ? ((hour) - 12) : \
652 (((hour) == 0) ? 12 : (hour)))
653
654 while (*format != '\0') {
655 if (*format != '%') {
656 append("%c", *format);
657 format++;
658 continue;
659 }
660
661 format++;
662 if (*format == '0' || *format == '+') {
663 // TODO: padding
664 format++;
665 }
666 while (isdigit(*format)) {
667 // TODO: padding
668 format++;
669 }
670 if (*format == 'O' || *format == 'E') {
671 // TODO: locale's alternative format
672 format++;
673 }
674
675 switch (*format) {
676 case 'a':
677 append("%s", wday_abbr[tm->tm_wday]); break;
678 case 'A':
679 append("%s", wday[tm->tm_wday]); break;
680 case 'b':
681 append("%s", mon_abbr[tm->tm_mon]); break;
682 case 'B':
683 append("%s", mon[tm->tm_mon]); break;
684 case 'c':
685 // TODO: locale-specific datetime format
686 recurse("%Y-%m-%d %H:%M:%S"); break;
687 case 'C':
688 append("%02d", (1900 + tm->tm_year) / 100); break;
689 case 'd':
690 append("%02d", tm->tm_mday); break;
691 case 'D':
692 recurse("%m/%d/%y"); break;
693 case 'e':
694 append("%2d", tm->tm_mday); break;
695 case 'F':
696 recurse("%+4Y-%m-%d"); break;
697 case 'g':
698 append("%02d", _wbyear(tm) % 100); break;
699 case 'G':
700 append("%d", _wbyear(tm)); break;
701 case 'h':
702 recurse("%b"); break;
703 case 'H':
704 append("%02d", tm->tm_hour); break;
705 case 'I':
706 append("%02d", TO_12H(tm->tm_hour)); break;
707 case 'j':
708 append("%03d", tm->tm_yday); break;
709 case 'k':
710 append("%2d", tm->tm_hour); break;
711 case 'l':
712 append("%2d", TO_12H(tm->tm_hour)); break;
713 case 'm':
714 append("%02d", tm->tm_mon); break;
715 case 'M':
716 append("%02d", tm->tm_min); break;
717 case 'n':
718 append("\n"); break;
719 case 'p':
720 append("%s", tm->tm_hour < 12 ? "AM" : "PM"); break;
721 case 'P':
722 append("%s", tm->tm_hour < 12 ? "am" : "PM"); break;
723 case 'r':
724 recurse("%I:%M:%S %p"); break;
725 case 'R':
726 recurse("%H:%M"); break;
727 case 's':
728 append("%ld", _secs_since_epoch(tm)); break;
729 case 'S':
730 append("%02d", tm->tm_sec); break;
731 case 't':
732 append("\t"); break;
733 case 'T':
734 recurse("%H:%M:%S"); break;
735 case 'u':
736 append("%d", (tm->tm_wday == 0) ? 7 : tm->tm_wday);
737 break;
738 case 'U':
739 append("%02d", _sun_week_number(tm)); break;
740 case 'V':
741 append("%02d", _iso_week_number(tm)); break;
742 case 'w':
743 append("%d", tm->tm_wday); break;
744 case 'W':
745 append("%02d", _mon_week_number(tm)); break;
746 case 'x':
747 // TODO: locale-specific date format
748 recurse("%Y-%m-%d"); break;
749 case 'X':
750 // TODO: locale-specific time format
751 recurse("%H:%M:%S"); break;
752 case 'y':
753 append("%02d", tm->tm_year % 100); break;
754 case 'Y':
755 append("%d", 1900 + tm->tm_year); break;
756 case 'z':
757 // TODO: timezone
758 break;
759 case 'Z':
760 // TODO: timezone
761 break;
762 case '%':
763 append("%%");
764 break;
765 default:
766 /* Invalid specifier, print verbatim. */
767 while (*format != '%') {
768 format--;
769 }
770 append("%%");
771 break;
772 }
773 format++;
774 }
775
776 #undef append
777 #undef recurse
778
779 return maxsize - remaining;
780}
781
782struct tm *gmtime(const time_t *timer)
783{
784 assert(timer != NULL);
785
786 static struct tm result;
787
788 /* Set result to epoch. */
789 result.tm_sec = 0;
790 result.tm_min = 0;
791 result.tm_hour = 0;
792 result.tm_mday = 1;
793 result.tm_mon = 0;
794 result.tm_year = 70; /* 1970 */
795
796 if (_normalize_time(&result, *timer) == -1) {
797 errno = EOVERFLOW;
798 return NULL;
799 }
800
801 return &result;
802}
803
804/**
805 * Converts broken-down time to a string in format
806 * "Sun Jan 1 00:00:00 1970\n". (Obsolete)
807 *
808 * @param timeptr Broken-down time structure.
809 * @return Pointer to a statically allocated string.
810 */
811char *asctime(const struct tm *timeptr)
812{
813 static char buf[ASCTIME_BUF_LEN];
814
815 assert(timeptr != NULL);
816
817 static const char *wday[] = {
818 "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
819 };
820 static const char *mon[] = {
821 "Jan", "Feb", "Mar", "Apr", "May", "Jun",
822 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
823 };
824
825 snprintf(buf, ASCTIME_BUF_LEN, "%s %s %2d %02d:%02d:%02d %d\n",
826 wday[timeptr->tm_wday],
827 mon[timeptr->tm_mon],
828 timeptr->tm_mday, timeptr->tm_hour,
829 timeptr->tm_min, timeptr->tm_sec,
830 1900 + timeptr->tm_year);
831
832 return buf;
833
834}
835
836/**
837 * Converts a time value to a broken-down local time.
838 *
839 * @param timer Time to convert.
840 * @return Normalized broken-down time in local timezone, NULL on overflow.
841 */
842struct tm *localtime(const time_t *timer)
843{
844 // TODO: deal with timezone
845 // currently assumes system and all times are in GMT
846
847 static struct tm result;
848
849 /* Set result to epoch. */
850 result.tm_sec = 0;
851 result.tm_min = 0;
852 result.tm_hour = 0;
853 result.tm_mday = 1;
854 result.tm_mon = 0;
855 result.tm_year = 70; /* 1970 */
856
857 if (_normalize_time(&result, *timer) == -1) {
858 errno = EOVERFLOW;
859 return NULL;
860 }
861
862 return &result;
863}
864
865/**
866 * Equivalent to asctime(localtime(clock)).
867 *
868 * @param timer Time to convert.
869 * @return Pointer to a statically allocated string holding the date.
870 */
871char *ctime(const time_t *timer)
872{
873 struct tm *loctime = localtime(timer);
874 if (loctime == NULL) {
875 return NULL;
876 }
877 return asctime(loctime);
878}
879
880/**
881 * Calculate the difference between two times, in seconds.
882 *
883 * @param time1 First time.
884 * @param time0 Second time.
885 * @return Time in seconds.
886 */
887double difftime(time_t time1, time_t time0)
888{
889 return (double) (time1 - time0);
890}
891
892/** @}
893 */
Note: See TracBrowser for help on using the repository browser.